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Abstract In this chapter, we compare two ways to treat the time within reduced basis
methods (RBMs) for parabolic problems: Time-stepping and space-time variational
based methods. We briefly recall both concepts and review well-posedness, error
control and model reduction in both cases as well as the numerical realization. In
particular, we highlight the conceptual differences of the two approaches.

We provide numerical investigations focussing on the performance of the RBM
in both variants regarding approximation quality, efficiency and reliability of the
error estimator. Pro’s and Con’s of both approaches are discussed.

1 Introduction

Parametrized partial differential equations (PPDEs) often occur in industrial or fi-
nancial applications. If simulations are required for many different values of the
involved parameters (“multi-query”), fine discretizations that are needed for a good
approximation may resolve in high dimensional systems and thus in (for many ap-
plications too) long computation times. The reduced basis method (RBM) is by now
a well-known model reduction technique, which allows one to efficiently reduce the
numerical effort for many PPDEs by precomputing a reduced basis in an offline
phase (using a detailed model, sometimes called “truth”) and evaluating the reduced
model (for new parameter values) highly efficient in the online phase.

Here, we focus on time-dependent problems of parabolic type in variational for-
mulation and describe two different approaches. The maybe more standard one is
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based upon a time-stepping scheme in the offline phase. The reduced basis is then
usually formed by the POD-Greedy method, [3, 5], which results in a reduced time-
stepping system for the offline phase. The second approach that we wish to discuss,
is based upon the space-time variational formulation of the parabolic problem, in
which the time is taken as an additional variable for the variational formulation.
This results in a Petrov-Galerkin problem in d+1 dimensions (if d denotes the spa-
tial dimension). The reduced basis is then formed by a standard greedy approach
resulting in a reduced space-time Petrov-Galerkin method, [13, 14].

The aim of this paper is to provide a comparison of these two methods in order
to identify similarities and conceptual differences of the two approaches. It com-
plements and completes a recent similar comparison in [2] for discrete instationary
problems.

The remainder of this chapter is organized as follows. We start in Section 2 by
reviewing both variational formulations of parabolic PDEs. A brief survey of the
RBM is contained in Section 3. Section 4 is devoted to the description of the POD-
Greedy/time-stepping method for the RBM, whereas Section 5 contains the space-
time RBM. Our numerical experiments as well as the comparisons are presented in
Section 6. We finish with some conclusions in Section 7.

2 Variational Formulations of Parabolic Problems

Let V ↪→H be separable Hilbert spaces with continuous and dense embedding. The
inner products and induced norms are denoted by (·, ·)H , (·, ·)V and ‖ · ‖H , ‖ · ‖V ,
respectively. We identify H with its dual yielding a Gelfand triple V ↪→ H ↪→V ′.

Let 0 < T < ∞ be the final time, I := (0,T ) the time interval and Ω ⊂Rd an open
domain. We consider a linear, bounded operator A ∈ L(V,V ′) induced by a bilinear
form a(·, ·) : V ×V →R as 〈Aφ ,ψ〉V ′×V = a(φ ,ψ).a We require the bilinear form to
satisfy the following properties

|a(φ ,ψ)| ≤Ma‖φ‖V‖ψ‖V , φ ,ψ ∈V (boundedness) (1a)

a(φ ,φ)+λ‖φ‖2
H ≥ α‖φ‖2

V , φ ∈V (Gårding inequality) (1b)

with constants Ma < ∞, α > 0, λ ≥ 0. Then, we consider the parabolic initial value
problem

u̇(t)+Au(t) = g(t), in V ′, u(0) = u0 in H, (2)

where g ∈ L2(I;V ′) and u0 ∈ H are given.

a For simplicity, we restrict ourselves to Linear Time-Invariant (LTI) systems. However, much of
what is said also holds for time-variant operators A(t).
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Semi-Variational Formulation

The maybe more standard approach consists of multiplying (2) with a test function
φ ∈V and form the inner product in H (i.e., in space only). This leads to an evolution
problem in V ′, i.e.,

find u(t) ∈V : (u̇(t),φ)H +a(u(t),φ) = (g(t),φ)H , φ ∈V, t ∈ I a.e. (3)

It is well-known that (3) is well-posed thanks to (1), see e.g. [15, Thm. 26.1]. Since
the variational formulation is w.r.t. space only, we call it semi-variational.

