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Abstract. A (multi-)wavelet expansion is used to derive a rigorous bound for the
(dual) norm Reduced Basis residual. We show theoretically and numerically that
the error estimator is online efficient, reliable and rigorous. It allows to control the
exact error (not only with respect to a “truth” discretization).

1 Introduction

The Reduced Basis Method (RBM) is a widely used mathematical framework
for model reduction of parameterized partial differential equations (PPDEs).
We refer to [4,6] for recent books. One possible criticism of the RBM is that
the reduction is based upon an a priorily fixed, so called “truth” discretiza-
tion, which is assumed to be sufficiently fine in order to resolve the desired
solution sufficiently well for all possible parameters. This means that an RB
approximation can only be as good as the underlying truth. If this truth is
not so “true”, the RBM cannot be expected to yield a good approximation
of the exact solution.

Thus, one would like to have an error estimator for the RB approximation
with respect to the (unknown and not computable) exact solution of the
PPDE. In this paper, we build upon a recent preprint [1], where we propose
to use adaptive computations for the construction of the reduced model. In
the present paper, we use such an adaptive method build upon (multi-)wave-
lets to construct an error estimator for the exact error. We show that this
estimator is computable online efficient and gives sharp estimates (the latter
statement is shown by numerical experiments).

In Section 2, we review the error estimates based upon the dual norm of
the residual within the RBM, Section 3 is devoted to the wavelet-based error
estimator and our numerical results are shown in Section 4.

2 Reduced Basis Method (RBM) Error Estimation

In order to shorten notation, we consider parametric (for a parameter µ in
a parameter set D ⊂ RP ) elliptic boundary value problems on X := H1

0 (Ω),
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i.e., we look for u(µ) ∈ X such that1

a(u(µ), v;µ) = 〈f(µ), v〉 ∀v ∈ X , (1)

where f(µ) ∈ X ′ = H−1(Ω) is given and 〈·, ·〉 denotes the duality pairing of
X ′ and X with pivot space L2(Ω). The bilinear form a(·, ·;µ) is assumed to be
symmetric, coercive and bounded with constants α(µ) and γ(µ), respectively.

2.1 Residual-Based Error Estimators

Typically, RB error estimates are residual-based, where the residual r(w;µ) ∈
X ′, µ ∈ D, is defined for given w ∈ X by

〈r(w;µ), v〉 := 〈f(µ), v〉 − a(w, v;µ), v ∈ X . (2)

The equivalence of error and residual is straightforward and well-known

α(µ) ‖u(µ)− w‖X ≤ ‖r(w;µ)‖X ′ ≤ γ(µ) ‖u(µ)− w‖X , w ∈ X . (3)

If an approximation space XN ⊂ X of small dimension N ∈ N is con-
structed and a (Galerkin) approximation uN (µ) ∈ XN for a given parameter
value µ ∈ D has been computed, we set

RN (µ) := ‖r(uN (µ);µ)‖X ′ = sup
v∈X

〈r(uN (µ);µ), v〉
‖uN (µ)‖X

, (4)

i.e., the dual norm of the residual. Usually, this dual norm is not computable,
in particular since the supremum in (4) is taken over the infinite-dimensional
space X . Based upon RN (µ), the error estimator for the exact error u(µ)−
uN (µ) reads

‖u(µ)− uN (µ)‖X ≤
1

α(µ)
RN (µ) =: ∆N (µ). (5)

Hence, one also needs the coercivity constant α(µ), e.g. by the Successive
Constraint Method (SCM), [5], which, however, is not the topic of this paper.

2.2 (Theoretical) Computing via Affine Decomposition and
Riesz Representation

Any known computational procedure for the computation of RN (µ) is based
upon the assumption that the bilinear form a(·, ·;µ) and the right-hand side
allow for a separation of parameters and variables (often -a bit misleading-
called an affine decomposition in the parameter), i.e.,

a(w, v;µ) =

Qa∑
q=1

ϑaq (µ) aq(w, v), f(µ) =

Qf∑
q=1

ϑfq (µ) fq, (6)

1 We would like to stress the fact that all what is said here also holds for Petrov-
Galerkin inf-sup-stable problems with different trial and test spaces.
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where ϑaq , ϑfq : D → R and aq : X ×X → R as well as fq ∈ X ′ are parameter-
independent. Then, it is straightforward to show that also the residual is
affine in the parameter, i.e., with parameter-independent rq : X → X ′, we
have

r(w;µ) =

Qr∑
q=1

ϑrq(µ) rq(w), w ∈ X . (7)

