

Dr. Lucia Draque Penso Dr. Jens Maßberg Institut für Optimierung und Operations Research Sommersemester 2013

## Mathematics of Games

## Exercise session 4

Hand-in: 27.05.2013, 12pm-2pm, N24-H15

1. (a) Consider the original "battle of the sexes" game, as shown in the figure below.

|   | В   | F   |
|---|-----|-----|
| F | 0,0 | 2,1 |
| В | 1,2 | 0,0 |

Let  $\delta = \frac{9}{10}$ , and consider the infinitely repeated game based on the stage game, with discount factor  $\delta$ . Find a pure-strategy subgame-perfect Nash equilibrium s of the infinitely repeated game, for which the corresponding average discounted payoffs

$$(1-\delta) \cdot \sum_{t=0}^{\infty} \delta^t g_i(s^t(h^t))$$

for both players are both higher than  $\frac{2}{3}$ , the highest symmetric payoff  $(\frac{2}{3}, \frac{2}{3})$  of a NE for the stage game. What about if the corresponding average discounted payoffs for both players are both higher than  $\frac{4}{3}$ , double the highest symmetric payoff of a NE for the stage game? Does the same *s* work? If not, give one.

2. Consider the infinitely repeated 2-player-game with discount factor  $\delta$ , based on the stage game described by the figure below.

|   | А   | В   |
|---|-----|-----|
| А | 1,1 | 6,0 |
| В | 0,6 | 3,3 |

Assume that each player plays the following strategy:

"Play B in the first stage. In the  $t^{th}$  stage, if the outcome of all t-1 preceeding stages has been (B, B), then play B, otherwise, play A."

Compute the values of  $\delta$  for which this stragegy for both firms is a subgame-perfect NE.

3. The accompanying simultaneous-move game is played twice, with the outcome of the first stage observed before the second stage begins. There is no discounting. The variable x is greater than 4, so that (4, 4) is not an equilibrium payoff in the one-shot game. For which values of x is the following strategy (played by both players) a subgame-perfect NE?

Play  $Q_i$  in the first stage. If the first-stage outcome is  $(Q_1, Q_2)$ , play  $P_i$  in the second stage. If the first-stage outcome is  $(y, Q_2)$  where  $y \neq Q_1$ , play  $R_i$  in the second stage. If the first-stage outcome is  $(Q_1, z)$  where  $z \neq Q_2$ , play  $S_i$  in the second stage. If the first-stage outcome is (y, z) where  $y \neq Q_1$  and  $z \neq Q_2$ , play  $P_i$  in the second stage.

|       | $P_2$ | $Q_2$ | $R_2$ | $S_2$ |
|-------|-------|-------|-------|-------|
| $P_1$ | 2,2   | x,0   | -1,0  | 0,0   |
| $Q_1$ | 0,x   | 4,4   | -1,0  | 0,0   |
| $R_1$ | 0,0   | 0,0   | 0,2   | 0,0   |
| $S_1$ | 0,-1  | 0,-1  | -1,-1 | 2,0   |

- 4. Draw game trees for the following games and solve for the subgame-perfect Nash Equilibria.
  - (a) 1. Player 1 chooses an action  $a_1$  from the feasible set  $A_1 = \{A, D\}$  where A ends the game with payoffs of 2 to player 1 and 0 to players 2 and 3.
    - 2. Player 2 observes  $a_1$  and if  $a_1 = D$ , player 2 chooses an action  $a_2$  from the feasible set  $A_2 = \{L, R\}$ .
    - 3. Player 3 observes  $a_1$  (but not  $a_2$ ) and if  $a_1 = D$ , player 3 chooses an action  $a_3$  from the feasible set  $A_3 = \{L', R'\}$ , which ends the game with payoffs given in the table below.

| $(a_1, a_2, a_3)$ | Player 1 | Player 2 | Player 3 |
|-------------------|----------|----------|----------|
| (D,L,L')          | 1        | 2        | 1        |
| (D, L, R')        | 3        | 3        | 3        |
| (D, R, L')        | 0        | 1        | 1        |
| (D, R, R')        | 0        | 1        | 2        |

- (b) 1. Player 1 chooses an action  $a_1$  from the feasible set  $A_1 = \{A, L, R\}$  where A ends the game with payoffs of 20 to player 1 and 1 to players 2 and 3.
  - 2. Player 2 observes  $a_1$ . If  $a_1 = L$ , player 2 chooses an action  $a_2$  from the feasible set  $A_{2_L} = \{L', R'\}$  and if  $a_1 = R$ , player 2 chooses an action  $a_2$  from the feasible set  $A_{2_R} = \{A', L', R'\}$ , where A' ends the game with payoffs 18 for player 1, 8 for player 2 and 6 for player 3.
  - 3. Player 3 observes if  $a_1 \neq A$  and if so, player 3 observes if  $a_2 \neq A'$ . If  $a_1 \neq A$  and  $a_2 \neq A'$ , player 3 observes whether or not  $(a_1, a_2) = (R, R')$  and then chooses an action  $a_3$  from the feasible set  $A_3 = \{L'', R''\}$ , which ends the game with payoffs given in the table below.

| $(a_1, a_2, a_3)$ | Player 1 | Player 2 | Player 3 |
|-------------------|----------|----------|----------|
| (L,L',L'')        | 20       | 8        | 4        |
| (L, L', R'')      | 8        | 0        | 1        |
| (L, R', L'')      | 4        | 4        | 5        |
| (L, R', R'')      | 2        | 6        | 1        |
| (R,L',L'')        | 12       | 8        | 2        |
| (R, L', R'')      | 16       | 4        | 1        |
| (R, R', L'')      | 10       | 2        | 5        |
| (R, R', R'')      | 20       | 10       | 6        |