Space-Time Variational Formulation

We now follow [12] for the description of a variational formulation of (2) w.r.t. space
and time. This leads to a variational problem with different trial and test spaces X
and Y, both being Bochner spaces, namely

X := L2(I;V )∩H1(I;V ′) = {v ∈ L2(I;V ) : v, v̇ ∈ L2(I;V ′)}, Y := L2(I;V )×H,

with norms ‖v‖2
X := ‖v‖2

L2(I;V ) + ‖v̇‖
2
L2(I;V ′) and ‖v‖2

Y := ‖v1‖2
L2(I;V ) + ‖v2‖2

H , v =

(v1,v2) ∈Y. Since X ↪→C(I;H), see, e.g. [15, Thm. 25.5], u(0) ∈H is well-defined
for u ∈ X.

The space-time variational formulation arises by multiplying (2) with test func-
tions v ∈ Y and integrating w.r.t. time and space. This yields the linear operator
B ∈ L(X,Y′) defined as 〈Bu,v〉Y′×Y = b(u,v) by (we omit the dependence on t in
the integrands in the sequel)

b(u,v) :=
∫

I
〈u̇+Au,v1〉V ′×V dt +(u(0),v2)H , u ∈ X,v = (v1,v2) ∈ Y,

i.e., b(·, ·) : X×Y→ R and the right-hand side f ∈ Y′ is defined by

〈 f ,v〉Y′×Y :=
∫

I
〈g,v1〉V ′×V dt +(u0,v2)H , v = (v1,v2) ∈ Y.

Then, the space-time variational formulation of (2) reads

find u ∈ X : 〈Bu,v〉Y′×Y = 〈 f ,v〉Y′×Y, ∀ v ∈ Y. (4)

Again, (1) yields well-posedness, e.g. [12, Thm. 5.1]. In fact, the operator B is
boundedly invertible. The injectivity of the operator B is equivalent to

βb := inf
w∈X

sup
v∈Y

|b(w,v)|
‖w‖X ‖v‖Y

> 0, (inf-sup condition). (5)
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3 Parametrized Problems and the RBM

We introduce a general notation here, which will then be specified for both varia-
tional formulations. Let X ,Y be Hilbert spaces, µ ∈ P ⊂ Rp a parameter and con-
sider parametric forms c : X ×Y ×P → R as well as h : Y ×P → R. Then, the
parameterized Petrov-Galerkin problem reads

find u(µ) ∈ X : c(u(µ),v; µ) = h(v; µ) ∀ v ∈ Y. (6)

This framework obviously also includes the elliptic case Y = X . We briefly review
the main ingredients of the RBM and refer to [6, 10] for recent surveys.

It is always assumed that a detailed discretization is available in the following
sense: Let XN ⊂ X and YN ⊂ Y be subspaces of finite, but large, dimension N .
The detailed problem (sometimes called “truth”) then reads

find uN (µ) ∈ XN : c(uN (µ),vN ; µ) = h(vN ; µ) ∀ vN ∈ YN . (7)

The “truth” solution uN (µ) is always assumed to be sufficiently close to u(µ). For
well-posedness and stability of (7), a uniform inf-sup condition is required, e.g. [9].

The next step is the computation of a reduced basis formed by “snapshots” ξ i :=
uN (µ i), 1≤ i≤N�N , where the snapshot parameters µ i ∈P are e.g. determined
by a greedy procedure w.r.t. an efficiently computable error estimate ∆N(µ). The
reduced trial space is then defined as XN := span{ξ 1, . . . ,ξ N} and one needs some
stable (possibly parameter-dependent) test spaceYN(µ). The reduced problem reads

find uN(µ) ∈ XN : c(uN(µ),vN ; µ) = h(vN ; µ) ∀ vN ∈ YN(µ). (8)

In the above setting, it is easy to derive an error estimate which also results in the
required error estimator ∆N(µ) defined by

‖uN (µ)−uN(µ)‖X ≤
1
βc
‖rN(·; µ)‖Y ′ =: ∆N(µ), (9)

where rN(v; µ) := h(v; µ)− c(uN(µ),v; µ) = c(uN (µ)− uN(µ),v; µ), v ∈ YN , is
the residual and βc is the inf-sup constant associated with the bilinear form c.