Keeping in mind that X ′ is a Hilbert space with inner product (·, ·)X ′ ,
one can try to compute RN (µ) by using the expansion of the RB-solution in
terms of the basis functions {ξ1, . . . , ξN} (to be specified later) of XN , i.e.,

uN (µ) =

N∑
i=1

ci(µ) ξi, ci(µ) ∈ R, (8)

as follows2

RN (µ)2 = ‖r(uN (µ);µ)‖2X ′ =
(
r(uN (µ);µ), r(uN (µ);µ)

)
X ′

=

Qr∑
q,q′=1

N∑
i,i′=1

ϑrq(µ)ϑrq′(µ) ci(µ) ci′(µ)
(
rq(ξi), rq′(ξi′)

)
X ′ . (9)

Obviously, the inner products

R(q,i),(q′,i′) :=
(
rq(ξi), rq′(ξi′)

)
X ′ (10)

are parameter-independent. If these values can be precomputed (in an offline
phase), (9) amounts (QrN)2 terms so that RN (µ) can be computed with
complexity O(N2) – independent of N , which is called online efficient.

A possible way to compute the terms in (10) is by determining the Riesz
representations r̂q,i ∈ X of rq(ξi) ∈ X ′, that are given by(

r̂q,i, v
)
X = 〈rq(ξi), v〉 ∀v ∈ X , (11)

where (·, ·)X denotes the inner product in X . Once these Riesz representa-
tions are determined, one can compute (10) by R(q,i),(q′,i′) =

(
r̂q,i, r̂q′,i′

)
X .

Doing so, one avoids the dual inner product. Moreover, all computations to
determine R(q,i),(q′,i′) can be done offline. One only has to store (QrN)2

numbers which are combined with the parameter-dependent terms in (9).

However, this approach is only theoretically feasible since the computa-
tion of the Riesz representations in (11) would amount solving an infinite-
dimensional problem.

2 Note, that (9) amounts to take the square root, which is not a problem in terms
of efficiency, but it is an issue with respect to accuracy – the well-known so-called
“square root effect”.
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2.3 The “Truth”

In a standard RBM, the way-out is through a common detailed discretization
XN ⊂ X , where N ∈ N is the dimension of the “truth” space, which is
assumed to be rich enough to resolve the unknown u(µ) sufficiently accurate
for all parameters µ ∈ D, i.e., the error ‖u(µ)−uN (µ)‖X is sufficiently small,
where uN (µ) ∈ XN is the corresponding truth approximation. This detailed
space XN is used in the offline phase to determine the reduced model by
computing the snapshots

ξi := uN (µi), µi ∈ D, 1 ≤ i ≤ N,

and setting XN := span{ξi : 1 ≤ i ≤ N}. The choice of the snapshot samples
µi is also based upon an error estimator of the form (4), but restricted to the
detailed space, i.e.,

RNN (µ) := ‖r(uN (µ);µ)‖(XN )′ = sup
vN∈XN

〈r(uN (µ);µ), vN 〉
‖uN (µ)‖X

. (12)

This is nothing else than computing the Riesz representations in (11) on the
truth space XN , i.e., determine an approximation r̂Nq,i ∈ XN of r̂q,i as(

r̂Nq,i, v
N )
X = 〈rq(ξi), vN 〉 ∀vN ∈ XN . (13)

Having these, we compute the corresponding approximation RN(q,i),(q′,i′) of

R(q,i),(q′,i′) in (10) and insert this into (9) yielding the approximation RNN (µ)
of RN (µ). This has an obvious consequence, namely that this does not yield
a bound for the exact error as in (5) but only for the truth error, i.e.,

‖uN (µ)− uN (µ)‖X ≤
1

α(µ)
RNN (µ) =: ∆NN (µ).

2.4 Estimating the Exact Error

From the above derivation, it should be clear that using a common uniform
truth will not yield a control of the exact error. In [7], it was suggested to solve
(11) adaptively in order reach any desired accuracy. It turned out, however,
that due to the sum in (9), an adaptive error control in (11) is not sufficient
for an (online-)efficiently computable error estimate. There are alternative
approaches using e.g. an adaptive basis generation, [9,10]. To the best of our
knowledge, however, these approaches are limited to specific problem classes.
In this paper, we present an alternative approach using (multi-)wavelets.

3 Wavelet-Based Error Estimation

We start by reviewing the essentials of wavelet bases that are relevant for the
problem at hand. For details we refer to [8] and references therein.
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3.1 Wavelet Bases

For simplicity, we restrict ourselves to the univariate case and define the
scaled and shifted version of a continuous function f ∈ C(R) of compact
support as (j is a scaling or level, k is a shift or location in space)

fj,k(x) := 2j/2f(2jx− k), x ∈ R, j, k ∈ Z.

