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Chapter 1

Introduction

Many of the properties of the cycle space of finite graphs break down in in-
finite graphs, when the cycle space is extended to infinite graphs in a naive
way. This is mostly attributable to the lack of infinite cycles. Diestel and
Kühn [33, 34] realised this and introduced infinite cycles that are defined in
a topological manner. That their definition is extremely and almost surpris-
ingly successful has since then been demonstrated in a series of papers, some
of which make up the main part of this thesis. The objective of this thesis is
to show that the properties of the cycle space in a finite graph carry over to
locally finite graphs, if (and only if) infinite cycles are allowed.

In this chapter, we will recall the main properties of the cycle space of
finite graphs, introduce the main definitions and review prior work. Finally,
we will give an outlook over the thesis. In our notation, we follow Diestel [31].

1.1 Cycles in finite graphs

Let G = (V,E) be a finite graph. A cycle C in G is a connected 2-regular
subgraph, its edge set is called a circuit. Together with the symmetric differ-
ence as addition, the set of sums of circuits becomes a Z2-vector space. The
cycle space has a number of well-known basic properties. In particular, its
elements are precisely those edge sets Z ⊆ E for which

• Z meets every cut in an even number of edges;

• Z is the disjoint union of circuits;

• Z is the sum of fundamental circuits of any spanning tree of G; and

• every vertex of (V, Z) has even degree.
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(The fundamental circuits of a spanning tree T are the circuits Ce, e ∈
E \ E(T ), that arise from adding e to the edge set of E(T ).)

There are also some more advanced theorems that involve the cycle space:

• Tutte’s generating theorem;

• MacLane’s planarity criterion;

• Kelmans’ planarity theorem;

• Duality/Whitney’s planarity criterion; and

• Gallai’s theorem.

In the course of this thesis we will come back to each of these theorems except
the first one. Therefore, we shall only state Tutte’s generating theorem here.
Say that an induced circuit is peripheral if deleting its incident vertices does
not separate the graph. Then:

Theorem 1.1 (Tutte [63]). Every element of the cycle space of a finite
3-connected graph is a sum of peripheral circuits.

1.2 Infinite cycles

The most immediate way to extend the cycle space to infinite graphs is
what we will call the finite-cycle space Cfin(G): Its members are precisely the
symmetric differences of finitely many (finite) circuits. Thus, the elements
of Cfin(G) are always finite edge sets. While all of the basic properties that
we have listed in the previous section remain true in an infinite graph (if
we restrict ourselves to finite edge sets), almost all of the more advanced
theorems either are considerably weakened or fail completely.

In the case of Tutte’s generating theorem this was already noticed by
Halin [41], who provided the counterexample in Figure 1.1: Consider the

C

Figure 1.1: The circuit C is not the finite sum of peripheral circuits

cartesian product of a double ray (an infinite 2-way path) with a pentagon.
The peripheral circuits of this graph are exactly its 4-circuits. We see that
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the deletion of all vertices incident with C separates the graph but C is not
the sum of any peripheral circuits, so Tutte’s theorem fails for this graph.

If we want to extend Theorem 1.1 then this example seems to imply that
we need to allow certain infinite sums. In fact, summing up all the infinitely
many peripheral circuits to the right, say, of C we obtain C. However, this
alone is not enough. Figure 1.2 shows a graph in which an edge, denoted by e,

e

Figure 1.2: There is no (finite) peripheral circuit containing the edge e

lies in no (finite) peripheral circuit at all. Therefore, no circuit containing e
can be a sum of peripheral circuits, even allowing infinite sums. This example
is from [14]; see also [15].

In a finite planar graph, the peripheral circuits are precisely the (edge
sets of) face boundaries (assuming a 2-connected graph). Both of the face
boundaries in Figure 1.2 that are incident with e are double rays, and there-
fore infinite. This indicates that, in order to make Theorem 1.1 valid in
infinite graphs, we need infinite circuits.

Diestel and Kühn introduced a cycle space, which provides infinite cir-
cuits and allows (well-defined) infinite sums. In this space, the example in
Figure 1.2 ceases to be a counterexample, and more generally Tutte’s gen-
erating theorem (along with all the other advanced theorems) becomes true.
Infinite circuits and the corresponding cycle space are defined in the next
two sections.

1.3 A topological definition of circles

Diestel and Kühn [33, 34] define their infinite circuits (more precisely, any
circuit—finite or infinite) based on a topological space whose point set con-
sists of the graph together with its ends.

So, let us first recall what the ends of a graph are. A 1-way infinite path
is called a ray, a 2-way infinite path is a double ray, and the subrays of a
ray or double ray are its tails. Let G = (V,E) be any graph. Two rays in G
are equivalent if no finite set of vertices separates them; the corresponding
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equivalence classes of rays are the ends of G. We denote the set of these
ends by Ω = Ω(G). Ends for graphs were introduced by Halin [40]; see also
Diestel and Kühn [32] for their relationship to ends in topological spaces.

Let us define a topology on G together with its ends. We shall call this
topology VTop; if G is locally finite, then this topology is usually called its
Freudenthal compactification. We begin by viewing G itself (without ends)
as the point set of a 1-complex. Then every edge is a copy of the real
interval [0, 1], and we give it the corresponding metric and topology. For
every vertex v we take as a basis of open neighbourhoods the open stars of
radius 1/n around v. (That is to say, for every integer n ≥ 1 we declare
as open the set of all points on edges at v that have distance less than 1/n
from v, in the metric of that edge.)1 In order to extend this topology to Ω,
we take as a basis of open neighbourhoods of a given end ω ∈ Ω the sets of
the form

Ĉ(S, ω) := C(S, ω) ∪ Ω(S, ω) ∪ E̊(S, ω) ,

where S ⊆ V is a finite set of vertices, C(S, ω) is the unique component of
G−S in which every ray in ω has a tail, Ω(S, ω) is the set of all ends ω ′ ∈ Ω
whose rays have a tail in C(S, ω), and E̊(S, ω) is the set of all inner points of
edges between S and C(S, ω).2 Note that Ĉ(S, ω) is an open neighbourhood
of ω. Let |G| denote the topological space on the point set V ∪Ω∪⋃E thus
defined. (When A is a set, we write

⋃
A for the union of all its elements.)

We shall freely view G and its subgraphs either as abstract graphs or as
subspaces of |G|. Note that in |G| every ray converges to the end of which
it is an element. Furthermore, if G is locally finite then |G| is compact and
Hausdorff. If G is not locally finite then it might not be Hausdorff; for a
characterisation of when |G| is compact, see Diestel [27].

For any subset X ⊆ |G|, put V (X) := X ∩ V , and let E(X) be the set
of edges e with e ⊆ X. We write X for the closure of a set X ⊆ |G| in |G|.
For example, the set C(S, ω) defined above is the closure in |G| of the set
C(S, ω). As a convenience and by slight abuse of notation, we also write Z
for the closure of the point set

⋃
Z ⊆ |G| of an edge set Z. A subset of

|G| which is homeomorphic to the unit interval [0, 1] is called an arc. The

1If G is locally finite, this is the usual identification topology of the 1-complex. Vertices
of infinite degree, however, have a countable neighbourhood basis in VTop, which they
do not have in the 1-complex.

2In the early papers on this topic, such as Diestel and Kühn [33, 34, 35], some more
basic open sets were allowed: in the place of E̊(S, ω) we could take an arbitrary union of
open half-edges from C towards S, one from every S–C edge. When G is locally finite,
this yields the same topology. When G has vertices of infinite degree, our topology is
slightly sparser but still yields the same topological cycle space; see the end of this section
for more discussion.
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images of 0 and of 1 are its endpoints. A set C ⊆ |G| is a circle if it is a
homeomorphic image of the unit circle. The next lemma will be of help when
dealing with arcs and circles.

Lemma 1.2 (Diestel and Kühn [34]). For every arc A and every circle
C in |G| the following is true:

(i) The sets A ∩G and C ∩G are dense in A and C, respectively;

(ii) every arc in |G| whose endpoints are vertices or ends, and every circle
C in |G|, includes every edge of G of which it contains an inner point;
and

(iii) if x is a vertex in Å (respectively in C), then A (respectively C) contains
precisely two edges or half-edges of G at x.

Therefore, C ∩G = C and E(C) = C for a circle C ⊆ |G|. We call
the subgraph C ∩ G of G a cycle and the edge set E(C) a circuit. Thus, a
circle is uniquely determined by a cycle (resp. circuit) and vice versa. During
the thesis we will switch back and forth between circles, cycles and circuits,
depending on which is more appropriate for the concrete discussion.

Clearly, the definition of cycles includes traditional finite cycles but also
allows infinite cycles. Such an infinite cycle is the disjoint union of double
rays whose ends fit together nicely. A simple example of an infinite cycle
consisting of two double rays is seen in Figure 1.3. There are, however, rather
more complicated cycles. For instance, we will encounter in Chapter 6 a circle
that is made up of countable infinitely many double rays and uncountably
many ends.

... ...

Figure 1.3: A simple infinite cycle in the double ladder

We remark that, although the topology for |G| considered in Diestel and
Kühn [33, 34, 35] is slightly larger than ours (see the earlier footnote), the
above lemma, as well as Theorems 1.4 and 1.5 below, is nevertheless appli-
cable in our context. This is because the circles and arcs in |G| coincide for
these topologies: as one readily checks, the identity on |G| between the two
spaces is bicontinuous when restricted to a circle in either space.
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1.4 The topological cycle space

In Section 1.2, we have seen that we need to allow certain infinite sums, if we
want to extend Tutte’s generating theorem. Let us make this more precise.
For a graph G, call a family (Di)i∈I of subsets of E(G) thin if no vertex of G
is incident with an edge in Di for infinitely many i. (Thus in particular, no
edge lies in more than finitely many Di.) Let the sum

∑
i∈I Di of this family

be the set of all edges that lie in Di for an odd number of indices i, and let the
topological cycle space C(G) of G be the set of all sums of (thin families of)
circuits, finite or infinite. Symmetric difference as addition makes C(G) into
an Z2-vector space, which coincides with the usual cycle space of G when G
is finite. We remark that C(G) is closed also under taking infinite thin sums
(Diestel and Kühn [33, 34]), which is not obvious from the definitions.

In the topological cycle space the first three basic properties listed in
Section 1.1 become true (with some adaptions), and also Tutte’s theorem
extends to locally finite graphs.

Theorem 1.3. [15] Let G be a locally finite 3-connected graph. Then the
peripheral circuits generate the topological cycle space.

We state here two of the basic properties, which will serve as useful tools
during the course of this thesis. The first is the cut criterion. A set F ⊆ E(G)
is a cut of a graph G if there is a partition (A,B) of V (G) such that F is
the set of all the edges of G with one vertex in A and the other in B. We
shall also denote this set by EG(A,B), or by E(A,B) if there is no confusion
possible. A cut F is said to be finitely covered if there is a finite set of vertices
covering F .

Theorem 1.4 (Diestel and Kühn [34]). Let G be a graph. Then the
following statements are equivalent for every Z ⊆ E(G):

(i) Z ∈ C(G); and

(ii) |F ∩ Z| is even for every finitely covered cut F of G.

In particular, if G is locally finite then (ii) becomes

(ii′) |F ∩ Z| is even for every finite cut F of G.

The second tool allows the decomposition of cycle space elements into
circuits:

Theorem 1.5 (Diestel and Kühn [34]). Every element of the topological
cycle space of a graph is a disjoint union of circuits.
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From a combinatorial viewpoint the definition of the topological cycle
space C(G) might at first seem to be rather complicated and perhaps even
slightly intimidating, as it relies on topological concepts. And it is true that
it elements of C(G) can become quite complex; see Chapter 4 or 6 for an
example. However, apart from being a very successful notion, an insight
to which we hope to contribute in this thesis, there are two other reason
to embrace the topological cycle space. First, there is with Theorem 1.4
a simple combinatorial description after all. Second, C(G) is, in a certain
sense, the smallest cycle space to which one can hope to extend the facts of
Section 1.1; see Diestel [29].

1.5 The identification topology

While with the topological cycle space (almost) all of the theorems in Sec-
tion 1.1 carry over to locally finite graphs, many fail in non-locally finite
graphs. One of these that fail is, again, Tutte’s generating theorem. In Fig-
ure 1.4, we see that every finite cycle containing the edge e is separating.
Earlier, in the example in Figure 1.2, we were able to overcome a similar
problem by introducing infinite cycles. Here, however, every infinite cycle
containing e has a chord and is, therefore, not peripheral.

1v 2v 3v 4v

0v

u1 u2 u3 u4

... ...
e

Figure 1.4: There is no peripheral circuit containing the edge e

Let us see what happens if we try to construct an infinite peripheral cycle.
We start off in v0, go through e and then might run along R := v1v2 . . . into
the end of R. Then we are stuck: In order to leave the end, which is necessary
to ‘close up’ the cycle, we would have to traverse infinitely many neighbours
of v0. But perhaps we do not need to leave the end after all, since it is already
very ‘close’ to v0. Indeed, although R does not converge to v0, it nearly does:
VTop cannot separate its end from v0 by two disjoint open sets. If we adjust
our topology so that R does converge against v0, by identifying v0 with the
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end containing R, the ray v0v1R becomes a cycle, which then is peripheral,
as desired.

Unfortunately, this is not enough to make Tutte’s generating theorem
become true. Consider the separating triangle v0v1u1v0 and suppose that
(its edge set) is a thin sum of peripheral circuits. We may assume that
the triangle v0u1u2v0 is one of the summands. Since each of the triangles
v0unun+1v0 contains v0 there is a minimal n ≥ 2 such that v0unun+1v0 is not
a summand. But then the edge v0un lies in the sum, a contradiction.

It turns out that the problems that arise here are due to our too restrictive
definition of a thin sum. In fact, if we allow infinite sums for which a vertex
is incident with infinitely many summands, as long as no edge does, we
easily obtain v0u1u2v0 as the sum of the (edges sets of the) peripheral cycles
v0v1R, v0unun+1v0 and unvnvn+1un+1un for n ∈ N. Of course, there was a
good reason for not allowing these kinds of thin sums when we defined the
topological cycle space C(G); we will come back to this below.

Let us make all that more precise. We say that a vertex v dominates an
end ω in a graph G if there is ray R ∈ ω and an infinite set of v–R paths
that meet pairwise only in v. Assuming that

every end of G is dominated by at most one vertex, (1.1)

we now identify each vertex with all the ends it dominates, to obtain from
|G| the space G̃ whose (quotient) topology we denote by ITop. Note that,
by (1.1), the vertices of G remain distinct in this identification. The identifi-
cation space G̃ is Hausdorff (unlike |G|, when G has a dominated end), and
compact if G is 2-connected and satisfies condition (1.2) below; see Diestel
and Kühn [35] and Diestel [27].

In the current setting we might experience a curious phenomenon: we
might find that (the edge set of) a path is the sum of circuits, which should
therefore be in our cycle space. Indeed, consider two vertices x and y that
are linked by infinitely many independent paths. Then, since we now allow
sums in which a vertex is incident with infinitely many of the summands,
we can generate each of these paths P as a sum of cycles. To avoid this, we
require the following:

No two vertices of G are joined by infinitely many independent
paths.

(1.2)

Note that (1.2) implies (1.1). As before, we define circles to be homeomorphic
images of the unit circle in G̃, circuits to be their edge sets and cycles to be
those subgraphs of G whose closure in G̃ is a circle. The topological cycle
space C(G̃) of G̃ is defined as the span of all sums of circuits such that no
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edge appears in infinitely many of the summands. In the context of G̃ we
will always tacitly assume that all circles, cycles and circuits are defined with
respect to G̃. It is worth stressing that for locally finite graphs not only the
spaces |G| and G̃ coincide but also the cycle spaces C(G) and C(G̃). The
topology ITop and C(G̃) have been introduced by Diestel and Kühn in [35],
where more details can be found.3

With this definition, several more results can be extended to graphs with
infinite degrees. This usually necessitates the usage of the following two
tools, that are analogous to Theorems 1.4 and 1.5.

Theorem 1.6 (Diestel and Kühn [35]). Let G be a graph satisfying (1.2).
Then C(G̃) consists of precisely those sets of edges that meet every finite cut
in an even number of edges.

To decompose elements of C(G̃) into circuits we need the following strength-
ening of (1.2):

No two vertices are joined by infinitely many edge-disjoint paths. (1.3)

This is indeed stronger, see Diestel and Kühn [35].

Theorem 1.7 (Diestel and Kühn [35]). Let G be a graph satisfying (1.3).
Then every element of C(G̃) is a disjoint union of circuits.

Let us make a final useful observation. A connected locally finite graph
is countable, which simplifies a lot of arguments. While there are uncount-
able connected graphs satisfying (1.3), there are none that are 2-connected.
Indeed, as every uncountable connected graph has a vertex of uncount-
able degree, it is easy to show that an uncountable 2-connected graph con-
tains two vertices joined by uncountably many independent paths. (See eg.
Thomassen [60].) Thus:

Lemma 1.8. A 2-connected graph satisfying (1.3) is countable.

As the space C(G̃) is the direct product of the cycle space of the blocks
of G, we can usually assume G to be 2-connected.

Returning to the example in Figure 1.4, we remark that while it ceases
to be a counterexample to Theorem 1.1 when C(G̃) is used, it is still not
known whether Tutte’s generating theorem can be extended to graphs satis-
fying (1.3). On the other hand, no counterexamples are known and I suspect
that there are none. In Chapters 2 and 4, we will see examples for theorems
that fail in |G| but become true in G̃.

3Here, we obtain Itop from VTop, which is slightly sparser than the topology Top
from which ITop is derived in Diestel and Kühn [35]. However, in a similar way as
detailed at the end of Section 1.3, we see that both topologies yield the same cycle space.
In particular, Theorems 1.6 and 1.7 are still applicable.

9



1.6 Overview

We will start off in Chapter 2 by extending Gallai’s theorem to graphs sat-
isfying (1.3). In addition, we will show that if Seymour’s faithful cycle cover
conjecture, which generalises the famous cycle double cover conjecture, holds
for finite graphs then it also does so for graphs satisfying (1.3). Both of these
theorems will be seen to fail if only finite cycles are admitted.