We call (8) online efficient if it can be solved with complexity independent of
N . In order to reach that goal, the following assumption is crucial: The forms are
assumed to be separable in the parameter (sometimes called affine decomposition),

c(u,v; µ) =
Qc

∑
q=1

θ
c
q (µ)cq(u,v), h(v; µ) =

Qh

∑
q=1

θ
h
q (µ)hq(v) (10)

for some Qc,Qh ∈ N, functions θ c
q ,θ

h
q : P → R and parameter-independent forms

cq, hq that can be precomputed in the offline phase. The parameter-dependent func-
tions θ c

q ,θ
h
q are assumed to be computable online efficient, i.e., with complexity

independent of N .
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4 Reduced Basis Methods with POD-Greedy

We start from the semi-variational formulation (3) and apply a semi-discretization in
time, known as Rothe’s method. To this end, set ∆ t := T

K for some K > 1, tk := k ∆ t
and we seek some approximation uk ≈ u(tk), where we omit the µ-dependency to
shorten notation. This leads to a sequence of elliptic (time-independent) ordinary
differential equations starting with u0 := u0. The standard θ -scheme then reads

1
∆ t

(
uk+1−uk,v

)
H +a(θuk+1 +(1−θ)uk,v; µ)

= θg(v, tk+1; µ)+(1−θ)g(v, tk; µ), v ∈V.

“Truth”. The next step is a discretization in space by a standard Galerkin method
using finite-dimensional spaces Vh ⊂ V with large dim(Vh) = Nh ∈ N. Then, the
detailed or “truth” problem for a given parameter µ ∈ P reads for an initial value
u0

h := ProjVh
u0 to find uk+1

h (µ) ∈Vh, such that for vh ∈Vh,

(uk+1
h ,vh)H +∆ tθ a(uk+1

h ,vh; µ)

= (uk
h,vh)H +∆ t(1−θ)a(uk

h,vh; µ)+θg(vh, tk+1; µ)+(1−θ)g(vh, tk; µ),

for 0≤ k ≤ K−1. If Vh = span{φi : i = 1, . . . ,Nh}, the latter equation can be writ-
ten in matrix-vector form as follows. Let Mspace

h := [(φi,φ j)H ]i, j=1,...,Nh denote the
spatial mass matrix and Aspace

h := [a(φi,φ j)]i, j=1,...,Nh the stiffness matrix, then we
look for

uk+1
h =

Nh

∑
i=1

α
k+1
i φi, α

k+1 := (αk+1
i )i=1,...,Nh ,

such that (with gk and α0 being the expansion coefficients of g(tk) and u0)

(Mspace
h +θ∆ tAspace

h (µ))αk+1 =

= (Mspace
h +(1−θ)∆ tAspace

h )αk +∆ t(θgk+1 +(1−θ)gk), (11)

for 0≤ k≤ K−1 as well as α0 := α0. It is well-known that the θ -scheme is uncon-
ditionally stable for 1

2 ≤ θ ≤ 1, whereas for 0≤ θ < 1
2 the space discretization has

to satisfy additional properties, see e.g. [11, Thm. 11.3.1]. The choice θ = 1
2 results

in the Crank-Nicolson scheme. Note, that (11) requires to solve a well-posed elliptic
problem for each time step k, which easily follows from the assumption (1) on the
bilinear form a and coercivity of m(φ ,ψ) := (φ ,ψ)H . In fact, this implies that the
matrix Mspace

h +θ∆ t Aspace
h (µ) is positive definite, e.g. [11, §11.3].

The system (11) is offline/online decomposable which is easily seen as long as
the forms a and g are separable in the parameter. In fact, the mass inner product m
is independent of the parameter.

