Online and Distributed Algorithms

Exercise Session 4

1. Maximum Flow: Consider an orientation (with directed edges) of a weighted graph G such as the one in the minimum weighted tree problem, where now the weights represent flow maximum capacities c of those oriented edges of the new oriented digraph D obtained by orienting G. Suppose that there is exactly one node n_1 (called source) with no incoming edges in D as well as exactly one node n_n (called sink) with no outgoing edges in D.

A flow in D is a function $f : V \times V \rightarrow \mathbb{R}$ such that:

\[f(n_i, n_j) \leq c(n_i, n_j) \forall n_i, n_j \in V, \]

\[f(n_j, n_i) = -f(n_j, n_i) \forall n_i, n_j \in V, \]

\[\sum_{n_j \in V} f(n_i, n_j) = 0 \forall n_i \in V - \{n_1, n_n\}. \]

- Give a synchronous algorithm for the maximum flow of the network D.
- Is there a way to modify the algorithm to turn it into asynchronous?

2. How many agents are needed in a tree to identify the “bad node” called blackhole (which kills agents) if agents walk in a synchronous manner on the edges? What about if agents walk asynchronously?