In Chapter 3, we will extend MacLane’s and Kelmans’ planarity crite-
ria to locally finite graphs. While there was already a partial extension of
MacLane’s criterion to infinite graphs by Thomassen, ours will be a full char-
acterisation of planar graphs. Both criteria will be seen to be false if infinite
cycles are disregarded.

In Chapter 4, we will deal with duality in graphs satisfying (1.3). We
will build on work by Thomassen, who provided a concept of duality based
on only finite cycles and cuts. Our notion of duality, which will draw on all
cycles and cuts, finite or infinite, will fix all of the problems that arise from
Thomassen’s definition. Furthermore, we will be able to express duality in
terms of trees, which was previously not possible.

In Chapter 5, we will pick up one of the problems of Diestel and Kühn,
and try to characterise the elements of the cycle space in terms of vertex and
‘end’ degrees. For this, we will introduce a notion of an end degree that is
based on counting edge-disjoint rays in an end. While a full characterisation
is still out of reach, we will provide an important special case. Moreover, we
will be able to describe cycles in terms of vertex and end degrees.

In Chapter 6, we will be concerned with Hamilton cycles. Tutte proved
that a finite planar 4-connected graph is always hamiltonian. We will conjec-
ture that this extends to locally finite graphs and provide a partial result to
support this. Furthermore, we will prove that infinite circuits generate the
cycle space.

In Chapter 7, we will try to understand the consequences of allowing
infinite sums a bit more thoroughly. In particular, we will consider minimal
generating sets, and prove their existence, assuming a countable ground set.
If the ground set is uncountable, we will see that the existence cannot be
guaranteed.

In the final chapter, we will turn to another problem that is closely related
to the space |G|, namely the Erdős-Menger conjecture with ends. Building
on work from Diestel, we will see how the topological space |G| can be used
to prove certain cases of the end version of the Erdős-Menger conjecture.
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Chapter 2

Gallai’s theorem and faithful
cycle covers

2.1 Introduction

Let us start the main part of this thesis with two results that, while not
trivial, are also not overly difficult. The main purpose of this chapter is to
give the reader the opportunity to get used to the definitions and to introduce
some of the methods.

By a result of Gallai (see Lovász [47]), every finite graph has a ‘cycle-
cocycle’ partition of its edge set induced by a bipartition of its vertex set:

Theorem 2.1 (Gallai). Every finite graph G admits a vertex partition into
(possibly empty) sets V1, V2 such that both E(G[V1]) and E(G[V2]) are ele-
ments of the cycle space of G.

As stated above, Gallai’s theorem has no obvious extension to infinite
graphs, if only finite circuits are admitted. Indeed, when G is infinite, the
elements of its finite-cycle space Cfin(G) are still finite sets of edges, so a
partition as in Theorem 2.1 does not exist, for instance, when G is an infinite
disjoint union of triangles.

One way to deal with the problem is to look for an equivalent reformula-
tion of Theorem 2.1 and extend that. For example:

Theorem 2.2. [18] Every locally finite graph G admits a vertex partition
into (possibly empty) sets V1, V2 such that in both G[V1] and G[V2] all vertex
degrees are even.

(The proof of Theorem 2.2 is an easy exercise in compactness. It is also an
immediate corollary of Theorem 2.4 below.)

11



However, the requirement that all degrees of a subgraph H of a finite
graph G should be even is only one equivalent reformulation among many of
saying that E(H) lies in the cycle space of G. Another is that H should be
an edge-disjoint union of cycles (and isolated vertices). This would be just as
meaningful for infinite H, and for locally finite H it implies the even-degree
condition but not conversely. (Consider a double ray, which is 2-regular but
not a union of cycles.) But with this latter reformulation, Theorem 2.1 no
longer extends to infinite graphs, when only finite cycles are allowed:

u1 u2 u3

v1 v2 v3

w1 w2 w3 w4 w5

Figure 2.1: A graph with no bipartition into edge-disjoint unions of cycles

Example 2.3. [18] The graph G shown in Figure 2.1 has a unique vertex
partition into two induced even-degree subgraphs. One of these is edgeless,
the other a double ray.

Proof. Consider any partition (V1, V2) of V (G). Note that if two vertices x, y
(such as u1 and w1) have a common neighbour z (such as v1) not adjacent to
any other vertex, then x and y must lie in the same partition class: otherwise,
z would have degree 1 in its partition class. Thus if u1 ∈ V1, say, we deduce
inductively that w1, w3, w5, . . . ∈ V1 and hence also u2, u3, u4, . . . ∈ V1. But
u2, u3, u4 . . . must not have degree 3 in G[V1], so v2, v3, v4, . . . ∈ V2. Finally,
v1 lies in V1 because u2 does, so inductively w2, w4, . . . ∈ V1.

Thus, V2 is the independent set {v2, v3, . . . }, while V1 consists of the
remaining vertices, which span a double ray.

Our aim in this chapter is to show that, despite Example 2.3, Theorem 2.2
is not the strongest possible extension of Theorem 2.1. Indeed, we can say
more of the double ray G[V1] in Figure 2.1 than that its degrees are even: the
double ray forms an infinite cycle in the topological cycle space C(G). (It does
so, because its tails converge to the same end of G, which thus ‘closes it up’.)
So for the space C(G), the graph of Figure 2.1 is no longer a counterexample
to Theorem 2.1. And indeed, we have the following extension of Theorem 2.1
to infinite graphs, which implies Theorem 2.2 but is quite a bit stronger:
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Theorem 2.4. [18] For every locally finite graph G there is a partition of
V (G) into two (possibly empty) sets V1, V2 such that E(G[Vi]) ∈ C(G) for
both i = 1, 2.

The chapter, which is based on [18], is organised as follows. We shall prove
Theorem 2.4 in the next section. In Section 2.3 we use similar techniques to
extend the cycle double cover conjecture and Seymour’s faithful cycle cover
conjecture to locally finite graphs: if these conjectures are true for finite
graphs, they also hold for locally finite graphs with our notion of an infinite
topological cycle space. (The latter conjecture fails unless infinite cycles are
admitted; for the former it is not known whether infinite cycles are really
needed.)

2.2 Proof of Gallai’s theorem

Before starting with its proof let us remark in this section [18] that Theo-
rem 2.4 does not extend to arbitrary graphs with vertices of infinite degree.
For example, consider the graph G obtained by joining a vertex v0 to every
vertex of a rayR := v1v2v3 . . .. Suppose there is a partition as in Theorem 2.4,
and assume that v0 ∈ V1. By the definition of thin sums, no element of C(G)
can have infinitely many edges incident with v0. So there is a maximal n ≥ 0
with vn ∈ V1. But then vn+1 has degree 1 in G[V2], a contradiction.

The problem here is that no element of the topological cycle space C(G)
is allowed to have a vertex of infinite degree. However, in C(G̃), in which
only those infinite sums are forbidden where where some edge lies in in-
finitely many of the summands (i.e. making no restrictions on vertices),
our counterexample ceases to be one: for V1 := {v3, v6, v9, . . .}, the set
V2 := V \ V1 induces an element of the cycle space. Of course, there
was a good reason for forbidding these sums: summing up the triangles
v0v1v2v0, v0v2v3v0, v0v3v4v0, . . . yields the ray v0v1R, which should then also
be a member of the cycle space. While this is not the case in the topological
cycle space C(G), v0v1R is an element of C(G̃), since v0 dominates the end
of R. Consequently, we will work within G̃ and prove the following somewhat
stronger version of Theorem 2.4:

Theorem 2.5.[18] Let G be a graph satisfying (1.2). Then there is a parti-
tion of V (G) into two (possibly empty) sets V1, V2 such that E(G[Vi]) ∈ C(G̃)
for both i = 1, 2.

Our proof of Theorem 2.5 will be a compactness proof. Recall that while
Theorem 2.2 has a straightforward compactness proof, the naive extension of
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Theorem 2.1 to locally finite graphs does not (and is in fact false). The reason
is, roughly speaking, that having all degrees even is a ‘local’ property of finite
subsets S ⊆ V (G) (one that S will satisfy in every large enough induced
subgraph or in none), while inducing part of an element of the finite-cycle
space Cfin(G), which is based on only finite cycles, is not: the sequence of
finite cycles Cn = Pn + en, for example, where the Pn = v−nv−(n−1) . . . vn−1vn
are nested paths and en is the edge v−nvn, ‘tends’ for n → ∞ to the double
ray D = . . . v−1v0v1 . . . whose edge set does not lie in the finite-cycle space
of
⋃
n∈N Cn. However, D is an infinite cycle in

⋃
n∈N Cn, and more generally

it turns out that all such ‘limits’ of finite cycles in a graph G are elements
of C(G) (though not necessarily single infinite cycles).

We shall cast our compactness proof in terms of König’s infinity lemma
(see Diestel [31]), which we restate:

Lemma 2.6. Let W1,W2, . . . be an infinite sequence of disjoint non-empty
finite sets, and let H be a graph on their union. For every n ≥ 2 assume that
every vertex in Wn has a neighbour in Wn−1. Then H contains a ray v1v2 . . .
with vn ∈ Wn for all n.

Proof of Theorem 2.5. We may assume G to be 2-connected, because C(G̃)
is the direct product of the topological cycle spaces of its blocks. (Recall that
vertices are allowed to lie in infinitely many summands as long as no edge
does.) Then G is countable, by Lemma 1.8. Let v1, v2, . . . be an enumeration
of V (G). For n ∈ N set Sn := {v1, . . . , vn}, and define Wn as the set of all
tuples (V1, V2) such that

(i) (V1, V2) is a partition of Sn into two (possibly empty) sets; and

(ii) for i = 1, 2, there is a Z ∈ C(G̃) such that Z ∩ E(G[Sn]) = E(G[Vi]).

Each set Wn is clearly finite. It is non-empty by Theorem 2.1 applied
to G[Sn].

Let us define a graph H on
⋃∞
n=1Wn. For n ≥ 2, let (V1, V2) ∈ Wn be

adjacent to (V ′1 , V
′

2) ∈ Wn−1 if and only if, for both i = 1, 2, V ′i ⊆ Vi. Observe
that for n ≥ 2 every vertex in Wn has a neighbour in Wn−1.

By the infinity lemma (2.6), there is a ray v1v2 . . . in H with (V n
1 , V

n
2 ) :=

vn ∈ Wn for all n. Clearly, V1 :=
⋃∞
n=1 V

n
1 and V2 :=

⋃∞
n=1 V

n
2 form a

partition of V (G).

We shall use Theorem 1.6 to show that E(G[V1]) ∈ C(G̃), and in a similar
way that E(G[V2]) ∈ C(G̃). Write Zn := E(G[V n

1 ]) for each n. Consider a
finite cut F of G. Choose n large enough that F ⊆ E(G[Sn]). By (ii), there
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is a Z ∈ C(G̃) with Z ∩ E(G[Sn]) = Zn. Then

F ∩ E(G[V1]) = F ∩ E(G[Sn] ∩G[V1]) = F ∩ Zn
= F ∩ Z ∩ E(G[Sn]) = F ∩ Z.

Since Z ∈ C(G̃), the last intersection is even. Hence E(G[V1]) ∈ C(G̃) by
Theorem 1.6, as desired.

2.3 Faithful cycle covers

Another problem concerning cycles is the well-known cycle double cover con-
jecture, which states that every bridgeless finite graph has a cycle double
cover. (A cycle double cover of a graph G is a family of cycles such that
each edge of G lies on exactly two of those cycles.) We will discuss cycle
covers, and a more general kind of cover, namely faithful covers, in this sec-
tion [18]. Using the same techniques as in the proof of Theorem 2.5 one can
show that if the cycle double cover conjecture is true for finite graphs then it
also holds for locally finite graphs, possibly with infinite cycles. However, it
is unknown whether there exists an example where infinite cycles are really
needed; I suspect there is none.

The situation is different for the following related conjecture of Seymour,
which extends with infinite cycles but fails with finite cycles only. For a graph
G and a map p : E(G)→ N (3 0) a faithful cycle cover of (G, p) is a family
of cycles such that every edge e ∈ G lies on exactly p(e) of those cycles. Such
a map p is admissible if p(F ) =

∑
f∈F p(f) is even and p(e) ≤ p(F )/2 for

every finite cut F and every edge e ∈ F . We call p even if all its values p(e)
are even numbers. If (G, p) is to have a faithful cycle cover, then obviously
p has to be admissible, and we shall see below that for some G it has to
be even. Since the constant map with value 2 is admissible for bridgeless
graphs, the following faithful cycle cover conjecture extends the cycle double
cover conjecture:

Conjecture 2.7 (Seymour [56]). Let G be a finite graph, and p an even
admissible map. Then (G, p) has a faithful cycle cover.

Unlike the cycle double cover conjecture, we know that Conjecture 2.7
fails for locally finite graphs unless we allow infinite cycles. Here is a simple
example. Let G be the double (= two-way infinite) ladder, and let p assign
0 to every rung and 2 to all the other edges. By our current definition
of admissibility (which requires p(e) ≤ p(F )/2 only for finite cuts F ), the
function p is admissible. But G contains no finite cycle that avoids all rungs,
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so (G, p) has no faithful cover consisting of finite cycles. (It does, however,
have a faithful cover consisting of two copies of the infinite cycle spanned by
the edges for which p = 2.)

The above example is no longer a counterexample to the infinite analogue
of Conjecture 2.7 if we require of an admissible map p that it satisfies p(e) ≤
p(F )/2 also for infinite cuts F (and edges e ∈ F ): if e is any edge with
p(e) = 2 and R is a maximal ray in the subgraph of G − e spanned by all
its remaining edges with p = 2, then e and the edges with p = 0 incident
with R form an infinite cut F such that p(e) = p(F ). Thus, p is no longer
admissible, and we no longer have a contradiction.

Our next example, however, shows that strengthening the definition of
‘admissible’ as above is not enough to make Conjecture 2.7 true for locally
finite graphs—if only finite cycles are admitted. Consider the ladder G shown
in Figure 2.2 and the admissible map p : E(G) → N defined by p(ei) =
p(e′i) = 2i and p(fi) = 2 for all i. (Since p(e) > 0 for all e, we trivially have
p(e) ≤ p(F )/2 also for infinite cuts F .) Suppose there is a faithful cycle
cover which contains a finite cycle D. Obviously, D contains exactly two
rungs fm, fn, with m < n, say. Let C be the subfamily of the cover consisting
of those cycles which pass through the edge en. Each but at most one (which
might go through fn) of the cycles in C must use the edge en−1. Thus, at
least |C| − 1 = 2n − 1 cycles of the cover meet the edge en−1, contradicting
p(en−1) = 2n − 2. Therefore, the only faithful cycle cover that (G, p) can
have (and which is easily seen to exist) must be one consisting of infinite
cycles.

e1 e2 e3 e4

f1 f2 f3 f4

e′1 e′2 e′3 e′4

Figure 2.2: The unique faithful cycle cover consists of infinite cycles only

As soon as we allow infinite cycles, however, Conjecture 2.7 does extend
to locally finite graphs, and more generally to graphs that satisfy (1.3):

Theorem 2.8.[18] Let G be a graph satisfying (1.3), and let p : E(G)→ N
be an even admissible map. If Conjecture 2.7 is true then (G̃, p) has a faithful
cycle cover.

First, we need a lemma, that will prove to be useful in Chapter 4 too.
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Lemma 2.9.[18] Let G be a 2-connected multigraph satisfying (1.3), and let
U be a finite set of vertices in G. Then we can contract edges of G, deleting
loops but keeping any multiple edges that arise, so that no two vertices from
U are identified, the multigraph H obtained has only finitely many edges and
vertices, and every cut of H is also a cut of G.

Proof. First, note that the set K of components of G − U is finite. Indeed,
as G is 2-connected, every component C of G − U has distinct neighbours
u, v in U . If K is infinite, then infinitely many C ∈ K are joined to the same
two vertices u, v (because U is finite), so these are linked by infinitely many
independent paths. This contradicts (1.3).

Next, consider a component C ∈ K. For every two vertices u, v ∈ U
that both send infinitely many edges to C there is a finite cut Fu,v ⊆ E(C)
separating N(u) ∩ V (C) from N(v) ∩ V (C) in C, because of (1.3). Let FC
be the union of all such cuts Fu,v. Note that FC is finite, as there are only
finitely many pairs u, v. Then the set KC of components of C − FC is also
finite, and so is K′ := ⋃C∈KKC . Each D ∈ K′ sends only finitely many edges
to G−U −D, and at most one vertex in U sends infinitely many edges to D.
If such a vertex exists, we denote it by uD.

In G, contract every D ∈ K′ to a vertex vD, keeping parallel edges but
deleting loops. If two vertices of the resulting multigraph are joined by
infinitely many edges, then these are uD and vD for some D ∈ K′. In a
second step, we now contract all these edges uDvD, again keeping parallel
edges. We obtain a finite multigraph H in which no two vertices from U are
identified. (Note in particular that the edge set of H is finite, despite the
parallel edges that arose in the contraction.) Since we did not delete any
edges except loops, every cut of H is also a cut of G.

Proof of Theorem 2.8. Consider a block B of G. Every cut of B is a cut of
G, so the restriction of p to B is an even admissible map on B. As C(G̃) is
the direct product of the topological cycle spaces of the blocks of G, we may
therefore assume G to be 2-connected. (Note that p assigns zero to bridges,
so we need not cover these.) By Lemma 1.8, G is countable.

Consider an enumeration v1, v2, . . . of V (G), and set Gn := G[{v1, . . . , vn}].
Define Wn as the set of all families E of sets E ⊆ E(Gn) such that

(i) every edge e ∈ E(Gn) lies in exactly p(e) members of E ; and

(ii) for every E ∈ E there is a finite cycle C ⊆ G with E(C ∩Gn) = E.

Let us show that the sets Wn are not empty. Apply Lemma 2.9 with U =
{v1, . . . , vn}, and denote the multigraph H obtained by G′n. Since every cut
of G′n is also one of G, the map p induces an admissible even map p′n on G′n.
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By subdividing edges we obtain from G′n a simple graph G′′n with admissible
even map p′′n (induced by p′n). Then by assumption there is a faithful cycle
cover of (G′′n, p

′′
n). Every cycle in that cover can be extended to a finite cycle

in G. The family of these cycles then satisfies (i) and (ii), thus proving
Wn 6= ∅.