Reduced Basis via POD-Greedy. The reduced basis is computed by the POD-
Greedy method shown in Algorithm 1. This is a combination of the standard greedy
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algorithm for the parameter search and a Proper Orthogonal Decomposition (POD)
in time to select the time step containing the maximal information of the trajectory
for the given parameter.

Algorithm 1 POD-Greedy algorithm, [5]
Require: Given Nmax > 0, Ptrain ⊂P , εtol, `= 1
1: choose arbitrarily µ` ∈Ptrain; set Ψ` :=

{
u0(µ`)

‖u0(µ`)‖V

}
, V` := span(Ψ`)

2: while maxµ∈Ptrain ∆`(µ)> εtol do
3: define µ`+1 := argmaxµ∈Ptrain

∆`(µ)

4: define ψ̃`+1 := POD
{

uk(µ`+1)−ProjV` (u
k(µ`+1))

}
k=0,...,K

5: define Ψ`+1 := orthonormalize(Ψ`∪{ψ̃`+1}), V`+1 := span(Ψ`+1), `= `+1
6: end while
7: define VN :=V`, NV :=dim(VN)
8: return VN , NV ;

Online Phase. The POD-Greedy method produces a reduced space VN ⊂ V of
possibly small dimension N :=NPOD-G�Nh . Then, a reduced basis approximation
for a new parameter µ ∈ P is determined by a corresponding time-stepping scheme
as follows. The reduced initial value u0

N ∈VN is computed by (u0
N−u0,vN)V = 0 for

all vN ∈VN . Then, for 0≤ k ≤ K−1, determine uk+1
N (µ) ∈VN by

1
∆ t

(uk+1
N −uk

N ,vN)H +a(θuk+1
N +(1−θ)uk

N ,vN ; µ) = f (vN ; µ), vN ∈VN .

Obviously, this amounts solving a sequence of K reduced problems online.
Error Estimator/Indicator. As in the standard case in Section 3, an online ef-

ficient error estimator is needed both in Algorithm 1 and online for the desired
certification of the RB approximation. Of course, such an estimator here also needs
to incorporate the temporal evolution. In fact, there are several known choices for
∆N(µ) in Algorithm 1. A standard estimator for the error ek(µ) := uk

h(µ)− uk
N(µ)

at final time T = tK is given by, [4, Prop. 3.9]

‖eK(µ)‖V ≤‖e0(µ)‖V
(

γUB

αLB

)K

+
K−1

∑
k=0

∆ t
αLB

(
γUB

αLB

)K−k−1

‖rk
N(µ)‖V ′ =: ∆

K
N (µ). (12)

Here, αLB is a lower bound for the coercivity constant of the implicit part of the
operator, γUB an upper bound for the continuity constant of the explicit part and
rk

N(µ) is the residual at time step tk. It can easily be seen that ∆ K
N is offline/online

decomposable. There are some remarks in order.

Remark 1. (i) In our numerical experiments in Section 6 below, we use a finite
element (FE) discretization. In that case, the estimator (12) can not be used. In
fact, if αLB < γUB, then ∆ K

N (µ) grows quickly with increasing K. This happens
for FE discretizations in V = H1

0 (Ω), which we use here.
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(ii) For symmetric differential operators, the above estimate can be sharpened, [4,
Prop. 3.11]. It allows to extend (12) to a µ-dependent norm on the whole tra-
jectory. �

According to this remark, we cannot use ∆ K
N (µ) here. Thus, we follow the

analysis in [4] and consider a weighted (sometimes called “space-time”) norm for
ω := (ωk)k=0,...,K−1, ωk > 0 and ∑

K−1
k=0 ωk = T defined as

|e|2ω :=
K−1

∑
k=0

ωk‖ek‖2
V , e = (ek)k=0,...,K−1. (13)

A corresponding error indicator is defined as

∆
PST
N,ω :=

(
K−1

∑
k=0

ωk‖rk
N(µ)‖2

V ′

)1/2

. (14)

The term “indicator” means that the error (in whatever norm) cannot be proven to
be bounded in terms of ∆ PST

N,ω . However, even though the error of the POD-Greedy
scheme cannot be guaranteed to decay monotonically, exponential convergence can
be shown under additional assumptions, [3].