A system Ψ := {ψj,k : j, k ∈ Z} is called wavelet system with d vanish-
ing moments and regularity s ∈ R+ if (1) Ψ is a Riesz basis for L2(R); (2)∫
R
xp ψj,k(x) dx = 0 for all j, k ∈ Z and 0 ≤ p ≤ d − 1; (3) ψ ∈ Hs(R); (4)

|suppψj,k| ∼ 2j . The function ψ is called mother wavelet. It is a remark-
able fact, [2,8], that Ψ is not only a Riesz basis for L2(R) but allows for a
characterization of Sobolev spaces, i.e.,∥∥∥∥ ∑

j,k∈Z
dj,k , ψj,k

∥∥∥∥2
Hσ(R)

∼
∑
j,k∈Z

22σj |dj,k|2, σ ∈ (0,min{s, d}).3

Moreover, the Riesz representation theorem ensures the existence of a dual
wavelet basis Ψ̃ := {ψ̃j,k : j, k ∈ Z}, which is also a wavelet system (for

certain parameters d̃, s̃) and

(ψj,k, ψ̃j′,k′)L2(R) = δj,j′ δk,k′ , j, j′, k, k′ ∈ Z.

The collection (Ψ, Ψ̃) of both wavelet systems is called a biorthogonal wavelet
system. Examples include biorthogonal B-spline wavelets and orthonormal
multi-wavelets, which we use here. The dual wavelet system also allows a
characterization of Sobolev spaces Hσ(R), −min{s̃, d̃} < σ ≤ 0. Note, that
these are Sobolev spaces of negative order, i.e., dual spaces (i.e., those spaces
the residual resides in).

There are generalizations for wavelet systems for L2(Ω), where Ω ⊂ Rd
is a bounded domain. To fix notation, we collect shift and scaling index
λ = (j, k), denote the level by |λ| := j and the index range by J . Then,
the relevant dual system takes the form Ψ̃ := {ψ̃ : λ ∈ J } and the norm
equivalence reads for −s < σ ≤ 0

‖dT Ψ̃‖2Hσ(Ω) =

∥∥∥∥∑
λ∈J

dλψ̃λ

∥∥∥∥2
Hσ(Ω)

∼
∑
λ∈J

22|λ|σ|dλ|2 =: ‖Dσd‖2`2(J ), (14)

where d := (dλ)λ∈J and D := diag(22|λ|).

3 Here A ∼ B abbreviates the existence of constants 0 < c ≤ C < ∞ such that
cA ≤ B ≤ CB.
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3.2 Wavelet-Based Residual Expansion

The new item presented in this paper is to use (14) for (9). The point of depar-
ture is (7). We expand rq(w) ∈ X ′ by Ψ̃ , i.e., rq(w) =

∑
λ∈J 〈rq(w), ψλ〉 ψ̃λ,

w ∈ X , and for ξi, 1 ≤ i ≤ N , we set d(q,i),λ := 〈rq(ξi), ψλ〉. Then, by (7)
and (8)

r(uN (µ);µ) =

Qr∑
q=1

ϑrq(µ) rq(uN (µ)) =

Qr∑
q=1

N∑
i=1

∑
λ∈J

ϑrq(µ) ci(µ) d(q,i),λ ψ̃λ

=:
∑
λ∈J

( ∑
m∈M

σm(µ) dm,λ

)
ψ̃λ =:

∑
λ∈J

rλ(µ) ψ̃λ,

where M := {1, . . . , Qr} × {1, . . . , N}, m := (q, i) and σm(µ) := ϑrq(µ) ci(µ).
In order to estimate RN (µ) := ‖r(uN (µ);µ)‖X ′ , we have

RN (µ)2 ∼
∑
λ∈J

2−2|λ| |rλ(µ)|2 =
∑
λ∈J

2−2|λ|
∣∣∣∣ ∑
m∈M

σm(µ) dm,λ

∣∣∣∣2
=
∑
λ∈J

2−2|λ|
∑

m,m′∈M
σm(µ)σm′(µ) dm,λ dm′,λ

=
∑

m,m′∈M
σm(µ)σm′(µ)

∑
λ∈J

2−2|λ|dm,λ dm′,λ

=:
∑

m,m′∈M
σm(µ)σm′(µ)sm,m′ =: RΨN (µ)2, (15)

where we abbreviate sm,m′ :=
∑
λ∈J 2−2|λ|dm,λ dm′,λ. These terms are para-

meter-independent and can be precomputed offline at any desired accuracy,
which can be seen as follows. Since rq(ξ) ∈ X ′, we have (2−|λ|dm,λ)λ∈J ∈
`2(J ), which means that there is a decay with respect to the level. In fact,
the following Whitney-type estimate is well-known

|dm,λ| = |〈rq(ξi), ψλ〉| ≤ C 2−σ|λ| ‖rq(ξi)‖Hσ(suppψλ), 0 ≤ σ < d, (16)

with d as described in §3.1. This means that we have an a priori estimate
for the size of each dm,λ in terms of the (known) local Sobolev regularity,
which in turn implies that the sum over infinitely many terms in sm,m′ can
be truncated a priori to a finite one with an a priori bound. This shows that
we can indeed precompute sm,m′ at any desired tolerance.