The rest of the proof is analogous to that of Theorem 2.5: applying the
infinity lemma to an auxiliary graph H, we obtain a family of elements of
C(G̃) such that every edge e lies on exactly p(e) members of this family.
By Theorem 1.7, we can modify this into a faithful cover consisting of single
cycles. Therefore, if the faithful cycle cover conjecture holds for finite graphs,
it is also true for graphs satisfying (1.3).

Conjecture 2.7 requires p to be even, and indeed if p is allowed to assume
odd values the conjecture becomes false: take the Petersen graph, and give
p the value 2 on a perfect matching and 1 on all other edges.

Take any subgraph of an infinite graph G, and contract some—possibly
infinitely many—of its edges; the resulting graph will be called a minor
of G. Then the following result, whose finite version is a theorem of Alspach,
Goddyn and Zhang [7], can be proved like Theorem 2.8.

Theorem 2.10.[18] Let G be a graph that satisfies (1.3) and does not contain
the Petersen graph as a minor, and let p : E(G)→ N be any admissible map.
Then (G, p) has a faithful cycle cover.
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Chapter 3

MacLane’s and Kelmans’
planarity criteria

3.1 Introduction

A set (or family) E of edge sets E ⊆ E(G) of a graph G is called simple,
if every edge of G lies in at most two elements of E . MacLane’s planarity
criterion states:

Theorem 3.1 (MacLane [48]). A finite graph G is planar if and only if
its cycle space has a simple generating set.

Wagner [64] raised the question if MacLane’s result could be extended so
that it characterises planar graphs which are infinite. Rather than modifying
the planarity criterion, Thomassen [59] describes all infinite graphs that sat-
isfy MacLane’s condition. For this, recall that a vertex accumulation point,
abbreviated VAP, of a plane graph Γ is a point p of the plane such that every
neighbourhood of p contains an infinite number of vertices of Γ.

Theorem 3.2 (Thomassen [59]). Let G be an infinite 2-connected graph.
Then G has a VAP-free embedding in the plane if and only if Cfin(G) has a
simple generating set consisting of finite circuits.

(Recall that Cfin(G) consists of all finite symmetric differences of finite
circuits; see Section 1.2.) Bonnington and Richter [12] also provide a gener-
alisation of MacLane’s theorem using the even cycle space Z(G), defined as
the set of all subgraphs of G with all vertex degrees even. With this space
they investigate which graphs have an embedding with k VAPs.

Our main result in this chapter, which is based on [22], is a verbatim
generalisation of MacLane’s theorem to locally finite graphs, using the topo-
logical cycle space C(G):
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Theorem 3.3. [22] Let G be a countable locally finite graph. Then, G is
planar if and only if C(G) has a simple generating set.

We discuss Theorem 3.3 in the next section, and prove it in the course of
Sections 3.4 and 3.5. In Section 3.3, we investigate some properties of simple
generating sets. In Section 3.6, we extend Kelmans’ planarity criterion to
locally finite graphs.

3.2 Discussion of MacLane’s criterion

In this section we shall discuss Theorem 3.3 and have a closer look at gener-
ating sets [22]. First let us make the notion of a generating set more precise.
A generating set of the topological cycle space will be a set F ⊆ C(G) such
that every element of C(G) can be written as a thin sum of elements of F .
Thus, in contrast to a generating set in the vector space sense we allow (thin)
infinite sums. There are two reasons for this. First, thin sums are integral
to the topological cycle space of an infinite graph, so it seems unnatural
to forbid them. Second, MacLane’s criterion is false if we insist that every
Z ∈ C(G) is a finite sum of elements of a simple subset of C(G), as we shall
see in Proposition 3.6.

To show that, in a certain sense, Theorem 3.3 is as strong as possible, we
need the following theorem, which is of interest on its own. It will be proved
in the next section. Recall that a circuit C is called peripheral if it is induced
and if deleting all incident vertices does not separate the graph.

Theorem 3.4. [22] Let G be a 3-connected graph, and let F be a simple
generating set of C(G) consisting of circuits. Then every element of F is a
peripheral circuit.

First note that because of Theorem 1.5, if the topological cycle space has
a simple generating set then it also has a simple generating set consisting of
circuits.

Theorem 3.3 is formulated for locally finite graphs, and indeed it is false
for arbitrary infinite graphs. Indeed, consider the 3-connected graph G in
Figure 3.1, which is not locally finite; the example is from [15]. By Theo-
rem 3.4 and the remark following it, we may assume that a simple generating
set F of C(G) consists of peripheral circuits (finite or infinite). In particular,
no circuit which contains the edge e is in F . But then such a circuit cannot
be generated by any sum of circuits of F . Thus, there is no simple generat-
ing set of C(G), but G is clearly planar. We remark that, nevertheless, it is
possible to extend MacLane’s criterion to certain non-locally finite graphs,
namely those satisfying (1.3); we will discuss this in Section 4.8.

20



... ...
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Figure 3.1: A planar graph whose topological cycle space has no simple
generating set

Infinite circuits might seem, although topologically natural, combinato-
rially unwieldy. They are, however, inevitable in a certain sense: there is
not always in a planar graph a simple generating set comprised of only finite
circuits. In Figure 1.2, we presented an example for a graph in which the
finite peripheral circuits fail to generate the cycle space. As that graph is
3-connected, we know from Theorem 3.4 that there is then also no simple
generating set consisting only of finite circuits. Another indication that we
cannot do without infinite circuits is provided by Georgakopoulos [38], who
constructs highly connected plane graphs in which the edge set of every face
boundary is an infinite circuit. Later, in Lemma 3.21, we will see that (the
edge sets of) the face boundaries are precisely the peripheral circuits. Thus,
there are 3-connected planar graphs with no finite peripheral circuits at all.

3.3 Simple generating sets

We prove Theorem 3.4 in this section [22]. As a tool, we introduce the
notion of a 2-basis. For this, let B ⊆ C(G) be a simple generating set of the
topological cycle space of G. We call B a 2-basis of C(G) if for every element
Z ∈ C(G) there is a unique (thin) subset of B, henceforth denoted by BZ ,
with Z =

∑
B∈BZ B. Observe that in a finite graph the 2-bases are exactly

the simple bases of C(G), and thus conform with the traditional definition of
a 2-basis in a finite graph.

Since we have left linear algebra with our definition of a 2-basis (allowing
thin infinite sums), it is not clear if the properties usually expected of a
basis are still retained. One of these, which we shall need later on, is that a
generating set always contains a basis. The next lemma asserts that at least
for simple sets this is true. We will investigate bases in more generality than
is necessary here in Chapter 7.

Lemma 3.5.[22] Let G be a 2-connected graph, and let F be a simple gener-
ating set of C(G). If F is not a 2-basis, then for any Z ∈ F the set F \ {Z}
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is a 2-basis of C(G).

Proof. Observe first that it suffices to check the uniqueness required in the
definition of a 2-basis for the empty set: a simple generating subset B of
C(G) is a 2-basis if and only if for every B′ ⊆ B with

∑
B∈B′ B = ∅ it follows

that B′ = ∅.
Let us assume there is a non-empty set D ( F with

∑
B∈D B = ∅. Since

G is 2-connected every edge of G appears in a finite circuit, and thus in at
least one element of F . But as F is simple and

∑
B∈D B = ∅ no edge of G

can lie in an element of D and at the same time in an element of F \ D.
So, E1 :=

⋃D and E2 :=
⋃

(F \D) define a partition of E(G) (note that
both sets are non-empty). Because G is 2-connected there is, by Menger’s
theorem, for any two edges a finite circuit through both of them. Therefore,
there is a circuit D which shares an edge e1 with E1 and another edge e2 with
E2. Let D′ ⊆ F be such that D =

∑
B∈D′ B. Then D′ :=

∑
B∈D∩D′ B ⊆ D,

since for any edge e ∈ D′ \D both D′ \D and D∩D′ have an element which
contains e; thus e ∈ E1 ∩ E2, which is impossible. Therefore, D′ is a subset
of the circuit D, and thus either D′ = ∅ or D′ = D. Since e1 ∈ D′ the former
case is impossible; the latter, however, is so too, as D′ ⊆ E1 cannot contain
e2 ∈ E2, a contradiction.

We thus have shown:
∑

B∈D
B = ∅ for D ⊆ F implies D = ∅ or D = F .

So, if F is not a 2-basis, then none of its subsets but itself generates the
empty set. In particular, F is thin. For any Z ∈ F ,

Z =
∑

B∈F\{Z}
B,

thus, the thin simple set F \ {Z} certainly generates the topological cycle
space. It also is a 2-basis, as none of its non-empty subsets generates the
empty set.

With our definition of a generating set, which allows infinite sums, we
shall show that MacLane’s criterion holds for locally finite graphs. Since, in
a vector space context, one usually allows only finite sums for a generating set,
there is one obvious question: Does Theorem 3.3 remain true if we consider
simple generating sets in the vector space sense? The answer is a strikingly
clear no:

Proposition 3.6. [22] There is no locally finite 2-connected infinite graph
in which the topological cycle space has a simple generating set in the vector
space sense (i.e. allowing only finite sums).
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Proof. Suppose there is such a graph G so that C(G) has a simple set A ⊆
C(G) which generates every Z ∈ C(G) through a finite sum. We determine
the cardinality of C(G) in two ways.

First, since A is simple, every of the countably many edges of G lies in
at most two elements of A. Therefore, A is a countable set, and thus, C(G)
also.

Second, there is, by Lemma 3.5, a 2-basis B ⊆ A. As C(G) is an infinite
set (since G is infinite and 2-connected), so is B. Hence, there are distinct
B1, B2, . . . ∈ B. Also, as G is locally finite and B simple, all subsets of B are
thin. Therefore, all the sums

∑

i∈I
Bi for I ⊆ N

are distinct elements of C(G). Since the power set of N has uncountable
cardinality, it follows that C(G) is uncountable, a contradiction.

The rest of this section is devoted to the proof of Theorem 3.4, which we
restate:

Theorem 3.4. [22] Let G be a 3-connected graph, and let F be a simple
generating set of C(G) consisting of circuits. Then every element of F is a
peripheral circuit.

A basic tool when dealing with finite circuits are bridges, see for instance
Bondy and Murty [11]. As our circuits may well be infinite, we need an
adaption of the notion of a bridge, which we introduce together with a number
of related results before proving the theorem.

Definition 3.7. [15] Let C ⊆ |G| be a circle in a graph G. We call the
closure B of a topological component of |G| \C a bridge of C. The points in
B ∩ C are called the attachments of B in C.

There is a close relationship between bridges and peripheral circuits. In-
deed, in a 3-connected graph a circuit D is peripheral if and only if the circle
D has a single bridge [15].

For the subgraph H := C ∩G, the following can be shown: a set B ⊆ |G|
is a bridge of C if and only if it is induced by a chord of H or if there is
a component K of G − H such that B is the closure of K plus the edges
between K and H together with the incident vertices. Thus, our definition
coincides with the traditional definition of a bridge in a finite graph.

Lemma 3.8.[15] Let C ⊆ |G| be a circle in a graph G, and let B be a bridge
of C. Let x be an attachment of B. Then:
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(i) x is a vertex or an end;

(ii) if x is an end then every neighbourhood of x contains attachments of B
that are vertices;

(iii) every edge of which B contains an inner point lies entirely in B; and

(iv) either B is induced by a chord of C or the subgraph (B ∩G)− V (C) is
non-empty and connected.

We define a residual arc of the bridge B in the circle C to be the closure of
a topological component of C\B. Note that if B has at least two attachments
every residual arc is indeed an arc (if not then the circle C itself is a residual
arc, and it is the only one).

Lemma 3.9.[15] Let G be a 2-connected graph, and let C ⊆ |G| be a circle
with a bridge B. Then:

(i) the endpoints of a residual arc L of B in C are attachments of B; and

(ii) for a point x ∈ C \ B there is exactly one residual arc L of B in C
containing x.

Let us introduce some more terminology that are standard in a finite
setting; see Bondy and Murty [11]. We say a bridge B of C avoids another
bridge B′ of C if there is a residual arc of B that contains all attachments of
B′. Otherwise, they overlap. Note that overlapping is a symmetric relation.
Two bridges B and B′ of C are called skew if C contains four (distinct) points
v, v′, w, w′ in that cyclic order such that v, w are attachments of B and v ′, w′

attachments of B′. Clearly, if two bridges B and B ′ are skew, they overlap.
On the other hand, in a 3-connected graph, overlapping bridges are either
skew or 3-equivalent, i.e. they both have only three attachments which are
the same:

Lemma 3.10. [22] Let G be a 3-connected graph. Let C ⊆ |G| be a circle,
and let B and B′ be two overlapping bridges of C. Then B and B ′ are either
skew or 3-equivalent.

Proof. First, if either B or B ′ is induced by a chord, it is easy to see, that
they are skew because they overlap. Thus, by Lemma 3.8 (iv), we may
assume that each of the bridges has three attachments. Next, assume that
B ∩ C = B′ ∩ C. If |B ∩ C| = 3 then B and B ′ are 3-equivalent, otherwise
they are clearly skew.

So, suppose there is an attachment u of B with u /∈ B ′. The attachment
u is contained in a residual arc L of B ′. Its endpoints u′, v′ are attachments
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of B′. Since B and B′ are overlapping, not all all attachments of B may lie
in L. Thus, there is an attachment v ∈ C \ L of B. Then, the sequence
u, u′, v, v′ shows that B and B′ are skew.

For a set X ⊆ |G|, an X-path is a path that starts in X, ends in X and
is otherwise disjoint from X.

Lemma 3.11.[22] Let B and B ′ be two skew bridges of a circle C ⊆ |G| in
a graph G. Then there are two disjoint C-paths P = u . . . v and P ′ = u′ . . . v′

such that u, u′, v, v′ appear in that order on C.

Proof. Since B and B′ are skew there are points x, x′, y, y′ appearing in that
cyclic order on C such that x, y are attachments of B and x′, y′ are attach-
ments of B′. If x is a vertex put u := x. If not, then there is a whole arc
A ⊆ C around x disjoint from any of the other points. In A we find, by
Lemma 3.8 (ii), an attachment u of B that is a vertex. Doing the same for
x′, y and y′, if necessary, we end up with vertices u, u′, v, v′ appearing in that
cyclic order on C such that u, v ∈ B and u′, v′ ∈ B′. As (B ∩ G)− V (C) is
connected, by Lemma 3.8 (iv), we find an u–v path P through B, and analo-
gously an u′–v′ path P ′ through B′. Since bridges meet only in attachments,
P and P ′ are disjoint.

We need that in a 3-connected graph, for any circle, there are always two
overlapping bridges (if there is more than one bridge at all). For this, we
define for a circle C in the graph G the overlap graph of C in G as the graph
on the bridges of C such that two bridges are adjacent if and only if they
overlap. The next lemma ensures that there are always overlapping bridges.

Lemma 3.12.[15] For every circle C in a 3-connected graph G the overlap
graph of C in G is connected.

The next simple lemma will be used repeatedly in the proof of Theo-
rem 3.4. Denote by M4N the symmetric difference of two sets M and N .

Lemma 3.13. [22] Let G be a 3-connected graph, and let B be a 2-basis of
C(G) consisting of circuits. Let C and D be circuits in G such that C ∩D is
an arc. Suppose that BC ∩ BD 6= ∅. Then, either BC ⊆ BD or BD ⊆ BC .

Proof. Put K :=
∑

B∈BC∩BD B and consider an edge e /∈ C ∪D. Then both
BC and BD contain either both or none of the at most two circuits B ∈ B
with e ∈ B. Thus, both or none of them is in BC ∩ BD, and hence e /∈ K.
Therefore, K is an element of the topological cycle space contained in C∪D.
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These are precisely ∅, C, D and C + D (since C ∩D is an arc). Note that
K 6= ∅ as BC ∩ BD 6= ∅. Also, K 6= C +D, since otherwise

BC ∩ BD = BK = BC+D = BC4BD,

which is impossible. Consequently, we obtain either K = C and thus, BC ⊆
BD, or K = D and BD ⊆ BC .

Proof of Theorem 3.4. Note that it suffices to prove the theorem for a 2-basis
B. Indeed, if F is not a 2-basis, consider two distinct elements Z1 and Z2 of
F . By Lemma 3.5, both F \ {Z1} and F \ {Z2} are a 2-basis of C(G), and,
if Theorem 3.4 holds for these, it clearly also holds for F .

Consider a non-peripheral circuit C. Then, the circle C has more than
one bridge [15]. Two of these, B and B ′ say, are, by Lemma 3.12, overlapping.
By Lemma 3.10, they are either skew or 3-equivalent. We show that C /∈ B
for each of the two cases.

(i) Suppose that B and B′ are skew. By Lemma 3.11, there are two
disjoint C-paths P = u . . . v and P ′ = u′ . . . v′ such that u, u′, v, v′ appear in
this order on C. Denote by Luu′ , Lu′v, Lvv′ , Lv′u the closures of the topological
components of C \{u, u′, v, v′} such that x, y are the endpoints of Lxy. Define
the circuits

C1 := E(Luu′ ∪ Lu′v ∪ P ), C2 := E(Lvv′ ∪ Lv′u ∪ P ),

D1 := E(Lu′v ∪ Lvv′ ∪ P ′) and D2 := E(Lv′u ∪ Luu′ ∪ P ′).

Observe that C1 + C2 = C = D1 + D2, and additionally, that Ci ∩Dj is an
arc for any i, j ∈ {1, 2}.

Suppose C ∈ B. Since

BC14BC2 = BC1+C2 = BC = {C},

not both of BC1 and BC2 may contain C. As the same holds for D1 and D2

we may assume that
C /∈ BC1 and C /∈ BD1 . (3.1)

Consider an edge e ∈ C1 ∩D1 ⊆ C. Both of BC1 and BD1 must contain a
circuit which contains e. By (3.1), this cannot be C. Therefore, and since B
is simple, BC1 and BD1 contain the same circuit K with e ∈ K. Consequently,
BC1 ∩ BD1 6= ∅, and applying Lemma 3.13 we may assume that

BC1 ⊆ BD1 . (3.2)

Now, consider an edge e′ ⊆ Luu′, hence e ∈ C1 ∩ D2. There is a circuit
K ′ ∈ BC1 with e′ ∈ K ′ 6= C. By (3.2), K ′ ∈ BD1 , but since e′ lies in Luu′ we
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have e′ /∈ D1. Thus, BD1 also contains the other circuit in B that contains
e′, which is C, a contradiction to (3.1). Therefore, C /∈ B.