5 Space-Time Reduced Basis Methods

As we have seen in Section 2, the space-time variational formulation leads to a
parameterized Petrov-Galerkin problem. Thus, the form is exactly as in the general
RB-framework in (6). Note, that both X = H1

{0}(I)⊗V and Y = (L2(I)⊗V )×H
are tensor products, so that it is convenient to use the same structure for the detailed
discretization, i.e., XN = S∆ t⊗Vh and YN = (Q∆ t⊗Vh)×Vh

b, where Vh ⊂V is the
space discretization as in Section 4 above and S∆ t ⊂H1

{0}(I) as well as Q∆ t ⊂ L2(I)
are temporal discretizations of step size ∆ t, [14].

Let us denote again by Vh = span{φ1,φ2, ...,φNh} the detailed space discretiza-
tion (e.g. by piecewise linear finite elements for V = H1

0 (Ω)). Moreover, let S∆ t =
span{σ0,σ1, ...,σK} and Q∆ t = span{τ1,τ2, ...,τK} be the bases in time (e.g. piece-
wise linear σ i and piecewise constant τ i on the same temporal mesh, with the addi-
tional σ0 for the initial value at t = 0).

The dimension of the arising test and trial spaces coincide, i.e., dim(XN ) = (K+
1)Nh = dim(YN ) =: N . Exploiting the structure of the discretized spaces for the
detailed solution uN = ∑

Nh
i=1 ∑

K
k=0 uk

i σ k⊗φi yields

b It can be seen that Vh ⊂V ↪→ H is in fact sufficient, [8].
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b(uN ,(τk⊗φ j,0); µ) =
Nh

∑
i=1

[(uk
i −uk−1

i )(φi,φ j)H +
∆ t
2
(uk

i +uk−1
i )a(φi,φ j; µ)]

= Mspace
h (uk−uk−1)+∆ t Aspace

h (µ)uk−1/2,

with mass and stiffness matrices Mspace
h , Aspace

h (µ) as above. On the right-hand side,
we use a trapezoidal approximation as in [14] on a time grid 0 = t0 < · · ·< tK = T ,
I` := [t`−1, t`) = supp{τ`}:

f ((τ`⊗φ j,0); µ) =
∫

I
〈g(t; µ),τ`⊗φ j(t, .)〉V ′×V dt =

∫
I`
〈g(t; µ),τ`(t)φ j〉V ′×V dt

≈ ∆ t
2
〈g(t`−1; µ)+g(t`; µ),φ j〉V ′×V .

It turns out that this particular choice for the discretization results (again) in the
Crank-Nicolson scheme involving an additional projection of the initial value, which
requires a CFL condition to ensure stability. A detailed investigation of stable space-
time discretizations can be found in [1].

Since the space-time variational approach yields a standard Petrov-Galerkin
problem, the reduced basis trial and test spaces XN = span{ξ 1, . . . ,ξ N}, YN(µ) :=
span{η1(µ), . . . ,ηN(µ)} can be constructed exactly following the road map in Sec-
tion 3. Hence, we end up with a reduced problem of the form (8). In matrix-vector
form, the resulting system matrix BN(µ) := [b(ξ i,η j(µ); µ)]i, j=1,...,N is of small di-
mension, but not symmetric. Moreover, BN(µ) is uniformly invertible provided that
the inf-sup condition in (5) holds for the RB spaces. It is not difficult to show that the
arising non-symmetric linear system can also be written as minimization problem
or in terms of normal equations (see [8] for details and further applications).

If normal equations are used, no (parameter dependent) reduced test space com-
putation is required: Let XN = span{ϕ` : `= 1, . . . ,N} and YN = span{ψm : m =
1, . . . ,N} be the detailed bases, denote by YN := [(ψm,ψm′)Y]m,m′=1,...,N the mass
matrix of the test space YN as well as the detailed system matrix by BN (µ) :=
[b(ϕ`,ψm; µ)]`,m=1,...,N . Next, denote by ξ j =∑

N
`=1 c j

`ϕ`, C :=(c j
`)`=1,...,N , j=1,...,N ∈

RN×N the expansion of the RB functions in terms of the detailed basis. Then,

BN(µ) :=CT BN (µ)(YN )−1(BN (µ))T C, fN(µ) :=CT BN (µ)(YN )−1 fN (µ),

where fN (µ) contains the detailed basis coefficients of the right-hand side. The RB
approximation uN(µ) = ∑

N
i=1 αi(µ)ξ

i, α(µ) := (αi(µ))i=1,...,N , is then determined
by the solution of the linear system of size N, i.e.

