1. Consider the following 2-period bargaining game between a firm and a union bargaining over wages. The firm’s profit, denoted by \(\pi \), is uniformly distributed in \([0, \pi^*]\), but the true value of \(\pi \) is privately known by the firm. If not employed, union members earn nothing. In the first period, the union makes a wage offer, \(w_1 \). If the firm accepts it, then the game ends: the union’s payoff is \(w_1 \) and the firm’s is \(\pi - w_1 \). If the firm rejects this offer then the game proceeds to the second period. The union makes a second wage offer, \(w_2 \). If the firm accepts it, then the present values of the payoffs are \(\delta w_2 \) for the union and \(\delta (\pi - w_2) \) for the firm, where \(\delta \) is the discount factor. If the firm rejects the union’s second offer then the game ends and payoffs are zero for both. Give a Perfect Bayesian Equilibrium. \[10 \text{ points}\]

2. Consider the following two-players signaling game, where the Sender’s type \(\theta \in [0, 1] \) is picked according to an uniform distribution, and the receiver action space as well as the sender message space are also both equal to the interval \([0, 1]\). The receiver’s payoff function is \(u_r(t, m) = -(m - t)^2 \) and the sender’s is \(u_s(t, a) = -(a - (t + b))^2 \), so when the sender’s type is \(t \), the receiver’s optimal action is \(a = t \) but the sender’s optimal message is \(m = t + b \). Suppose all types in the interval \([0, x_1]\) send one message while those in \([x_1, 1]\) send another. For an equilibrium to exist, which range should \(b \in [0, 1] \) have? Give lower and upper bounds for \(b \) within \([0, 1]\). Given \(b \), which value should \(x_1 \) have? \[5 \text{ points}\]

3. Consider the same signaling game but now with \(n \geq 2 \) intervals: \([0, x_1\), \ldots, \([x_k, x_k + 1]\), \ldots, \([x_{n-1}, 1]\), where \(0 \leq k \leq n - 1 \), \(x_0 = 0 \) and \(x_n = 1 \). Given \(b \), how much larger than its precedent should an interval be for an equilibrium to exist? Then, given \(b \), for an equilibrium to exist, which upper bound should \(n \) have? \[5 \text{ points}\]