(ii) Suppose that B and B′ are 3-equivalent. Let v1, v2, v3 be their at-
tachments, which then are vertices (by Lemma 3.8 (ii)). Then there is a
vertex x ∈ V (B \C) and three x–C paths Pi = x . . . vi ⊆ B, i = 1, 2, 3 whose
interiors are pairwise disjoint. Let Qi = y . . . vi be analogous paths in B ′.
The closures of the topological component of C \ {v1, v2, v3} are three arcs;
denote by Li,i+1 the one that has vi and vi+1 as endpoints (where indices are
taken mod 3). For i = 1, 2, 3, define the circuits

Ci := E(Li,i+1 ∪ Pi ∪ Pi+1) and Di := E(Li,i+1 ∪Qi ∪Qi+1).

Note that C1 + C2 + C3 = C = D1 +D2 +D3.
Now suppose C ∈ B. As

BC14BC24BC3 = BC1+C2+C3 = BC = {C},
either C lies in all of the BCi or in only one of them, in BC3 , say. In both
cases, we have C /∈ BC1+C2 . We obtain the same result for the Di: either C
lies in all of the BDi or in only one of them. In any case, we can define D as
either D1 or D2 + D3 such that C /∈ BD. Put D′ := C + D, and note that
BD′ = BD ∪ {C}.

Then, since C1 +C2 shares an edge in C with D, and neither BC1+C2 nor
BD contains C, we have BC1+C2 ∩ BD 6= ∅. Applying Lemma 3.13, we obtain
that one of the two sets BC1+C2 ,BD is contained in the other.

First assume that BC1+C2 ⊆ BD, and consider an edge e ∈ C that lies in
both C1 + C2 and D′. Such an edge exists since D′ = D1 or D′ = D2 + D3.
Since C /∈ BC1+C2 , e lies in a circuit K 6= C in BC1+C2 , and thus also K ∈ BD.
On the other hand, e ∈ C ∈ BD′ contradicts e ∈ D′.

So, we may assume that BD ⊆ BC1+C2 . Because BD′ = BD ∪{C} we even
have BD ⊆ BC1+C2 ∩ BD′ . Thus, by Lemma 3.13, either BC1+C2 ⊆ BD′ or
BD′ ⊆ BC1+C2 . The latter is impossible as C /∈ BC1+C2 . Therefore, we obtain

BD ⊆ BC1+C2 ⊆ BD′ = BD ∪ {C}.
Now, from C /∈ BC1+C2 follows that BC1+C2 = BD, contradicting C1+C2 6= D.
Thus, C /∈ B.

3.4 The backward implication

In this section, we show the backward implication of Theorem 3.3 namely
that if the topological cycle space has a simple generating set then G is pla-
nar [22]. But first, let us remark that it is sufficient to show Theorem 3.3 for
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2-connected graphs. Indeed, the Kuratowski planarity criterion for countable
graphs below asserts that a countable graph is planar if and only if its blocks
are planar.

Theorem 3.14 (Dirac and Schuster [37]). Let G be a countable graph.
Then, G is planar if and only if G contains neither a subdivision of K5 nor
a subdivision of K3,3.

The backward direction will follow from the next lemma.

Lemma 3.15. [22] Let G be a 2-connected graph such that C(G) has a 2-
basis, and let H ⊆ G be a finite 2-connected subgraph. Then C(H) has a
2-basis.

Proof. Let B be the 2-basis of C(G). Since H is finite, there are Z ∈ C(H)
with a non-empty generating set BZ ⊆ B which is ⊆-minimal among all BZ

with Z ∈ C(H). Let us denote these by Z1, . . . , Zk.
Consider a D ∈ C(H) with BD ∩ BZi 6= ∅ for some i. We claim that

BZi ⊆ BD. First, note that

C :=
∑

B∈BD∩BZi

B ⊆ E(H).

Indeed, consider an edge e /∈ E(H). Since Zi, D ⊆ E(H), and since B is
simple, e either lies on exactly two or on none of the elements of BZi, and
the same holds for BD. Furthermore, if e lies on two elements of BZi and on
two of BD, these must be the same. So, e /∈ C.

Therefore, C ⊆ E(H), and thus C ∈ C(H). As BC ⊆ BZi we obtain,
by the minimality of BZi , that C = Zi. Consequently, BZi = BC ⊆ BD, as
claimed.

This result also implies BZi ∩ BZj = ∅ for all 1 ≤ i < j ≤ k. Thus,
every edge of H appears in at most two of the Zi. Furthermore, we claim
that {Z1, . . . , Zk} is a generating set for C(H). Then, {Z1, . . . , Zk} contains
a 2-basis of C(H), and we are done.

So consider a D ∈ C(H), and let I denote the set of those indices i with
BZi ∩ BD 6= ∅. We may assume I = {1, . . . , k′} for a k′ ≤ k. Then, by
BZi ⊆ BD and BZi ∩ BZj = ∅ for i, j ∈ I, it follows that BD is the disjoint
union of the sets BZ1 ,BZ2, . . . ,BZk′ and

B′ := BD \
k′⋃

i=1

BZi .
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Consequently,
∑

B∈B′
B =

∑

B∈BD
B +

∑

B∈BZ1

B + . . .+
∑

B∈BZ
k′

B = D + Z1 + . . .+ Zk′ ⊆ E(H)

as all the summands lie in H. Now, if B′ 6= ∅ then there is a Z ∈ C(H)
with a non-empty and minimal BZ ⊆ B′ which then must be one of the Zi,
a contradiction. Thus, B′ is empty and we have D =

∑k′

i=1 Zi.

For the backward implication of Theorem 3.3, we use the well-known fact
that the cycle space of every subdivision of K5 or of K3,3 fails to have a
2-basis (see, for instance, Diestel [31]).

Lemma 3.16.[22] Let G be a locally finite 2-connected graph such that C(G)
has a simple generating set. Then G is planar.

Proof. Suppose not. Then G contains, by Theorem 3.14, a subdivision H of
K5 or of K3,3 as subgraph. By Lemma 3.5, C(G) has a 2-basis. Then, by
Lemma 3.15, C(H) also has a 2-basis, which is impossible.

3.5 The forward implication

For the forward implication of Theorem 3.3, we need to show that the topo-
logical cycle space of a planar graph has a simple generating set. By proceed-
ing mainly as for the finite case, we will establish the forward implication in
this section [22]. We first embed our graph G in the sphere and then show
that the set of the face boundaries’ edge sets is a simple generating set. So,
our first priority is to ensure that every face is indeed bounded by a circle of
|G|. As for the backward direction we may assume that G is 2-connected.

This, however, is certainly not the case when a VAP of the embedded
graph coincides with a vertex or an inner point of an edge. To avoid this
problem we consider topological embeddings of the space |G| in the sphere
(rather than graph embeddings of G), which, in our context, is no restriction:

Theorem 3.17 (Richter and Thomassen [55]). Let G be a locally finite
2-connected planar graph. Then |G| embeds in the sphere.

We call a topological space 2-connected if it is connected and remains
so after the deletion of any point. Thus, any embedding of the (standard)
compactification |G| of a 2-connected graph G in the sphere clearly is 2-
connected. Note that also, any such embedding is compact if G is locally
finite and connected. A face of a compact subset K of the sphere is a com-
ponent of the complement of K. A face boundary ∂f ⊆ K of a face f is
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simply the boundary of f . If K is the image of |G| under an embedding, then
it can be shown in a similar way as for finite plane graphs (see for instance
Diestel [31]) that if an inner point of an edge lies in a face boundary then
the whole edge lies in it.

Theorem 3.18 (Richter and Thomassen [55]). Every face of a compact
2-connected locally connected subset of the sphere is bounded by a simple
closed curve.

Another result of Richter and Thomassen [55] states that |G| is locally
connected if G is locally finite and connected1. As a simple closed curve by
definition is homeomorphic to the unit circle, we obtain:

Corollary 3.19. [22] Let G be a locally finite 2-connected graph with an
embedding ϕ : |G| → S2. Then the face boundaries of ϕ(|G|) are circles
of |G|.

Showing the forward implication, we now complete the proof of Theo-
rem 3.3:

Lemma 3.20.[22] Let G be a locally finite 2-connected planar graph. Then,
C(G) has a simple generating set.

Proof. By Theorem 3.17, |G| has an embedding ϕ : |G| → S2 in the sphere.
Put Γ := ϕ(|G|). We show that the set F which we define to consist of the
edge sets of the face boundaries of Γ, is a simple generating set of C(G).
Certainly, F is simple, and, by Corollary 3.19, a subset of C(G). So, we only
have to prove that every element of the topological cycle space is the sum of
certain elements of F .

Fix a face f ∗ of Γ. First, consider a circuit C in G. Then for the circle C,
ϕ(C) is homeomorphic to the unit circle and, thus, bounds two faces (by
the Jordan-curve theorem). Let fC be the face not containing f ∗. As G
is 2-connected, every edge e lies on a finite circuit, and therefore on the
boundaries of exactly two faces of Γ, which we denote by fe and f ′e. Hence,
the set

BC := {E(∂f) : f ⊆ fC is a face of Γ}
is thin. Moreover, as we have fe, f

′
e ⊆ fC or fe, f

′
e * fC if and only if e /∈ C,

it follows that ∑

B∈BC
B = C. (3.3)

1They show this to be true for all pointed compactifications of G, which are those
obtained from the standard compactification by identifying some ends.
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Now, consider an arbitrary element Z of the topological cycle space. By
definition, there is a thin family D of circuits with Z =

∑
C∈D C. If none of

the elements of F appears in BC for infinitely many C ∈ D, then the family
B, which we define to be the (disjoint) union of all BC with C ∈ D, is thin
(since every edge lies on exactly two face boundaries). Then, Z =

∑
B∈B B,

and we are done. Therefore, if F (Γ) is the set of faces of Γ, it suffices to show
that the set

F := {f ∈ F (Γ) : f ⊆ fC for infinitely many C ∈ D}
is empty.

So suppose F 6= ∅. By definition of fC , we have f ∗ * fC for all C ∈ D, and
thus also F 6= F (Γ). Hence, there is an edge e such that one of its adjacent
faces, say fe, lies in F and the other, f ′e, in F (Γ) \ F . Then, E(∂fe) appears
in infinitely many BC while e lies on only finitely many C ∈ D. Thus, also
E(∂f ′e) lies in infinitely many BC , which implies f ′e ∈ F , a contradiction.

3.6 Kelmans’ planarity criterion

For finite 3-connected graphs there is another well-known planarity criterion,
namely Kelmans’ criterion2 (see Kelmans [44]). It follows from MacLane’s
criterion together with Tutte’s generating theorem, both of which are known
to be true for locally finite graphs. We extend Kelmans’ criterion to locally
finite graphs in this section [22].

Corollary 3.19 implies that the face boundaries of a locally finite 2-
connected planar graph are circles. When G is 3-connected then, as for
finite graphs (see Diestel [31]), the Jordan curve theorem implies that these
circles are precisely the closures in |G| of the peripheral circuits of G:

Lemma 3.21. [22] Let G be a locally finite 3-connected graph with an em-
bedding ϕ : |G| → S2 in the sphere. Then, the face boundaries are precisely
the closures in ϕ(|G|) of the peripheral circuits of G.

Now, we easily obtain a verbatim generalisation of Kelmans’ criterion for
locally finite graphs.

Theorem 3.22. [22] Let G be a locally finite 3-connected graph. If G is
planar then every edge appears in exactly two peripheral circuits. Conversely,
if every edge appears in at most two peripheral circuits then G is planar.

2This criterion is sometimes also known as Tutte’s planarity criterion, as it easily
follows from Tutte’s generating theorem. However, this seems to have gone unnoticed
until Kelmans published a direct proof of the criterion neither using MacLane’s nor Tutte’s
theorem.
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Proof. If G is planar then there is, by Theorem 3.17, also an embedding of
|G|, in which, by Lemma 3.21, the closure of every peripheral circuit is a
face boundary. Since G is 2-connected every edges lies in exactly two face
boundaries, hence in exactly two peripheral circuits of G.

For the backward implication let F be the set of all peripheral circuits of
G, which then is simple. Thus, F is, by Theorem 1.3, a simple generating
set, and hence G planar, by Theorem 3.3.

x

u w

y

z

v

Figure 3.2: Infinite circuits are necessary for Kelmans’ criterion

As MacLane’s planarity criterion, Kelmans’, too, fails when infinite cir-
cuits are disallowed. Indeed, there are 3-connected non-planar graphs in
which every edge lies on at most two finite peripheral circuits. The graph
G shown in Figure 3.2 is such an example [22]. It consists of a K3,3 (bold)
to which three disjoint infinite 3-ladders are added. First observe that any
finite peripheral circuit that contains edges of G−{u, w} cannot contain any
edge incident with either one of u, w, as otherwise it also contains (the edges
of) a finite {x, y, z}–{x, y, z} path in G − {u, w}, and thus is separating.
Therefore, every finite peripheral circuit of G has either none or all of its
edges incident with {u, w}; in the latter case, it is a circuit of G[u, w, x, y, z].

Now, assume that there is an edge of G that appears in three finite
peripheral circuits. All of these circuits then lie either in G − {u, w} or in
G[u, w, x, y, z], where they are also peripheral. Now, it is easy to check that
none of the edges of the finite graph G[u, w, x, y, z] lies on three peripheral
circuits, and by Theorem 3.22 this is also impossible for any edge of the
planar 3-connected graph G − {u, w}. This shows that Kelmans’ criterion
fails if only finite circuits are admitted.

32



Chapter 4

Duality

4.1 Introduction

Let G and G∗ be multigraphs, and let there exists a bijection E(G)→ E(G∗)
that maps the circuits of G precisely to the minimal non-empty cuts (or
bonds) of G∗. Then G∗ is called a dual of G. Whitney used duality in order
to characterise planar graphs:

Theorem 4.1 (Whitney [65]). A finite multigraph G has a dual if and
only if it is planar.

In this chapter we shall extend the duality of finite graphs in what appears
to be a complete and best-possible way. However, all our results build on
previous work of Thomassen [59, 60], who extended finite duality to infinite
multigraphs as far as it will go without considering infinite circuits. Lacking
infinite circuits, Thomassen was confronted with a disparity between finite
circuits and possibly infinite cuts. His approach was to disregard the latter,
and thus, in his terms, G∗ qualifies as a dual of G as soon as the edge bijection
between the two multigraphs maps all the finite circuits of G to the finite
bonds of G∗.

This weaker notion of duality already permits a very satisfactory exten-
sion of Whitney’s theorem to 2-connected multigraphs. Our stronger notion
strengthens this (in one direction), and in addition re-establishes two aspects
of finite duality that cannot be achieved for infinite multigraphs when infinite
cuts (and circuits) are disregarded: the uniqueness of duals for 3-connected
multigraphs, and symmetry, the fact that a multigraph is always a dual of
its duals.

Concerning symmetry, note that taking duals may force us out of the
class of locally finite multigraphs: while the half-grid, shown in unbroken
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Figure 4.1: A locally finite graph with a non-locally finite dual

lines in Figure 4.1, is locally finite, its (geometric) dual, in dotted lines, is
not. But graphs with vertices of infinite degree do not, in general, have duals.
Indeed, Thomassen showed that any infinite multigraph with a dual (even
in his weaker sense) must satisfy condition (1.3), which we restate here for
convenience:

No two vertices are joined by infinitely many edge-disjoint paths. (1.3)

To achieve symmetry, we thus need that the class of multigraphs satis-
fying (1.3) is closed under taking duals. While this is not the case for
Thomassen’s notion, it will be true for ours.

Before we go on with the discussion let us briefly make a technical remark.
In this chapter we will, in contrast to the rest of the thesis, primarily consider
multigraphs. Multigraphs are the natural context when considering duality
as the dual of a (simple) graph may well have parallel edges or loops.

In Chapter 1, we have defined the topological cycle space for graphs
rather than for multigraphs. However, this was for the sake of simplicity,
and all the concepts apply to multigraphs too. In particular, our main tools,
Theorems 1.4 and 1.5, resp. Theorems 1.6 and 1.7, still hold.1

This chapter, which is based on [16], is organised as follows. We continue
the above discussion in more precise terms in Section 4.2, which leads up
to the statement of our basic duality theorem, Theorem 4.6. We prove this
theorem in Section 4.3. In Section 4.4, we characterise the graphs that have
locally finite duals. In Section 4.5, we treat duality in terms of spanning
trees. In Section 4.7, we apply our results to colouring-flow duality. Finally,
in the last section, we use duality to extend MacLane’s planarity criterion
from Chapter 3 to graphs satisfying (1.3).

1Observe that if we subdivide every edge in a multigraph G then the topological cycle
space of the subdivision induces a space in G that is identical to C(G), which we obtain by
directly applying the definitions to G. The theorems are valid in the subdivision, which
is simple, and can thus be pulled back to G.
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4.2 Duality in infinite graphs

As discussed in the previous section, Thomassen pursued an approach to du-
ality in infinite graphs that is based solely on finite circuits and cuts. While
being very successful in some respects, such as conditions for the existence of
duals and extensions of Whitney’s theorem, this approach leads to unavoid-
able problems in others, such as symmetry and the uniqueness of duals. Our
aim in this section is to discuss these problems, to indicate why consider-
ing infinite circuits and working in ITop is both, in essence, necessary and
sufficient to cure them, and to state the main result of this chapter [16].

Consider multigraphs G and G∗, possibly infinite, and assume that there
is a bijection ∗ : E(G) → E(G∗). Given a set F ⊆ E(G), put F ∗ := {e∗ |
e ∈ F}, and vice versa. (That is, given a subset of E(G∗) denoted by F ∗, we
write F for the subset {e | e∗ ∈ F ∗} of E(G).) A cut is called a bond if it is
minimal among the non-empty cuts. Call G∗ a finitary dual of G if, for every
finite set F ⊆ E(G), the set F is a circuit in G if and only if F ∗ is a bond
in G∗. Following Thomassen [59, 60], we require 2-connected multigraphs to
be loopless, and 3-connected multigraphs to have no parallel edges.2 That
is, a 3-connected multigraph is in fact simple.