BN(µ)α(µ) = fN(µ). (15)

One can show that (15) admits an online/offline-separation, which is inherited from
the separation of the forms a and g (in particular, we have Qb = Qa and Q f = Qg).
This means that (15) can be solved online efficient. Finally, the inf-sup stability of
(15) is inherited from the detailed discretization.
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6 Numerical Results

We provide some of our numerical investigations concerning the two approaches
described above for a standard diffusion-convection-reaction problem with time de-
pendent right-hand side. Since our focus is on the treatment of the time variable, we
restrict ourselves to a 1d problem in space.

6.1 Data

Model problem. Let d = 1, Ω = (0,1) and V := H1
0 (Ω) ↪→ L2(Ω) =: H. Con-

sider the time interval I = (0,0.3) and the parameter set P := [0.5,1.5]× [0,1]×
[0,1]⊂ R3. For a parameter µ = (µ1,µ2,µ3)

T ∈ P find u≡ u(µ) that solves

u̇−µ1u′′+µ2u′+µ3u = g on I×Ω , (16a)
u(t,x) = 0 ∀ (t,x) ∈ I×∂Ω , (16b)
u(0,x) = u0(x) := sin(2πx) ∀ x ∈Ω . (16c)

We set g(t,x) := sin(2πx)((4π2+0.5)cos(4πt)−4π sin(4πt))+π cos(2πx)cos(4πt)
for the right-hand side, which corresponds to the solution u(t,x) := sin(2πx)cos(4πt)
of (16) for µ ref = (1,0.5,0.5)∈P . The parameter-separability is easily seen. We di-
vide both Ω and I into 26 subintervals, i.e., Nh = 26− 1 and K = 26. The training
set Ptrain is chosen as 17 equidistantly distributed points in P in each direction.

“True” Norms. For the space-time RBM, the “true” error is measured in the
natural discrete space-time norm, [13]

9v92
N := ‖v̄‖2

L2(I;V )+‖v̇‖
2
L2(I;V ′)+‖v(T )‖

2
H , v ∈ XN ⊂ X,

where v̄ :=
K
∑

k=1
τk⊗ v̄k ∈ L2(I;V ) and v̄k := (∆ t)−1 ∫

Ik
v(t)dt ∈V . Note, that ‖v̄‖L2(I;V )

is anO(∆ t)-approximation of the V := L2(I;V )-norm (due to the piecewise constant
approximation v̄k).

For the POD-Greedy strategy, we consider the final time contribution ‖v(T )‖V
(corresponding to the left-hand side of (12)) as well as the “space-time norm” intro-
duced in (13) for the specific weights ωk := ∆ t, k = 0, . . . ,K−1, plus the final time
contribution as “true” error, i.e.

|v|2∆ t := |(v(tk))k=0,...,K−1|2ω +∆ t ‖v(T )‖2
V =

K

∑
k=0

∆ t‖v(tk)‖2
V .

This means that | · |∆ t is an O(∆ t2)-approximation of the V := L2(I;V )-norm.

Remark 2. For later reference, we point out the fact that | · |∆ t is an O(∆ t2)-
approximation of the norm ‖ · ‖V, whereas ‖v̄‖L2(I;V ) is only of the order O(∆ t).
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This means that it may happen that |v|∆ t > 9v9N even though ‖w‖X > ‖w‖V for
all 0 6= w ∈ X. �

Error Estimators/Greedy. For the error estimation in the space-time RBM,
we use the residual-based error estimator ∆N(µ) in (9) with numerically estimated
lower bound for the inf-sup constant, βLB = 0.2. Of course, this is a relatively rough
bound (independent of µ!) and performing e.g. a Successive Constraint Method
(SCM, [7]) would improve the subsequent results. For the POD-Greedy scheme,
we use the space-time error indicator ∆ PST

N (µ) that arises from (14) by the choice
ωk ≡ ∆ t for the weights.