Finally, the corresponding error estimator is∆Ψ
N (µ) := (cΨ α(µ))−1RΨN (µ),

where cΨ is the lower equivalence constant in (14).

4 Numerical Experiments

In this section, we compare the numerical performance of the wavelet-based
error estimator ∆Ψ

N (µ) in (15) with the standard RB-truth-based ∆NN (µ) in
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(12) (implemented in RB-Matlab, [3]) and the exact error. For this purpose,
we consider the simple Laplace problem on Ω = (0, 1)2 with a parameter-
dependent source f(µ) ∈ H−1, i.e., for x = (x1, x2) ∈ Ω, µ = (µ1, µ2) ∈ D :=
[0.2, 0.8]2, a := 1/35, we set

f(x;µ) := −e−
(x1−µ1)

2+(x2−µ2)
2

a2

(
4

a4
(x1 − µ1)2 +

2

a2
(x2 − µ2)2 − 4

a4

)
,

and let u(µ) be the corresponding exact solution, which can be computed
analytically. Even though u(µ) ∈ C∞(Ω), it has a steep gradient (at µ-
dependent locations) such that many basis functions are necessary to resolve
local details sufficiently well for all µ ∈ D. We compare 3 scenarios, namely
(1) a truth discretization consisting of 37,249 cubic finite elements (realizing
a snapshot tolerance of ε = 10−2); (2) the same with 2,362,369 elements (with
ε = 10−4) and (3) an adaptive cubic multi-wavelet snapshot generation as
in [1] (where we set the tolerance to 10−5, which leads to 80,637 wavelets at
most). In all cases, the RB space XN of dimension N = 6 is computed by a
weak greedy on Dtrain := {0.2, 0.5, 0.8}2 with snapshot orthonormalization.

The results are summarized in Table 1. We report average errors over
the test set Dtest := {0.2, 0.3, . . . , 0.8}2 ⊂ D. Of course, in case of a truth
discretization, the truth error ‖uN (µ)−uN (µ)‖X and hence the standard RB
error estimator ∆NN (µ) is zero (or machine accuracy) for snapshot parameters
µ ∈ SN . The exact error ‖u(µ)−uN (µ)‖X does not vanish but is in the order
of the approximation tolerance of the truth space XN . For the non-snapshot
parameters we observe an effectivity of about 1.94 – as compared to the
truth error. The exact error is in the same range and shows that even a
highly resolved FE mesh is not capable to guarantee a sufficient accuracy for
all parameters.

∅
error

case exact
‖u(µ)− uN (µ)‖X

truth
‖uN (µ)−uN (µ)‖X ∆Ψ

N (µ) ∆NN (µ)

1 9.6 · 10−3 2.7 · 10−15 — 0
SN 2 9.2 · 10−5 1.6 · 10−13 — 0

3 2.2 · 10−6 — 3.6 · 10−6 —

1 1.8 · 100 1.8 · 100 — 3.5 · 100

D\SN 2 1.8 · 100 1.8 · 100 — 3.5 · 100

3 1.7 · 100 — 3.1 · 100 —

Table 1. Average error for snapshot (SN ) and non-snapshot (D \ SN ) parameters
over Dtest. Case 1: XN is cubic FEM grid with 37,249 dof; Case 2: XN is cubic
FEM grid with 2,362,369 dof; Case 3: Adaptive snapshots based upon cubic multi-
wavelets with at most 80,637 dof.
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In case (3), using adaptive snapshot computation, the tolerance is chosen
a-priori, which is achieved both by the exact error and the error estimator.
This is a bound for the exact error rather than for the truth error (and with
much fewer d.o.f.). We obtain an effectivity of about 1.8, i.e., in the same
order as in the truth case, but now for the exact error. The online complexity
for the wavelet-based estimator ∆Ψ

N (µ) is O(N2 +N2Q2
a +NQf +Q2

f ) (with
Qa, Qf as in (6) and Qa = 1, Qf = 49 in this case, N = 6), which is online
efficient. The CPU time for the wavelet-based error estimator is even too
small to measure it with standard tools3.

We conclude that the wavelet-based error estimator is both theoretically
and practically efficient, reliable and effective. Moreover, it allows a control
of the exact error.
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