Expressed in these terms, Thomassen obtained the following extension of
Whitney’s theorem:

Theorem 4.2 (Thomassen [60]). A 2-connected 3 multigraph G has a fini-
tary dual if and only if G is planar and satisfies (1.3).

Going back to Figure 4.1, we see that the dotted graph G∗ is a finitary
dual of the half-grid G. However, splitting the vertex v into two vertices
u and w, and making each of these adjacent to infinitely many neighbours
of v in such a way that every neighbour of v is adjacent to exactly one of u
and w, we obtain another finitary dual H of G. This violates the intended
uniqueness of duals for 3-connected graphs such as G. (Recall that duals of
3-connected finite graphs are unique.)

Moreover, admitting H as a dual violates symmetry, since G is not a
finitary dual of H. In fact, H has no finitary dual at all, and it might not
even be planar, depending on how we join u and w to the neighbours of v.

2This is motivated by matroid theory. Disallowing loops is also necessary for unique-
ness: a multigraph with loops never has exactly one dual (unless it is itself a loop).

3We expect that Thomassen’s theorem extends to multigraphs of smaller connectivity.
There is no mention of this in [60], however, and we note that the canonical proof for the
forward implication fails: when G∗ is a finitary dual of G, then the duality map ∗ need
not map the blocks of G to blocks of G∗, so it is not obvious that the blocks of G have
finitary duals too. Compare Lemma 4.13 below.
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Thomassen realised these problems, as is witnessed by the following two
theorems.

Theorem 4.3 (Thomassen [59]). Let G be a 2-connected multigraph having
a finitary dual. Then G has a finitary dual G∗ satisfying (1.3), and every
such finitary dual G∗ has G as its finitary dual.

We say that a multigraph H is a finitary predual of G if G is a finitary
dual of H.

Theorem 4.4 (Thomassen [60]). If a multigraph G has a 3-connected
finitary predual then this is its only predual, up to isomorphism.

By considering infinite as well as finite circuits, however, we can restore
uniqueness. In our example, consider the edge set F of the double ray D
in G. In G∗, its dual set F ∗ (the set of edges incident with v) is a bond. But
F ∗ is not a bond in H, because it contains the edges incident with u (say) as
a proper subset. Thus, if F counts as a circuit, then G∗ will be a dual of G
but H will not, as should be our aim. Taking the circuits of G in |G| = G̃
achieves this.

To restore symmetry, we have to allow vertices of infinite degree. (Note
that G∗ has one, and we want G to be its dual.) We thus have to decide now
whether to work in |G| or in G̃. That is to say, should we take the circles
that define our infinite circuits in the topology ITop specifically designed for
graphs satisfying (1.3), or in the simpler VTop?

To answer this question, let us consider the graph G shown in unbroken
lines in Figure 4.2, and let G∗ be a hypothetical dual of G (by the definition
we are seeking). We want G to be a dual of G∗, and in particular a finitary
dual. Thus, G∗ will be a finitary predual of G. Now G is certainly a finitary
dual of the dotted graph H shown in Figure 4.2, so H is also a finitary
predual of G. Since H is 3-connected, Theorem 4.4 implies that H = G∗.

D

... ...

... ...

v

Figure 4.2: The self-dual graph G

Since the dotted edges at v form a bond of G∗, we thus have to make the
edge set F of the double ray D a circuit of G. Now in |G| the set F is not
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a circuit, because G has two ends and D has a tail in each. In G̃, however,
both ends of G are identified with the vertex v, so the double ray D and the
vertex v together do form a circle, making F into a circuit as desired.

We therefore propose the following stronger notion of duality for infinite
graphs, in which the duality condition is required of all sets of edges, finite
or infinite, and circuits are defined as in G̃ under ITop.

Definition 4.5. [16] Let G be a multigraph satisfying (1.3). Let G∗ be an-
other multigraph, with a bijection ∗ : E(G)→ E(G∗). Call G∗ a dual of G if
the following holds for every set F ⊆ E(G), finite or infinite: F is a circuit
in G̃ if and only if F ∗ is a bond in G∗.

Note that every dual in this sense is also a finitary dual, but not conversely.

Figure 4.3 shows that infinite circuits can get pretty wild, even in locally
finite graphs. The following theorem, which is our main result, can thus
deviate more from the corresponding finite situation than it might at first
appear.

Figure 4.3: The bold edges form an infinite circuit in G, the broken edges
indicate the corresponding cut in G∗

Theorem 4.6.[16] Let G be a countable 4 multigraph satisfying (1.3).

4By Lemma 1.8 below, the countability assumption is redundant for 2-connected multi-
graphs, and therefore inessential. If we agree to call a multigraph ‘planar’ as soon as it
has neither a K5 nor a K3,3 minor, then Theorem 4.6 becomes true also for uncountable
multigraphs.
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(i) G has a dual if and only if G is planar.

(ii) If G∗ is a dual of G, then G∗ satisfies (1.3), G is a dual of G∗, and this
is witnessed by the inverse bijection of ∗.

(iii) If G∗ is a dual of G and F ⊆ E(G), then F ∈ C(G̃) if and only if F ∗

is a cut in G∗.

We shall prove Theorem 4.6 in the next section.

Since all finitary duals of a 3-connected graph are again 3-connected (see
Thomassen [60]), Theorems 4.4 and 4.6 (ii) together imply at once that the
dual of a 3-connected graph is unique:

Corollary 4.7. [16] A 3-connected graph has at most one dual, up to iso-
morphism.

4.3 Proof of the duality theorem

Recall that, by Theorem 4.2, any multigraph G with a finitary dual G∗

satisfies (1.3). Our first aim is to show that if G∗ is a dual of G, then G∗ too
satisfies (1.3). We need two lemmas. The first is from Chapter 2, which we
restate here.

Lemma 2.9.[18] Let G be a 2-connected multigraph satisfying (1.3), and let
U be a finite set of vertices in G. Then we can contract edges of G, deleting
loops but keeping any multiple edges that arise, so that no two vertices from
U are identified, the multigraph H obtained has only finitely many edges and
vertices, and every cut of H is also a cut of G.

Lemma 4.8.[16] Let G be a 2-connected multigraph satisfying (1.3), and let
C be an infinite circuit in G̃. Let X be a finite set of edges meeting C in
exactly one edge e. Then there is a finite circuit in G that meets X precisely
in e.

Proof. Apply Lemma 2.9 to G, taking as U the set of endvertices of the edges
in X. Consider the finite multigraph H returned by the lemma. Applying
Theorem 1.6 twice, we deduce from C ∈ C(G̃) and the separation property
of H that C ∩ E(H) ∈ C(H). Let C ′ ⊆ C ∩ E(H) be a circuit containing e.
As C meets X only in e, so does C ′. Since no two vertices from U were
identified when G was contracted to H, the branch sets of the contraction
induce no edge from X in G. We can therefore expand C ′ to a finite circuit
in G that still meets X only in e.
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We need the following strong version of Menger’s theorem for countable
graphs.

Theorem 4.9 (Aharoni [3]). For any countable graph G and two sets A,B
of vertices in G there exist a set P of disjoint A–B paths and an A–B sepa-
rator X in G such that X consists of a choice of one vertex from each of the
paths in P.

We can now show that, unlike with finitary duals, the class of multigraphs
satisfying (1.3) is closed under taking duals.

Lemma 4.10.[16] Any dual G∗ of a 2-connected multigraph G satisfies (1.3).

Proof. The existence of G∗ implies, by definition of a dual, that G satis-
fies (1.3). By Lemma 1.8, then, G is countable.

Suppose G∗ violates (1.3). Then there are two vertices in G∗, x and y say,
that cannot be separated by finitely many edges. By Theorem 4.9 applied
to the line graph of G∗ (which is countable because G is), we can find in G∗

an infinite set P of edge-disjoint x–y paths and a set C∗ of edges separating
x from y, such that C∗ consists of a choice of one edge from each path in P.
Then C∗ is a bond in G∗, and C = {e | e∗ ∈ C∗} is an infinite circuit in G̃.

Pick an edge e ∈ C. We claim the following:

There is an infinite sequence of finite circuits C1, C2, . . . in G,
each containing e, and such that Ci \ C and Cj \ C are non-
empty and disjoint for all i 6= j.

(4.1)

To prove (4.1), assume inductively that C1, . . . , Ci−1 have been constructed,
and put

X := {e} ∪
⋃

j<i

Cj \ C .

Since C meets X only in e, Lemma 4.8 gives us a finite circuit Ci that
contains e and does not meet C1 ∪ . . . ∪ Ci−1 outside C. As both C and Ci
are circuits in G̃, neither contains the other properly, so Ci \ C 6= ∅. This
proves (4.1).

Let u, v be the endvertices of e∗ in G∗. Each of the sets C∗i is a cut in
G∗ that contains e∗, and hence separates u from v in G∗. Denote by P the
path in P that contains e∗. Since E(P ) meets C∗ only in e∗, no edge of P
other than e∗ lies in more than one of the sets C∗i (by (4.1)). Therefore only
finitely many of the sets C∗i meet E(P − e∗); let C∗n be one that does not.
Since C∗n is finite, there is a path Q ∈ P that has no edge in C∗n. But then
(P − e∗)∪Q is a connected subgraph of G∗ that avoids C∗n but contains both
u and v, a contradiction.
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As pointed out before, every dual of a multigraph is also its finitary dual,
and we have just seen that it satisfies (1.3). Our next aim is to show that,
conversely, every finitary dual satisfying (1.3) is even a dual. We need the
following lemma:

Lemma 4.11.[16] A set F ⊆ E(G) in a multigraph G is a cut if and only
if it meets every finite circuit in an even number of edges.

Proof. Clearly, a cut meets every finite circuit in an even number of edges,
so let us prove the other direction.

Let G′ be the multigraph obtained from G by contracting every edge not
in F . Then G′ is bipartite (in particular, loopless), since any odd circuit
would give rise to a finite circuit in G meeting F in an odd number of edges.
The bipartition of G′ induces a partition (A,B) of the vertex set of G such
that every edge in F has one vertex in A and the other in B and such that
no edge outside F has that property. Thus, F = E(A,B) is a cut.

Lemma 4.12.[16] Let G be a 2-connected multigraph, and let G∗ be a finitary
dual of G that satisfies (1.3). Then the following assertions hold:

(i) G∗ is a dual of G (witnessed by the same map ∗).

(ii) A set F ⊆ E(G) lies in C(G̃) if and only if F ∗ is a cut in G∗.

Proof. We first prove (ii). Let F ∈ C(G̃) be given. To show that F ∗ is
a cut in G∗, it suffices by Lemma 4.11 to show that F ∗ meets every finite
circuit Z∗ in G∗ in an even number of edges. Since G is a finitary dual of G∗

(Theorem 4.3), Z is a finite cut in G. Hence by Theorem 1.6, |F ∩ Z| =
|F ∗ ∩ Z∗| is even.

Similarly, consider a cut F ∗ in G∗. To show that F ∈ C(G̃), it suffices
by Theorem 1.6 to show that F meets every finite cut D of G evenly. But
D∗ ∈ C(G̃∗) since G is a finitary dual of G∗ (Theorem 4.3). So |F ∩ D| =
|F ∗∩D∗| is even by the trivial direction of Lemma 4.11 and the fact that D∗

is a disjoint union of circuits.
To prove (i), let now C be a circuit in G̃; we have to show that C∗ is a

bond in G∗. We have already shown that C∗ is a cut in G∗, and that any cut
F ∗ ⊆ C∗ corresponds to a set F ∈ C(G̃). Since F cannot be a proper subset
of C unless it is empty, we deduce that C∗ is a bond.

Conversely, let F ∗ be a bond in G∗. Then F is a minimal non-empty
element of C(G̃). By Theorem 1.7, F must be a circuit.

For a proof of Theorem 4.6, it remains to combine Lemmas 4.10 and 4.12
with Thomassen’s results on finitary duals, and to extend the result from
2-connected to arbitrary multigraphs.
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The latter is standard for finite graphs, but we have to be more careful
here. (Indeed, Lemma 4.13 below fails for finitary duals.) If G has a finitary
dual G∗ and B is a block of G, let B∗ denote the submultigraph of G∗ formed
by the edges e∗ with e ∈ B and their incident vertices.

Lemma 4.13. [16] Let a multigraph G have a finitary dual G∗ that satis-
fies (1.3). If B is a block of G, then B∗ is a block of G∗ and a finitary dual
of B. If G∗ is even a dual of G then B∗ is a dual of B.

Proof. It is not hard to check that two edges e, f ∈ G lie in a common block
of G if and only if they lie in a common finite circuit of G̃. For a proof that
B∗ is a block of G∗, it therefore suffices to show that the edges e∗ and f ∗

lie in a common block of G∗ if and only if they lie in a common finite bond
of G∗.

If e∗ and f ∗ lie in a common bond F ∗ of G∗, then the edges in F ∗ that
lie in the same block as e∗ suffice to separate the endvertices of e∗ in G∗. By
the minimality of F ∗, these are all its edges, including f ∗.

Now suppose that e∗ and f ∗ lie in a common block B∗ of G∗. Then B∗

has a finite circuit containing both e∗ and f ∗. Deleting e∗ and f ∗ from this
circuit, we obtain the edge sets of two paths, P and Q. Suppose that every
X ⊆ E(G∗) separating P and Q is infinite. Then there are also two vertices,
one in P and the other in Q, that cannot be separated in G∗ by finitely many
edges. Consequently, we find infinitely many edge-disjoint paths connecting
these two vertices, a contradiction to (1.3). Therefore, there is a finite set
F ∗ ⊆ E(G∗) separating P from Q in G∗, which clearly contains e∗ and f ∗.
If we choose F ∗ to be minimal then it is a bond.

It remains to show that B∗ is a finitary dual (resp. dual) of B. But since
B∗ is a block of G∗, a set F ∗ ⊆ E(B∗) is a bond of B∗ if and only if it is
a bond of G∗. Similarly, a set F ⊆ B is a circuit in B̃ if and only if it is a
circuit in G̃. The assertion therefore follows from the assumption that G∗ is
a finitary dual (resp. dual) of G.

Lemma 4.14.[16] If G and G∗ are two multigraphs and ∗ : E(G)→ E(G∗)
maps the blocks B of G to the blocks of G∗ so that B∗ is a dual of B, then
G∗ is a dual of G.

Proof. It is easily checked that a subset of E(G) is a circuit in G̃ if and only
if it is a circuit in B̃ for some block B of G. Similarly, a subset of E(G∗) is
a bond in G∗ if and only if it is a bond in some block of G∗.

Proof of Theorem 4.6. (i) By Lemmas 4.13 and 4.14, G has a dual if and
only if its blocks do. (To obtain a dual of G from duals of its blocks, take
their disjoint union.) Similarly, a countable multigraph is planar if and only
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if its blocks are (Dirac and Schuster [37]). We may therefore assume that G
is 2-connected.

If G is planar then, by Theorems 4.2 and 4.3, G has a finitary dual G∗

that satisfies (1.3). By Lemma 4.12, G∗ is even a dual of G. Conversely, if
G has a dual G∗, then G is planar by Theorem 4.2.

(ii) Suppose that G∗ is a dual of G. By Lemma 4.13, the subgraphs B∗

of G∗, where B ranges over the blocks of G, are the blocks of G∗, and each
B∗ is a dual of B. We show that, conversely, B is a dual of B∗. Then, by
Lemma 4.14, G is a dual of G∗.

By Lemma 4.10, every B∗ satisfies (1.3). (Hence so does G∗.) By Theo-
rem 4.3, B is a finitary dual of B∗. Now B satisfies (1.3), because G does so
by assumption. Hence by Lemma 4.12, B is a dual of B∗.

(iii) For 2-connected graphs, this is Lemma 4.12 (ii). The general case
reduces easily to this with the help of Lemma 4.11 and Theorem 1.6.

4.4 Locally finite duals

We started out by observing that a dual of a locally finite graph may have
vertices of infinite degree. This raises the question under what circumstances
the dual is locally finite. For 3-connected graphs, Thomassen gave the follow-
ing characterisation in terms of peripheral circuits. Recall that a peripheral
circuit C is a circuit whose incident vertices do not separate the graph and
do not span any edges not in C.

Theorem 4.15 (Thomassen [59]). Let G be a locally finite 3-connected
graph. Then G has a locally finite finitary dual if and only if G is planar and
every edge lies in exactly two finite peripheral circuits.

Since locally finite graphs trivially satisfy condition (1.3), Lemma 4.12 implies
that Theorem 4.15 still holds if the word ‘finitary’ is dropped.

To obtain another characterisation, we need the extension of Kelmans’
planarity criterion from Chapter 3, which we restate:

Theorem 3.22. [22] Let G be a locally finite 3-connected graph. If G is
planar then every edge appears in exactly two peripheral circuits. Conversely,
if every edge appears in at most two peripheral circuits then G is planar.

Theorem 4.16. [16] A locally finite 3-connected graph has a locally finite
dual if and only if it is planar and all its peripheral circuits are finite.

Proof. Let G be a locally finite 3-connected graph. If G has a locally finite
dual then, by Theorem 4.15, G is planar and every edge lies in exactly two
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finite peripheral circuits. By Theorem 3.22, its edges cannot lie in any other
peripheral circuits, so all peripheral circuits are finite.

Conversely, if G is planar and all its peripheral circuits are finite then, by
Theorems 3.22 and 4.15, G has a locally finite finitary dual. By Lemma 4.12,
this is in fact a dual.

4.5 Duality in terms of spanning trees

In this section we show that our notion of duality permits the extension of
another well-known duality theorem for finite multigraphs: that the comple-
ment of the edge set of any spanning tree of G defines a spanning tree in any
dual of G, and conversely that any two multigraphs whose edge sets are in
bijective correspondence so that their spanning trees complement each other
as above form a pair of duals [16].

It is not difficult to see that the verbatim analogue of this fails for in-
finite multigraphs. Indeed, the edge set of an ordinary spanning tree of G
might contain an infinite circuit C (such as the edges of the double ray D
in Figure 4.1), in which case C∗ would be a cut in G∗, and G∗ − C∗ could
not contain a spanning tree of G∗. However, the following adjustment to the
notion of a spanning tree makes an extension possible.

Let us call a spanning tree T of G acirclic (under ITop) if its closure in G̃
contains no circle – or equivalently, if its edges contain no circuit of G̃. (We
remark that if G is locally finite then its acirclic spanning trees are precisely
its end-faithful spanning trees; see Diestel and Kühn [35].)