We emphasize that ∆N(µ) bounds the norm in X= H1
{0}(I)⊗V (V= L2(I;V ),

whereas ∆ PST
N (µ) is “only” an indicator, in particular it is not known to be an upper

bound for any norm. In view of (12), we could expect that ‖eK(µ)‖V might be a
candidate, or –since | · |∆ t is a discrete L2(I;V )-norm– we could consider ‖e‖L2(I;V ).

Comparison. We conclude that a direct and fair comparison is not easy because
of the described methodological differences. Table 1 collects these differences and
our choice for the experiments.

snapshot space RB space “true” error error estimated by
space-time XN XN 9 ·9N residual based, ∆N(µ) in (9)

POD-Greedy {t0, . . . , tK}×Vh VN | · |∆ t indicator ∆ PST
N (µ) in (14) for ωk ≡ ∆ t

Table 1 Differences of space-time RBM and POD-Greedy sampling.

6.2 Results

Greedy Training. Within the framework of Table 1, the offline greedy error de-
cay of both variants is shown in Figure 1. The red lines correspond to the space-time
form, whereas the blue lines are for the POD-Greedy. Straight lines indicate the er-
ror, dotted ones the error estimator/indicator. The left figure shows the weak greedy
using the error estimators/indicators. We observe exponential decay w.r.t. the RB di-
mension N in both cases – as predicted by the theory. At a first glance, it seems that
the decay of POD-Greedy is much faster than the one for space-time. Note, however,
that the online effort is related to N in a different way for both variants, see below. As
mentioned above, the two variants are related to different norms. This is the reason
why we performed a strong greedy using the ||| · |||N -norm for both variants (right
graph in Figure 1). We see a similar behavior – again referring to the different online
work load. It is interesting, though, that at least in these experiments, POD-Greedy
works very well even for the full norm – without theoretically foundation though.
However, we can also see from the results that ∆ PST

N (µ) is not an error bound since
it is below the “exact” error for some N. Recall that ∆ PST

N (µ) arises from the upper
bound ∆ K

N (µ) in (12) by setting involved coercivity and continuity constants to 1.
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Fig. 1 RB-Greedy approximation error. Red: Space-Time (ST); blue: POD-Greedy (POD-G). Left:
weak greedy, right: strong greedy w.r.t. ||| · |||N .

Moreover, note, that in the same spirit, we could easily lower the gap between the
two red space-time lines by sharpen βLB. The prescribed greedy-tolerance of 10−3

is reached for NPOD-G = 6 for POD-Greedy and for NST = 12 for space-time.
Online Phase. We test the RB approximations for two cases, namely for Psym

test :=
{(µ1,0,0) : µ1 ∈ [0.5,1.5]} (symmetric case) and Pnon

test := {(0.5,µ2,0.75) : µ2 ∈
[0,1]} (non-symmetric case). The results are shown in Figure 2, the symmetric case
in the top line, the non-symmetric in the bottom one.

First of all, both variants work as they should in the sense that the respective error
measures are below the greedy tolerance of 10−3.

The “true” error (solid red lines) is slightly smaller for the space-time variant in
the symmetric case and very close to each other in the non-symmetric case.

We also compare the POD-Greedy error measure | · |∆ t . It is remarkable that this
quantity is almost identical to ||| · |||N for space-time. This means that the temporal
derivative and the final time components of the solution are very-well approximated.
Finally, regarding the result that for POD-Greedy the | · |∆ t -lines turn out to be above
the ||| · |||N one, we recall Remark 2.

Finally, the error estimators/indicators are plotted as dash-dotted black lines. We
observe, that the effectivitiesc are of almost the same size. However, if we rely on
the respective theory (i.e. |||e|||N for space-time and ‖e(T )‖V for POD-Greedy), the
effectivity of space-time improves, see Figure 3.

Work Load/Effort. Finally, we compare the computational effort as well as the
storage amount (offline and online) of both variants, see Table 2.