Theorem 4.17.[16] Let G = (V,E) and G∗ = (V ∗, E∗) be connected 5 multi-
graphs satisfying (1.3), and let ∗ : E → E∗ be a bijection. Then the following
two assertions are equivalent:

(i) G and G∗ are duals of each other, and this is witnessed by the map ∗

and its inverse.

(ii) Given a set F ⊆ E, the multigraph (V, F ) is an acirclic spanning tree
of G if and only if (V ∗, E∗ \F ∗) is an acirclic spanning tree of G∗ (both
in ITop).

Before we prove Theorem 4.17, let us show that those acirclic spanning
trees always exist. We need the following standard lemma; see Diestel [28]
or Diestel and Kühn [32] for a proof.

5This assumption is for convenience only. For disconnected multigraphs, one has to
replace ‘acirclic spanning tree’ with ‘subgraph inducing an acirclic spanning tree in every
component’.
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Lemma 4.18. Let U be an infinite set of vertices in a connected graph T .
Then T contains either a ray R and infinitely many disjoint U–R paths (pos-
sibly trivial) or a subdivided star with infinitely many leaves in U .

In order to apply a lemma of Hahn, Laviolette and Širáň [39], we need
a few more definitions. Call a ray R in a graph G edge-dominated if there
exists a vertex v ∈ G such that G contains infinitely many edge-disjoint v–R
paths whose last vertices are distinct. Given any spanning tree T of G, let
η : Ω(T )→ Ω(G) map every end of T to the unique end of G that contains it
as a subset (of rays). Given Ω′ ⊆ Ω(G), let us say that T represents only Ω′

if η is injective and its image is (only) Ω′.

Lemma 4.19 (Hahn, Laviolette & Širáň [39]). Let G be a countable
connected graph in which every every edge-dominated ray is dominated. Then
G has a spanning tree T that represents only the set Ω′ of undominated ends
of G.

We can now prove the existence of acirclic spanning trees, which settles
Problem 7.9 of Diestel and Kühn [35].

Theorem 4.20.[16] Every connected graph G satisfying (1.3) has a spanning
tree whose closure in G̃ contains no circle.

Proof. Let G be a connected graph satisfying (1.3). We may assume that
G is 2-connected (and hence countable, by Lemma 1.8), since any union of
acirclic spanning trees of its blocks is clearly an acirclic spanning tree of G.

In order to apply Lemma 4.19, let us show that every edge-dominated
ray R in G is dominated. Let P be an infinite set of edge-disjoint v–R paths
in G, for some vertex v. If v does not dominate R, then v is separated from
R in G by a finite set of vertices distinct from v. One of these, w say, lies on
infinitely many paths from P. Then G contains infinitely many edge-disjoint
v–w paths, contradicting (1.3).

Let T be a spanning tree as provided by Lemma 4.19. We show that T
is acirclic. Suppose not, let C ⊆ E(T ) be a circuit in G̃, and let e = xy be
an edge in C. Let Tx and Ty be the components of T − e containing x and y,
respectively, and let F be the set of all Tx–Ty edges in G. Then C meets F
exactly in e; to obtain a contradiction (to Theorem 1.6), it thus suffices to
show that F is finite.

Suppose not. Then we may assume that F has infinitely many incident
vertices in Tx since, by (1.3), G has no multiple edges of infinite multiplicity.
Applying Lemma 4.18 in Tx with the set U1 of these vertices as U , we obtain
an infinite subset U2 of U1 linked disjointly to a ray in Tx or to some common
vertex v ∈ Tx. Applying Lemma 4.18 again, in the graph T ′y obtained from
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Ty by adding the edges from F and their endvertices in Tx, and with U2 as U ,
we obtain a similar set of paths in T ′y. Together, the two path systems either
violate condition (1.3) or our assumption that T represents only Ω′. (If both
applications of Lemma 4.18 yield a ray, then these two rays belong to distinct
ends of T but to the same end of G, ie. the map η was not injective.)

Proof of Theorem 4.17. (i) ⇒ (ii): Let T = (V, F ) be an acirclic span-
ning tree of G in ITop. Then E∗ \ F ∗ contains no circuit C∗ of G̃∗, since
C would then be a cut of G missed by T . Similarly (V ∗, E∗ \ F ∗) must be
connected: if not, then F ∗ contains a bond of G∗, and F contains the corre-
sponding circuit of G̃. The converse implication follows by symmetry, since
G is a dual of G∗.

(ii) ⇒ (i): We show that the map ∗ makes G∗ a finitary dual of G. Then
Lemma 4.13 implies that for each block B of G the block B∗ of G∗ is a finitary
dual. Then B∗ is even a dual of B (with the same map ∗, by Lemma 4.12),
and by Theorem 4.6 the inverse of ∗ makes B a dual of B∗. With Lemma 4.14
we obtain (i).

So consider a finite circuit C of G. We first show that C∗ contains a cut
of G∗. By subdividing each edge of G, we may apply Theorem 4.20 in order
to obtain an acirclic spanning tree S∗ of G∗. If C∗ contains no cut, we can
join up the components of S∗ − C∗ by finitely many edges from E∗ \ C∗ to
form another spanning tree T ∗ of G∗. Then T ∗, too, is acirclic: any circle in
its closure contains an arc A∗ that contains infinitely many edges but avoids
the (finitely many) new edges and hence lies in the closure of S∗, so the union
of A∗ with a suitable path from S∗ contains a circle in the closure of S∗. Now
use (ii) to find an acirclic spanning tree T of G corresponding to T ∗. Since
T ∗ contains no edge from C∗, the edges of T include C, a contradiction.

To show that C∗ is even a minimal cut in G∗, we show that for every
e ∈ C and A := C \ {e} the multigraph G∗ − A∗ is connected. To do so, it
suffices to find a spanning tree T ∗ of G∗ with no edge in A∗, and hence by
(ii) to find an acirclic spanning tree of G whose edges include A. Let S be
any acirclic spanning tree of G. Since A is finite but contains no circuit, we
can obtain another spanning tree T from S by adding all the edges from A
and deleting some (finitely many) edges not in A. As before, T is acirclic
in G̃ because S was, and hence is as desired.

It remains to show that if B∗ is a finite bond in G∗ then B is a circuit
in G. As before, we first show that B contains a circuit. If not, we can modify
an acirclic spanning tree of G into one whose edges include B, which by (ii)
corresponds to a spanning tree of G∗ that has no edge in B∗ (contradiction).
On the other hand, given any proper subset D∗ of B∗, we can modify an
acirclic spanning tree of G∗ into one missing D∗, because D∗ contains no cut
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of G∗. Then this tree corresponds by (ii) to a spanning tree of G whose edges
include D, so D is not a circuit in G.

4.6 Alternative proof of Theorem 4.20

Lemma 4.19, which is used in the proof of Theorem 4.20, is not trivial. Let
us therefore give a (in our context) direct proof of Theorem 4.20 that is not
much more complicated than the one above.

We need the following easy fact. Its proof is the same as for finite graphs,
eg. as in Diestel [31, Lemma 1.9.4].

Lemma 4.21. Every cut in a graph is a disjoint union of bonds.

Alternative proof of Theorem 4.20. [13] We may assume that G =: (V,E) is
2-connected. Thus, there is, by Lemma 1.8, an enumeration e1, e2, . . . of E.
Put S0 = T0 = E, and inductively define Sn, Tn ⊆ E in the following way.
Denote by i the minimal index such that there is a circuit C ⊆ Sn−1 with
ei, en ∈ C; if there is no such circuit set i = ∞. Analogously, choose j
minimal such that there is a bond B ⊆ Tn−1 with ei, en ∈ B, and put j =∞
if there is no such bond. If i < j put Sn := Sn−1−en and Tn := Tn−1; if i > j
put Sn := Sn−1 and Tn := Tn−1 − en; and if i = j choose arbitrarily whether
to delete en from Sn−1 or from Tn−1.

Define S :=
⋂∞
n=1 Sn and T :=

⋂∞
n=1 Tn, and observe that S ∪ T = E.

Moreover, note that

en ∈ Sl if and only if en /∈ Tl for all l ≥ n (4.2)

If we can show that neither S contains a circuit nor T a bond, then
(V, S) is an acirclic spanning tree, and we are done. Indeed, if (V, S) is not
connected then there is a bond B in G which is disjoint from S. But then
B ⊆ E \ S = T , a contradiction.

So, assume that S contains a circuit or T a bond, and choose i minimal
such that there is a set C ⊆ E with ei ∈ C, and such that C ⊆ S is a circuit
in G̃ or such that C ⊆ T is a bond of G. Let us first suppose that C ⊆ S,
i.e. that C is a circuit.

If C is finite then there is a maximal k so that ek ∈ C. From ek ∈ S
it follows that ek ∈ Sk but ek /∈ Tk. Thus, there is a bond D ⊆ Tk−1 with
ek ∈ D. As C is finite, and as D is a cut in G, we obtain from ek ∈ C ∩D
that there is a second shared edge ej, say. Because of the choice of k, we
have j < k. But now ej ∈ C ⊆ Sk−1 and ej ∈ D ⊆ Tk−1, a contradiction
to (4.2).
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Therefore, C is infinite. Let ei, ek1, ek2, . . . be distinct edges in C, and
observe that, by the minimality of i, it holds that i < kl for each l. Since
ekl ∈ Skl, there is a bond Dl ⊆ Tkl−1 containing ekl and an edge eml with
ml ≤ i; otherwise we would have deleted ekl from Skl−1 in order to obtain
Skl. Because of ei /∈ Tkl−1 as ei ∈ Skl−1 it follows that ml < i. As there are
only finitely many edges with index smaller than i, infinitely many of the Dl

share an edge em with m < i. Denote the set of these Dl by D0.
Put En := {e1, . . . , en} for each n, and define inductively infinite sets

D0 ⊇ D1 ⊇ D2 ⊇ . . . such that D ∩ En = D′ ∩ En for all D,D′ ∈ Dn and
all n. Indeed, if infinitely many of the bonds in Dn−1 share the edge en then
let the set of these be Dn. Otherwise define Dn to be those of the bonds in
Dn−1 which do not contain en. Finally, choose for each n a Kn ∈ Dn, so that
all the Kn are distinct.

Put D :=
⋃∞
n=1(Kn∩En). We claim that D contains a bond B of G with

em ∈ B. Indeed, let F be a finite circuit, and choose N large enough so that
F ⊆ EN . Then,

F ∩D = F ∩D ∩ EN = F ∩KN ,

where the last intersection is even, as KN is a bond (Lemma 4.11). Thus, by
the other direction of Lemma 4.11, D is a cut and therefore a disjoint union
of bonds, by Lemma 4.21. One of these contains em ∈ D.

We claim that D ⊆ T . Indeed, consider ej ∈ D. Then, as ej lies in
all but finitely many of the Kl there is one Kl = Ds such that ks > j. As
ej ∈ Ds ⊆ Tks−1, we obtain ej ∈ T . Therefore, B ⊆ D is a bond contained
in T but em ∈ B with m < i is a contradiction to the minimal choice of i.

Now, if C ⊆ T is a bond then the proof is analogous with the roles of
S and T , and of circuits and bonds interchanged. Instead of Lemmas 4.11
and 4.21 we use Theorems 1.6 and 1.7.

4.7 Colouring-flow duality and circuit covers

As an application of Theorem 4.6 and our results from Section 4.3, we now
show that the edge set of every bridgeless locally finite planar graph can be
covered by two elements of its cycle space [16]. For finite graphs, this is a
well-known reformulation of the four colour theorem. For infinite graphs,
of course, it must fail as long as the cycle space contains only finite sets of
edges.

In our setting, however, Theorem 4.6 enables us to imitate the finite result
(and its proof from the four colour theorem), because 4-colourability extends
by compactness; see de Bruijn and Erdős [25]. Rather than assuming that G
is locally finite, we work slightly more generally in G̃.
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Theorem 4.22. [16] Let G be a bridgeless planar graph satisfying (1.3).
Then there are Z1, Z2 ∈ C(G̃) such that E(G) = Z1 ∪ Z2.

Proof. Assume that we find for every block B of G elements ZB
1 , Z

B
2 of the

cycle space of B such that E(B) = ZB
1 ∪ ZB

2 . From Theorem 1.6 follows
that for i = 1, 2, ZB

i ∈ C(G) and then also Zi :=
∑

B Z
B
i ∈ C(G), where the

sum ranges over the blocks of G. Clearly, we get E(G) = Z1 ∪ Z2. As G is
bridgeless, we may therefore assume that G is 2-connected.

By Theorem 4.6, G has a dual G∗ and is itself a dual ofG∗, which therefore
is planar too. By the four colour theorem (Appel and Haken [9, 10]) and
compactness [25], G∗ has chromatic number at most 4. Choose a 4-colouring
c : V (G∗) → Z2 × Z2 of G∗. For i = 1, 2, let ci : V (G∗) → Z2 be c followed
by the projection to the ith coordinate, define fi : E(G) → Z2 by fi(e) :=
ci(v) + ci(w) where v and w are the endvertices of e∗, and put Zi := f−1

i (1).
Let us show that every edge e of G lies in Z1 or Z2. If not, then f1(e) =

f2(e) = 0, and hence c(v) = c(w) for e∗ =: vw. But this contradicts our
assumption that c is a proper colouring of G∗.

Next we show that Zi ∈ C(G̃), for both i = 1, 2. By Theorem 1.6, it
suffices to show that Zi meets every finite cut F of G in an even number of
edges, ie. that

fi(F ) :=
∑

e∈F
fi(e) = 0 .

As every cut is a disjoint union of bonds (Lemma 4.21) we may assume that
F is a bond. Then F ∗ is a circuit in G∗. Hence,

fi(F ) =
∑

e∗=vw∈F ∗
(ci(v) + ci(w)) = 2

∑

u∈U
ci(u) = 0 ,

where U is the vertex set of the cycle in G∗ whose edge set is F ∗.

4.8 MacLane’s criterion revisited

Let us return to MacLane’s planarity criterion from Chapter 3. We have seen
in Section 3.2 that MacLane’s planarity criterion fails for non-locally finite
graphs. Nevertheless, duality provides a tool with which MacLane’s criterion
can be extended to graphs satisfying (1.3), and that in a rather simple way.

Theorem 4.23.[22] Let G be a countable graph satisfying (1.3). Then G is
planar if and only if C(G̃) has a simple generating system.

The backward direction of Theorem 4.23 can be shown in exactly the
way as detailed in Section 3.4. For the forward direction, we proceed as in
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the finite case. Since G is planar, there is, by Theorem 4.6, a dual G∗ of
G. We claim that B := {F : F ∗ = E(v) for some v ∈ V (G∗)} is a simple
generating set of C(G̃). Certainly, B is simple, and, by Theorem 4.6, every of
its elements is a member of the cycle space. In addition, B generates every
Z ∈ C(G̃). Indeed, Theorem 4.6 implies that Z∗ is a cut in G∗. Let (A,B)
be the corresponding partition of V (G∗), i.e. Z∗ = EG∗(A,B). Then,

Z∗ =
∑

v∈A
E(v), and therefore Z =

∑

F∈B′
F,

where B′ := {F : F ∗ = E(v), v ∈ A} ⊆ B. This completes the forward
direction of Theorem 4.23.
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Chapter 5

End degrees and infinite
circuits

5.1 Introduction

The main objective of this thesis is to extend all, or as many as possible,
of the properties of the cycle space of a finite graph to locally finite graphs.
So far, we have been quite successful in attaining this objective. In the
course of Chapters 2–4 we have shown that all of the theorems we listed
in Section 1.1 become true in locally finite graphs once infinite circuits are
allowed. That the more basic properties of the cycle space generalise had
already been demonstrated by Diestel and Kühn—only one property has
been conspicuously absent from the discussion so far: the characterisation of
the cycle space elements by degrees.

Theorem 5.1. Let H be a subgraph of a finite graph G. Then E(H) is an
element of the cycle space of G if and only if every vertex of G has even
degree in H.

Simple examples show that for infinite graphs it is not sufficient to con-
sider vertex degrees. Consider, for instance, the double ray D. Since |D| is
homeomorphic to the unit interval, it does not contain any circles, hence, it
follows that C(D) = {∅}. Thus E(D) /∈ C(D), even though every vertex of
D has degree 2 in D. The problem here seems to arise from the ends rather
than the vertices of the considered graph. Diestel and Kühn [34] raised the
following problem:

Problem 5.2. Characterise the circles and the elements of the cycle space
of an infinite graph in purely combinatorial terms, such as vertex degrees and
‘degrees of ends’.
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We introduce a concept of end degrees that is a natural extension of vertex
degrees; instead of incident edges we count edge-disjoint rays (for degrees in
subgraphs it will be necessary to substitute ‘rays’ with ‘arcs’). This notion
allows us to solve the first part of Problem 5.2; we prove a straightforward
adaption of the well-known fact that the cycles in a finite graph are exactly
its 2-regular connected subgraphs.

Theorem 5.3.[23] Let C be a subgraph of a locally finite graph G. Then C
is a circle if and only if C is topologically connected and every vertex or end
x of G with x ∈ C has degree two in C.

Depending on its degree, an end can be assigned a parity, i.e. the label
‘even’ or ‘odd’—as long as it has finite degree. Inspired by Laviolette [45],
who introduced a concept to measure the parity of vertices of infinite degree,
we assign a parity also to ends of infinite degree. A classification of ends
into even and odd ends has already been achieved by Nash-Williams [50]
for the case of eulerian graphs with only finitely many ends. Our definition
coincides with Nash-Williams’ in these graphs but covers all locally finite
graphs. Moreover, with our definition the following important special case
of Problem 5.2 becomes true, which is the main result of this chapter.

Theorem 5.4. [23] Let G be a locally finite graph. Then E(G) ∈ C(G) if
and only if every vertex and every end of G has even degree.

An extension of this characterisation to arbitrary subgraphs of G would
solve Problem 5.2 completely. We shall offer a conjecture in that respect (see
Section 5.3).

This chapter, which is based on [23], is organised as follows. We introduce
and discuss our end degree concept in Sections 5.2 and 5.3. Theorem 5.4 will
be proved in Section 5.4. In Section 5.5, we show Theorem 5.3 and other
results, and in the last section, we briefly discuss an alternative concept of
an end degree.

5.2 Defining end degrees

As ends are equivalence classes of rays, the degree of an end should in some
way be related to its rays. Also, the rays may be seen as somewhat analogous
to the incident edges of a vertex, whose number is the degree of the vertex.
We will argue in this section that counting rays, in the right fashion, leads
to a suitable notion of an end degree [23].

As a first try, we might count the maximal number of disjoint rays in
an end (sometimes called the multiplicity of the end). For this notion of
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an end degree, however, Theorem 5.4 fails as the graph G in Figure 5.1
demonstrates. Since G contains an odd cut, its edge set is not an element
of C(G) by Theorem 1.4. But each vertex degree is even, and the maximal
number of disjoint rays in each end is two.

Figure 5.1: The multiplicity of each end is even, but E(G) /∈ C(G)

Looking more closely we see that although the maximal number of dis-
joint rays in each end is even, the maximal number of edge-disjoint rays is
odd, namely three. Thus with this measure instead we would have correctly
decided that E(G) /∈ C(G). Let us make that more precise. We call a ray R
in an end ω an ω-ray, and define the degree of an end ω in a graph G as

d(ω) := sup{|R| : R is a set of edge-disjoint ω-rays} ∈ N ∪ {∞}.

Although we will not use this, we shall prove later on (Lemma 5.13) that the
supremum is attained, i.e. if d(ω) = ∞, then there exists an infinite set of
edge-disjoint ω-rays. Andreae [8] proves a similar result.

Our degree concept clearly divides the ends of finite degree into even and
odd ends, but how are we to deal with ends of infinite degree? We may
not simply treat them as odd ends, since the edge set of the infinite grid
obviously is an element of its cycle space but the single end of the grid has
infinite degree; see Figure 5.2 on the left.

On the other hand, classifying all ends of infinite degree as even is not any
better: consider the graph G on the right in Figure 5.2. All vertex degrees
are even and both ends have infinite degree, but G has an odd cut (which
together with Theorem 1.4 implies that E(G) /∈ C(G)).

Consequently, the degree, if infinite, is not sufficiently fine enough to
determine the parity of an end. For an adequate refinement we will use the
following characterisation of ends with even finite degree.

Lemma 5.5.[23] In a locally finite graph G let ω ∈ Ω(G) have finite degree
k. Then the following statements are equivalent:

(i) k is even;

(ii) there is a finite S ⊆ V (G) such that for every finite set S ′ ⊇ S of
vertices the maximal number of edge-disjoint ω-rays starting in S ′ is
even.
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Figure 5.2: Even and odd ends of infinite degree

Proof. Consider a set R of edge-disjoint ω-rays of maximal cardinality |R| =
k, and let U be the set of starting vertices of R. Then, for every finite set
S ′ ⊇ U , R has maximal cardinality among all sets of edge-disjoint ω-rays
starting in S ′. Thus, putting S := U , we deduce that (i) implies (ii). Also,
(ii) implies (i), which we see by choosing S ′ = S ∪ U .

Let us call an induced subgraph C of G a region, if the cut E(C,G− C)
consists of only finitely many edges. Observe that as every finite set S ⊆
V (G) gives (essentially) rise to a neighbourhood Ĉ(S, ω) of ω, condition (ii)
in Lemma 5.5 can be alternatively formulated using these neighbourhoods,
or using regions whose closures contain ω:

(ii′) There is a region A of G with ω ∈ A such that for every region B ⊆ A
of G with ω ∈ B the maximal number of edge-disjoint rays of ω starting
outside B is even.

This motivates the following definition of the parity of an end: an end
ω of a locally finite graph is said to be even if ω satisfies (ii) of Lemma 5.5.
Otherwise ω is odd. Thus, ω is odd if and only if for all finite S ⊆ V (G)
there is a finite set S ′ ⊇ S such that the maximal number of edge-disjoint
ω-rays starting in S ′ is odd. By Lemma 5.5, an end ω of finite degree is even
if and only if d(ω) is even.

However, it is not possible to extend this notion literally to subgraphs H
of G. First of all, we cannot simply measure the degrees of the ends of H
(as opposed to those of G). This is not surprising as H is embedded in the
space |G|. If H is a double ray, for instance, then (viewed as a graph on its
own and not as a subgraph) it has two ends, each of which has degree 1. On
the other hand, the tails of H may lie in the same end of G, in which case H
is a circle in |G|. Thus any end contained in H should have degree 2 in H,
not 1. Therefore, we only consider ends of G (and not of H).
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Even taking that into account, the literal extension to subgraphs fails:
Consider the bold subgraph of the graph in Figure 5.3, and let ω be the end
of G “to the right”. Then, if we count the edge-disjoint ω-rays that lie in H,
we find that apart from tail-equivalence there is only one ω-ray. But as H is a
circle, we would expect the end to have degree 2. In contrast, if we count arcs

...

Figure 5.3: In subgraphs, counting edge-disjoint rays is not enough.

with endpoint ω rather than ω-rays we obtain the desired degree 2. Counting
arcs will indeed turn out to be successful, and the following proposition,
which we shall prove in the next section, shows that in G it makes actually
no difference whether we count rays or arcs. In analogy to ω-rays we call an
arc of which one of its endpoints is an end ω an ω-arc.

Proposition 5.6. [23] Let G be a locally finite graph, and let ω ∈ Ω(G).
Then for every finite S ⊆ V (G) the maximal number of edge-disjoint ω-rays
starting in S equals the maximal number of edge-disjoint ω-arcs starting in S.

Hence, for a subgraph H of a locally finite graph G, and ω ∈ Ω(G), we
define, analogously to the definition of d(ω) given above, the degree of ω in
H as

dH(ω) := sup{|R| : R is a set of edge-disjoint ω-arcs in H} ∈ N ∪ {∞}.

We note that the supremum is attained (see Lemma 5.13). Furthermore,
observe that d(ω) = dG(ω). Indeed, suppose otherwise, ie. d(ω) < dG(ω).
So, in particular, d(ω) is finite. For a set of d(ω) + 1 edge-disjoint ω-arcs, let
S ⊆ V (G) be a choice of exactly one vertex from each of the arcs. Then, by
Proposition 5.6, there are also d(ω) + 1 edge-disjoint ω-rays starting in S, a
contradiction.

The parity of an end in H is defined as follows:

Definition 5.7.[23] An end ω of G is even in H if there is a finite S ⊆ V (G)
such that for every finite S ′ ⊆ V (G) with S ′ ⊇ S the maximal number of
edge-disjoint ω-arcs in H starting in S ′ is even. Otherwise, ω is odd in H.
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Note that by Proposition 5.6, the definition of parity is consistent with
the one given previously. Furthermore, it can be seen in a similar way as in
the proof of Lemma 5.5 that for an end ω with finite degree in H, ω has even
degree in H if and only if dH(ω) is even.

A complete solution of Problem 5.2 requires an analogon of Theorem 5.4
for subgraphs H of G. The forward direction of such an analogon can be
proved easily with the same methods as used for Theorem 5.4. Moreover, if
G has only countably many ends the problem is not overly difficult (Propo-
sition 5.22). In view of this, and in view of Theorems 5.3 and 5.4, and two
more results in Section 5.5, which demonstrate that the end degrees behave in
many aspects similar to vertex degrees in finite graphs, we offer the following
conjecture:

Conjecture 5.8.[23] Let H be a subgraph of a locally finite graph G. Then
E(H) ∈ C(G) if and only if every vertex and every end has even degree in H.

5.3 A cut criterion for the end degree

In this section we prove Proposition 5.6. The other result of this section is
Corollary 5.15, which yields a criterion for the parity of an end in terms of
cut cardinalities. Let us start with a simple lemma that shows how we can
construct a topological path by piecing together infinitely many arcs.

For convenience, we introduce the following notation: if C is a subgraph
of a graph G, write ∂GC or, where no confusion is possible, ∂C, for the cut
EG(C,G− C).

Lemma 5.9. [23] Let G be a locally finite graph, and let for n ∈ N, φn :
[0, 1]→ |G| be a homeomorphism such that if An := φn([0, 1]) it holds that:

(i) An ∩ Am ⊆ V (G) ∪ Ω(G) for n 6= m; and

(ii) φn(1) = φn+1(0) for all n.

Then there is an x ∈ |G| such that
⋃∞
n=1 An ∪ {x} is a topological path from

φ1(0) to x.

Proof. Instead of the φn let us consider compositions with suitable home-
omorphisms φ′n : [1 − 2−(n−1), 1 − 2−n] → An. Together the φ′n define, by
(ii), a continuous function φ′ : [0, 1)→ |G|. As |G| is compact, the sequence
φ1(0) = φ′(1/2), φ2(0) = φ′(3/4), . . . has an accumulation point x. We claim
that φ : [0, 1] → |G| defined by φ(s) := φ′(s) for s ∈ [0, 1) and by φ(1) := x
is continuous.
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Let a neighbourhood V of x be given, and note that because of (i) and
(ii), none of the φn(0) is an inner point of an edge, and thus x is an end. Then
there is a basic open neighbourhood Ĉ(S, x) ⊆ V that contains all but finitely
many of the φn(0). By (i), only finitely many of the An meet the finite cut
∂C(S, x). So, there is an N such that An ⊆ Ĉ(S, x) for n ≥ N . Consequently,
φ−1(V ) contains the open set (1− 2−N , 1], and thus is a neighbourhood of 1
in [0, 1].

Menger’s theorem applied to the line graph implies that between any two
finite edge sets E1, E2 in a graph there are as many edge-disjoint E1–E2

paths as the minimal number of edges needed in order to separate E1 and
E2. The following lemma generalises this result to arcs. Let us say that an
arc A is an E1–E2 arc if it has exactly one edge in E1, exactly one in E2, and
these are incident with an endpoint of A.

Lemma 5.10. [23] Let H be a subgraph of a locally finite graph G. Let
E1, E2 ⊆ E(H) be finite. Then the maximal number of edge-disjoint E1–
E2 arcs in H ⊆ |G| equals the minimum k such that there is a finite set
X ⊆ E(G) separating E1 from E2 in G with k = |X ∩ E(H)|.

We need König’s infinity lemma, which we restate:

Lemma 2.6 (König’s infinity lemma). Let W1,W2, . . . be an infinite se-
quence of disjoint non-empty finite sets, and let H be a graph on their union,
such that for n ≥ 2 every vertex in Wn has a neighbour in Wn−1. Then H
contains a ray v1v2 . . . with vn ∈ Wn for all n.

Proof of Lemma 5.10. Let S be a finite vertex set such that E1 ∪ E2 ⊆
E(G[S]), let v1, v2, . . . be an enumeration of V (G), and put Gn := G[S ∪
{v1, . . . , vn}] for n ∈ N. Let Ln be the set of all sets M satisfying

(i) M is a set of pairwise edge-disjoint subgraphs of H;

(ii) for each L ∈M there is an E1–E2 path P with P ∩Gn = L; and

(iii) |M | ≥ k.

Let us show that Ln is non-empty for each n. Contract each component of
G − Gn to a vertex (keeping parallel edges but deleting loops), and denote
the resulting finite graph by G̃n. Let H̃n be the subgraph of G̃n that consists
of the edges in E(H) ∩ E(G̃n) together with the incident vertices. Now, let
M̃ be a set of edge-disjoint E1–E2 paths in H̃n of maximal cardinality. By
Menger’s theorem applied to the line graph, there is a finite set X̃ ⊆ E(H̃) of
cardinality |M̃ | that separates E1 from E2 in H̃n. Then X := X̃ ∪ (E(G̃n) \
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E(H̃n)) separates E1 from E2 in G̃n, and |X ∩ E(H)| = |M̃ |. Next, observe
that X is also an E1–E2 separator in G, implying |M̃ | = |X ∩ E(H)| ≥ k.
Put M := {L̃ ∩ Gn : L̃ ∈ M̃}, and note that this choice satifies (i) and
(iii). Furthermore, by replacing each vertex of G̃n − G that L̃ meets with
a path through the respective component of G − Gn, we easily find for the
corresponding L ∈M a path such that (ii) is satisfied. Thus, Ln 6= ∅.

Define a graph on the vertex set
⋃∞
n=1Ln with edges MnMn+1 forMn ∈ Ln

and Mn+1 ∈ Ln+1 if Mn = {L ∩ Gn : L ∈ Mn+1}. As every M ∈ Ln+1 has
a neighbour in Ln we may apply Lemma 2.6, which yields a ray M1M2 . . .
with Mn ∈ Ln for all n ≥ 1. For each L1 ∈M1 there is a sequence L1, L2, . . .
with Ln ∈ Mn and Ln = Ln+1 ∩ Gn. More precisely, there are, by (iii), k
such sequences so that their respective unions L1 =

⋃
L1
n . . . , L

k =
⋃
Lkn are

mutually edge-disjoint. Furthermore, Li ⊆ H, and Li ∩ Gn = Lin ∈ Mn for
i = 1, . . . , k.

We claim that each of the Li contains an E1–E2 arc. Indeed, consider an
i ∈ {1, . . . , k}, and let v and w be the endvertices of the path P for which
P ∩G1 = Li1. Introduce a new vertex z to G, and link it to v and w. Denote
by Q the resulting v–w path vzw. We want to show that E(Li ∪ Q) is an
element of the cycle space of G′ := G ∪Q. To this end, let F be a finite cut
of G′, and choose n large enough so that F ⊆ E(Gn ∪Q). Denote by Pn the
v–w path with Pn ∩Gn = Lin, which exists by (ii). Then

F ∩ E(Li ∪Q) = F ∩ (E(Gn ∩ Li) ∪Q)

= F ∩ (E(Gn ∩ Lin) ∪Q) = F ∩ E(Pn ∪Q).

The last intersection is an even set as E(Pn ∪ Q) is a circuit in G′, and
hence, E(Li ∪ Q) an element of the cycle space of G′, by Theorem 1.4.
Thus, by Theorem 1.5 there is a circle D with Q ⊆ D ⊆ Li ∪ Q. Hence,
Ai := D \ (Q \ {v, w}) is an arc from v to w. Therefore, there are k edge-
disjoint E1–E2 arcs A1, . . . Ak in H.

Since there is a finite set X ⊆ E(G) separating E1 from E2 in G such
that k = |X ∩E(H)|, there cannot be more than k+ 1 arcs in H connecting
E1 and E2, as each of them meets X.

Corollary 5.11. [23] Let G be a locally finite graph, let H be a subgraph,
and let C1 ⊇ C2 be regions of G. Then the maximal number of edge-disjoint
∂C1 ∩E(H)–∂C2 ∩E(H) arcs in H equals the minimum k such that there is
a region D with C1 ⊇ D ⊇ C2 and |∂D ∩ E(H)| = k.

Proof. By Lemma 5.10, the maximal number of edge-disjoint ∂C1 ∩ E(H)–
∂C2 ∩ E(H) arcs in H equals the minimal k′ ∈ N such that there is a finite
X ⊆ E(G) with |X ∩ E(H)| = k′ which separates ∂C1 ∩ E(H) from ∂C2 ∩
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E(H) in G. Any such X with |X| minimal gives rise to a region D as above,
hence k = k′.

Let us say that a finite cut F ⊆ E(G) of G separates a set S ⊆ V (G)
from an end ω ∈ Ω if every ray of ω that starts in S uses an edge of F .
This is equivalent to that the (unique) component C of G − F with ω ∈ C
is disjoint from S. Similarily, F separates two ends ω and ω′, if the closure
of each component of G− F contains at most one of ω, ω ′.

We obtain a Mengerian criterion:

Lemma 5.12. [23] Let G be a locally finite graph, let H be a subgraph, let
ω ∈ Ω(G), and let S ⊆ V (G) be finite. Then the maximal number of edge-
disjoint ω-arcs in H starting in S equals the minimum |F ∩ E(H)| over all
cuts F separating S from ω.

Proof. First, choose a region C1 ⊆ C0 := C(S, ω) with ω ∈ C1 such that
|∂C1 ∩ E(H)| is minimal among all regions C ⊆ C0 with ω ∈ C. To prove
the assertion it suffices to find a set of edge-disjoint ω-arcs in H starting in
S, where each of the arcs uses exactly one edge from ∂C1 ∩ E(H).

Next, observe that the closure of one of the components C of C1−N(G−
C1) contains ω. Choose C2 such that |∂C2 ∩ E(H)| is minimal among all
regions C ⊆ C1 satisfying C ∪ N(C) ⊆ C1 and ω ∈ C. Continuing in this
manner, we obtain regions Ci with ω ∈ Ci that satisfy for i ≥ 1:

Ci+1 ∪N(Ci+1) ⊆ Ci; and (5.1)

|∂Ci ∩ E(H)| ≤ |∂D ∩ E(H)| for every region D with Ci ⊇ D ⊇ Ci+1.(5.2)

We claim that

there exists a set A of edge-disjoint ω-arcs in H starting outside C1

such that |∂C1 ∩ E(H)| = |A|. (5.3)

Indeed, because of (5.2), Corollary 5.11 yields for every i ≥ 1 a set
Pi of edge-disjoint (∂Ci ∩ E(H))–(∂Ci+1 ∩ E(H)) arcs in H, with |Pi| =
|∂Ci ∩E(H)|. Hence, for any edge e ∈ ∂C1 ∩E(H) there is an A1 ∈ P1 that
starts in e. The arc A1 ends in an edge e′ ∈ ∂C2∩E(H), and thus there exists
an arc A2 ∈ P2 such that A1 ∩ A2 = e′. In this manner we find a sequence
A1, A2, . . . so that Ai and Ai+1 overlap in exactly one edge of ∂Ci+1 ∩E(H).
As each Ai ∈ Pi is an (∂Ci ∩ E(H))– (∂Ci+1 ∩ E(H)) arc, Ai and Aj are
disjoint for |i− j| > 1. Thus, by deleting the last vertex and all inner points
of the last edge in each Ai, we obtain a sequence of edge-disjoint arcs to
which we may apply Lemma 5.9. This yields an x ∈ |G| together with an arc
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Ae ⊆
⋃∞
i=1Ai ∪ {x} in H that starts in e and ends in x, which uses exactly

one edge in each ∂Ci ∩ E(H).
Suppose x 6= ω. Then, there exists a finite set T ⊆ V (G) that separates

ω and x. By (5.1), there is an N ∈ N such that T ∩V (CN) = ∅. Thus, CN is
completely contained in one component of G − T , and only one of ω, x lies
in CN , a contradiction. So, we obtain for each e an ω-arc Ae, and all these
arcs are edge-disjoint since for each i the arcs in Pi are.