We recall that our chosen space-time method in the offline phase reduces to the
Crank-Nicholson scheme. Hence, the offline complexities and storage requirements
for the detailed solution of both variants indeed coincide (both linear in Nh; we
count 187≈ 3Nh elements). The detailed solution requires K solves (corresponding
to the number of time steps) of a sparse system of sizeNh. However, the space-time
precomputations needed to form the online system, rely on the full dimension N .

c It is somehow misleading to use the term “effectivity” within the POD-Greedy framework, since
usually effectivity is the ratio of error bound and error.
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(b) POD-Greedy, symmetric
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(c) Space-Time, non-symmetric
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Fig. 2 RB approximation error on Ptest: Full error (red, solid), error estimator/indicator (black,
dash-dotted) and the POD-Greedy error measure | · |∆ t (blue, dashed) for greedy tolerance tol=
0.001. Top line: symmetric case (µ1,0,0); bottom: non-symmetric (0.5,µ2,0.75).
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Fig. 3 Greedy error decay (left), space-time (middle) and POD-Greedy (right) using the final time
for POD-Greedy training and error measure on the symmetric test set.

In the online-phase, POD-Greedy needs to store (for the LTI case) Qa reduced
matrices and KQg vectors of size NPOD-G for the time-dependent right-hand side.
The RB solution amounts to solve K densely populated reduced systems. In the LTI
case, one may reduce this to the computation of one LU-decomposition and then K
triangular systems, i.e., O(N3

POD-G +KN2
POD-G) operations.

The space-time method usually requires more storage, either by storing a suitable
test space or –as described above– by the setup of the normal equations using the
affine decomposition (10). The normal equations need memory of size O(Q2

bN2
ST +
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POD-Greedy Space-Time
O() / # offline online offline online
Solution KNh N3

POD-G +KN2
POD-G KNh N3

ST
4.032 2.520 4.032 1.728

Storage ∼ 3Nh QaN2
POD-G +KQgNPOD-G ∼ 3Nh Q2

bN2
ST +QbQ f NST

187 528 187 2.352

Table 2 Offline and online effort of the RBMs. In our case, we have NPOD-G = 6, NST = 12, Nh =
63, Qa = Qb = 4, Q f = Qg = 1, K = 64; the corresponding numbers are given in the respective
2nd row.

QbQ f NST). The RB-solution requires the solution of one reduced linear system of
dimension NST.

7 Conclusions

We have explained and compared both theoretically and numerically two different
techniques to treat the time within the Reduced Basis Method (RBM). It is obvious
that a fair and significant numerical comparison is a delicate task. In particular,
• different norms need to be considered;
• the choice of the error estimator/indicator within the POD-Greedy method has

a significant impact;
• improving bounds for the involved constants will significantly improve the re-

sults;
• we only consider such space-time methods that are equivalent to a time march-

ing scheme (here Crank-Nicholson). If this is not the case, the offline cost for
the space-time scheme will significantly increase;
• K = 64 is a quite moderate number of time steps. The comparison may change

for larger K and/or longer time horizons [0,T ];
• we only consider LTI-systems. Both the reduction rate and the storage depend

on this assumption.
Despite all these facts, we do think that our study indeed shows some facts,

namely:
1. The POD-Greedy method allows one to use any time-marching scheme offline.

Even if the space-time discretization is chosen in such a way that it coincides
with a time-stepping scheme, this variant has an increased offline complexity.
If the full space-time dimension is needed, one may have to resort to tensor
product schemes, [8].

2. In the online phase, the space-time method is more efficient concerning effort,
whereas POD-Greedy uses less storage.

3. If a theoretical justification of an error bound in the full X-norm is needed and
Finite Elements shall be used, space-time seems to be the method of choice. If
a Finite Volume discretization is chosen, POD-Greedy is more appropriate [5].
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From these results, we tend to formulate the following recipe: If online compu-
tational time restrictions apply, the space-time approach is advisable even in those
cases where it might cause an increased offline effort. — If online storage restric-
tions apply or the use of a specific time-marching scheme is necessary, the POD-
Greedy approach is advisable.
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