Finally, using Corollary 5.11 we lengthen the Ae in order to obtain a
set of edge-disjoint ω-arcs which start in S (this is possible by the minimal
choice of C1). Note that each of these arcs indeed uses exactly one edge from
∂C1 ∩ E(H).

Similarly we can show that for a given subgraph H of G and an end
ω ∈ Ω(G) there indeed exists a maximal set of edge-disjoint ω-arcs in H.

Lemma 5.13.[23] Let G be a locally finite graph, let H be a subgraph, and let
ω ∈ Ω(G) such that dH(ω) =∞. Then there is an infinite set of edge-disjoint
ω-arcs in H.

Proof. As in the proof of Lemma 5.12 we define a sequence of regions Ci
satisfying (5.1) and (5.2). Again, Corollary 5.11 yields for each i ∈ N a set
of edge-disjoint (∂Ci−1 ∩E(H))–(∂Ci ∩E(H)) arcs, which we piece together
with the help of Lemma 5.9 to obtain a set of edge-disjoint ω-arcs in H
(whose union contains all edges of all of the ∂Ci ∩ E(H)). Note that this
set is indeed infinite, since dH(ω) = ∞, and hence by Lemma 5.12, we may
assume ∂Ci−1 ∩ E(H) < ∂Ci ∩ E(H) for all i ∈ N.

We finally prove Proposition 5.6, which we restate:

Proposition 5.6. [23] Let G be a locally finite graph, and let ω be an end
of G. Then for every finite set S ⊆ V (G) the maximal number of edge-
disjoint ω-rays starting in S equals the maximal number of edge-disjoint ω-
arcs starting in S.

Proof. By Lemma 5.12, the maximal number of edge-disjoint ω-arcs starting
in S equals the minimal cardinality of a finite cut that separates S from ω.
This minimal cardinality, on the other hand, equals the maximal number of
edge-disjoint ω-rays starting in S: there clearly cannot be more ω-rays, and
conversely, using Menger’s theorem applied to the line graph, we can piece
together the rays we need along minimal separating cuts, in a similar fashion
as in Lemma 5.12.

Two further results that follow immediately from Lemma 5.12 are char-
acterisations of end degrees in terms of cut cardinalities:
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Corollary 5.14.[23] Let G be a locally finite graph, let H be a subgraph, and
let ω ∈ Ω(G). Then dH(ω) = k ∈ N if and only if k is the smallest integer
such that every finite S ⊆ V (G) can be separated from ω with a finite cut
that shares exactly k edges with E(H).

Corollary 5.15. [23] Let G be a locally finite graph, let H be a subgraph,
and let ω ∈ Ω(G). Then ω has even degree in H if and only if there is a
finite S ⊆ V (G) such that for every finite S ′ ⊆ V (G) with S ′ ⊇ S it holds: if
F ⊆ E(G) is a finite cut separating S ′ and ω with |F ∩E(H)| minimal, then
|F ∩ E(H)| is even.

5.4 Proof of Theorem 5.4

The forward direction follows from Theorem 1.4, which ensures that every
finite cut of G is even, and thus together with Corollary 5.15 implies the
assertion.

The backward direction, which will occupy us in this section, takes some
more effort [23]. Suppose that E(G) /∈ C(G). Observe that we may assume
G to be connected, which means in particular that G is countable. We shall
find a sequence C1 ⊇ C2 ⊇ . . . of regions of G that satisfy

(i) ∂GCn is an odd cut, for n ≥ 1;

(ii) Cn ∪N(Cn) ⊆ Cn−1, for n ≥ 2; and

(iii) if D is a region of G with Cn−1 ⊇ D ⊇ Cn then |∂GD| ≥ |∂GCn−1|, for
n ≥ 2,

Then G has an odd end, contradicting the assumption, as desired. Indeed,
by piecing together paths in the Cn, we see that there is a ray R which has
a tail in every Cn. Let ω be the end with R ∈ ω, and consider any finite
S ⊆ V (G). Choose I large enough such that CI ⊆ C(S, ω), which is possible
by (ii). So, every cut that separates S ′ := N(CI) from ω has cardinality at
least |∂GCI |, by (iii). Thus by (i) and Corollary 5.15, ω has odd degree.

For our construction, we need a further condition for n ≥ 1. Let us call a
region C of a graph H a k-region if |∂HC| = k, and let us say that C is even
(resp. odd) if k is even (resp. odd).

(iv) for every k-region D ⊆ Cn of G with k < |∂GCn| there is an ` ∈ N
and even regions K1, . . . , K` ⊆ Cn such that |∂GKi| ≤ k for all i, and
V (D) ⊆ ⋃`

i=1 V (Ki).
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This condition, of course, is trivially satisfied if k is even.
As E(G) /∈ C(G), Theorem 1.4 ensures the existence of odd regions in

G. Choose any odd region C1 such that ∂GC1 has minimal cardinality. This
choice satisfies (i) and (iv), and that is all we required for n = 1.

Now, suppose the Ci to be defined for i ≤ n. In order to find a suitable
Cn+1, we shall contract certain even k-regions D of G (contained in Cn) for
which k < |∂GCn|. In the resulting minor, which has only big cuts, we will
choose a small odd cut, which in G induces the desired region Cn+1.

We will construct this minor in several steps. More precisely, for each
even integer m < |∂GCn| we define a minor Gm of G =: G0, which will have
the properties:

(a) Gm is obtained from Gm−2 by contracting disjoint infinite m-regions K
of Gm−2 with E(K) ⊆ E(Cn) for m ≥ 2; and

(b) |E(D)∩E(Gm)| <∞ for every k-region D of G with D ⊆ Cn and k ≤ m.

Observe that, by (a) and as all vertices of G are even, all vertices of Gm

have even degree too. We claim that (b) together with (iv) implies for m <
|∂GCn| − 2:

(c) every k-region D of Gm with E(D) ⊆ E(Cn) and k ≤ m+ 1 is finite.

Indeed, consider a k-region D of Gm with E(D) ⊆ E(Cn) and k ≤ m + 1.
By uncontracting, we obtain from D a region D′ of G with ∂GD

′ = ∂GmD
and E(D) ⊆ E(D′). Since by assumption m < |∂GCn| − 2, we get that
k < |∂GCn|. Then (iv) implies that there is a finite set K of regions K ⊆ Cn
such that their union contains all vertices of D′ (and thus also all but finitely
many edges of D′). Each K ∈ K is an `-region with even ` ≤ k = m+ 1. As
m + 1 is odd we get ` ≤ m, and hence by (b), that E(K) ∩ E(Gm) is finite.
Thus |E(D′) ∩ E(Gm)| <∞, and hence D is finite. This establishes (c).

As G is connected, G0 = G obviously satisfies (b), which is all we required
for m = 0. So, assume m ≥ 2, and Gi to be constructed for all even i < m.
We define a sequence (Lj)j∈N of (not necessarily induced) subgraphs of Gm−2;
by contracting the components of their union L we obtain Gm.

Consider an enumeration R1, R2, . . . of all infinite m-regions of Gm−2 with
E(Ri) ⊆ E(Cn) (such an enumeration is possible since E(Gm−2) ⊆ E(G) is
countable). Put L1 := R1, and let for j > 1,

Lj := Lj−1 ∪ Rj if ∂Gm−2Rj ∩ E(Lj−1) = ∅ (5.4)

and Lj := Lj−1 otherwise. Note that in the former case each component of
Lj−1 is either contained in Rj or disjoint from Rj. Thus, by induction on j,
every component K of Lj is an infinite m-region of Gm−2.
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Put L :=
⋃
j∈N Lj, and consider a component K of L. Certainly, K is

an infinite induced subgraph in Gm−2 with E(K) ⊆ E(Cn). We claim that
k := |∂Gm−2K| = m. Clearly, k ≤ m as otherwise there would already be
a component K ′ ⊆ K of some Lj with |∂Gm−2K ′| > m, which is impossible.
On the other hand, k ≥ m, by (c) for m−2; thus k = m, as desired. We now
obtain Gm from Gm−2 by contracting the components of L to one vertex each
(keeping multiple edges but deleting loops). Obviously, Gm satisfies (a).

Before we show the validity of (b), let us prove for all even i < m < |∂GCn|
that it holds that:

(∗) for every region D ⊆ Cn of G with ∂GD ⊆ E(Gi) there is a (possibly
empty) induced subgraph D′ ⊆ Cn that satisfies

(I) there are finitely many regions K1, . . . , K` of G each of which
contracts to a vertex of degree ≤ i + 2 in Gi+2 such that V (D) \
V (D′) ⊆ ⋃`

j=1 V (Kj);

(II) if there is a region C of G with D ⊆ C and ∂GC ⊆ E(Gi+2), then
also D′ ⊆ C;

(III) |∂GD′| ≤ |∂GD|; and

(IV) ∂GD
′ ⊆ E(Gi+2).

Observe that D′ has at most |∂GD′| components (since G is connected). Each
of these is a region of G with properties (II)–(IV).

Let us now show (∗). Given D as above, choose an induced subgraph
D̃ ⊆ Cn such that |∂GD̃ \E(Gi+2)| is minimal among all induced subgraphs
that satisfy (I), (II), (III) and ∂GD̃ ⊆ E(Gi) (which is possible as D itself
has these four properties). If |∂GD̃ \ E(Gi+2)| = 0, we may put D′ := D̃,
so suppose otherwise. Then, by (a), there is an (i + 2)-region K of Gi with
E(K) ⊆ E(Cn), which is contracted to a vertex in Gi+2 and for which holds
that ∂GD̃ ∩ E(K) 6= ∅. Denote by D̃i the image of D̃ in Gi, ie. the induced
subgraph of Gi with ∂GiD̃

i = ∂GD̃ and E(D̃) ∩ E(Gi) = E(D̃i).
Suppose that one of |EGi(K ∩ D̃i, D̃i \K)|, |EGi(K \ D̃i, Gi− (D̃i ∪K))|

is smaller than or equal to |EGi(K ∩ D̃i, K \ D̃i)|. Then, putting either
D̂i = D̃i \K or D̂i = Gi[D̃i ∪K] we get

|∂GiD̂i| ≤ |∂GiD̃i| = |∂GD̃|. (5.5)

Observe that ∂GiD̂
i ∩ E(K) = ∅, and denote by D̂ the induced subgraph of

G that we obtain from D̂i by uncontracting. Then ∂GD̂ = ∂GD̂
i has fewer

edges outside E(Gi+2) than ∂GD̃. We claim that this contradicts the minimal
choice of D̃. Indeed, ∂GD̂ ⊆ E(Gi), and also (I) and (III) hold for D̂: the
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latter by (5.5), and for the former observe that each Ki either still contracts
to a vertex of degree ≤ i + 2 in Gi+2 or is contained in a region which does
so. Adding K to these regions, we obtain the Ki as desired for (I).

To see that D̂ satisfies (II), consider a region C ⊇ D with ∂GC ⊆ E(Gi+2).
Observe that D̃ ⊆ C because D̃ satisfies (II). Now, since ∂GC ∩ E(K) = ∅,
either E(K) ⊆ E(C) or E(K) ⊆ E(G − C) because K is connected. The
latter case is impossible, as ∂GD̃ ∩ E(K) 6= ∅. Hence, E(K) ⊆ E(C), and
thus, as D̂i ⊆ Gi[D̃i∪K], we get D̂ ⊆ C, as desired. Note also that D̂ ⊆ Cn,
as ∂GCn ⊆ E(Gi+2) by (a).

We may therefore assume that

|EGi(K ∩ D̃i, K \ D̃i)| < |EGi(K ∩ D̃i, D̃i \K)|, |EGi(K \ D̃i, Gi− (D̃i ∪K))|,
and thus |∂Gi(K∩D̃i)|, |∂Gi(K\D̃i)| < |∂GiK|. As K is infinite and as K∩D̃i

and K \ D̃i have only finitely many components (since G is connected), one
of these components, say K ′, is infinite. Now, K ′ is a region of Gi with
∂GiK

′ ⊆ ∂Gi(K ∩ D̃i) or ∂GiK
′ ⊆ ∂Gi(K \ D̃i). In both cases, |∂GiK ′| <

|∂GiK| = i+2. Because E(K ′) ⊆ E(K) ⊆ E(Cn) and i ≤ m−2 < |∂GCn|−2,
this contradicts (c). We have thus shown (∗).

Let us prove that Gm also satisfies (b). For this, consider a region D ⊆ Cn
of G with |∂GD| ≤ m, and suppose that E(D) ∩ E(Gm) is infinite. Assume
D to be chosen among all such regions such that i is maximal with ∂GD ⊆
E(Gi). Now, if i < m, then (∗) yields a subgraph D′. By (I), all but finitely
many of the edges in E(D) ∩E(Gm) lie in E(D′). Since D′ has only finitely
many components, there is one, C say, such that E(C) ∩ E(Gm) is infinite.
Since, by (III), |∂GC| ≤ |∂GD|, and since, by (IV), ∂GC ⊆ E(Gi+2), we
obtain a contradiction to the choice of D. Thus, we may assume that i = m,
ie. ∂GD ⊆ E(Gm).

Therefore, by performing the according contractions we obtain from D
an infinite region D̃ of Gm−2 such that ∂Gm−2D̃ = ∂GD and E(D̃) ⊆ E(Cn).
Because of (c) for m − 2 and because of |∂GD| ≤ m, we get |∂Gm−2D̃| =
m. Hence, the region D̃ appears in the enumeration R1, R2, . . . used in the
construction of Gm, ie. there is a j with D̃ = Rj. Since ∂Gm−2Rj ⊆ E(Gm) it
follows from (5.4) that E(Rj) ⊆ E(Lj) ⊆ E(L). Thus, in Gm all edges of D̃ =
Rj are contracted, and consequently, E(D)∩E(Gm) = E(Rj)∩E(Gm) = ∅,
a contradiction to |E(D) ∩ E(Gm)| =∞.

Having constructed Gm for all m ≤ M := |∂GCn| − 1, we finally find the
region Cn+1. Observe that, by (a), ∂GCn is a cut of GM , and that the cut
F of GM that consists of those edges in E(GM) ∩ E(Cn) that in GM are
adjacent to ∂GCn has odd cardinality (because by (a), all vertices of GM are
even). Thus, since F is also a cut of G, there exists a region C of G with
∂GC ⊆ E(GM) that satisfies (i) and (ii) for n+ 1.
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We claim that

any region C of G that for n+1 satisfies, (i), (ii) and ∂GC ⊆ E(GM)
also satisfies (iii).

(5.6)

Indeed, consider a k-region D of G with Cn ⊇ D ⊇ C. Then E(C)∩E(GM)
is infinite, by (i). (For this, contract all edges in E(GM) \ (E(C) ∪ ∂GC),
and recall that a finite graph always has an even number of odd vertices.)
From (b) for m = M it follows that k ≥M + 1 = |∂GCn|, as desired for (iii).

Now, choose Cn+1 such that ∂GCn+1 has minimal (odd) cardinality among
all regions satisfying (i), (ii) and (iii) for n+ 1.

To see (iv) for n + 1, consider a k-region D ⊆ Cn+1 with k < |∂GCn+1|.
If k ≤M , then we can apply (iv) for n, so suppose k > M . Furthermore, we
may assume that k is odd, as otherwise we can choose ` := 1 and K1 := D.
Then D satisfies (i) and (ii) for n+ 1, and we should have chosen D as Cn+1,
if not (iii) and thus, by (5.6), also ∂GD ⊆ E(GM) fails for D. Repeated use
of (∗), where we apply (∗) in each step to every component of the subgraph
D′ obtained in the previous step, yields a subgraph D∗ of Cn such that each
of its components K1, K2, . . . , K` has properties (II)–(IV) for m = M . In
particular, (II) implies for 1 ≤ i ≤ ` that Ki ⊆ Cn+1. Let {K`+1, . . . , KL} be
the set of all regions that arose as one of the Ki in one of the applications of
(∗). Then V (D) ⊆ ⋃L

i=1 V (Ki), by (I).
By (III), |∂GKi| ≤ k for i = 1, . . . , `. Now, if there is an j ∈ {1, . . . , `}

such that |∂GKj| is odd, then Kj ⊆ Cn+1 satisfies (i), (ii), and, by (IV)
and (5.6), also (iii) for n+ 1, contradicting the choice of Cn+1. So, |∂GKi| is
even and ≤ k for i = 1, . . . , L (for i > ` this follows from (I) and k > M). As
∂GCn+1 ⊆ E(GM), and thus ∂GCn+1∩

⋃L
i=`+1 E(Ki) = ∅, and as K1, . . . , K` ⊆

Cn+1, each of the K1, . . . , KL either lies completely in Cn+1 or is disjoint
from it. Together with D ⊆ Cn+1 this implies that V (D) ⊆ ⋃K∈K V (K) for
K := {Ki : Ki ⊆ Cn+1 and 1 ≤ i ≤ L}, which proves (iv) for n + 1. This
completes the proof of the theorem.

5.5 Properties of the end degree

As an indication that the end degree indeed behaves as expected of a degree,
we extend, in this section, three basic properties of the vertex degree in
finite graphs to end degrees in locally finite graphs [23]. At the end of this
section, however, we present two examples where end degrees differ from
vertex degrees.

The number of odd vertices in a finite graph is always even. We prove
the following easy analogon.
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Proposition 5.16.[23] Let G be a locally finite graph. Then the number of
odd vertices and ends in G is even or infinite.

Proof. Suppose that the set O of odd vertices and ends has odd cardinality.
Observe that there is a finite set S ⊆ V (G) that contains all vertices of O
and separates the ends in O pairwisely. By Corollary 5.15, there is for each
end ω ∈ O an odd region Aω ⊆ G−S with ω ∈ Aω. Observe that the Aω are
pairwise disjoint. So, contracting each Aω to a vertex aω we arrive at a graph
G′ that has an odd number of odd vertices, and in which all end degrees are
even. Now, consider two copies of G′ and add all edges vv′, where v is an
odd vertex of G′ and v′ its copy. The resulting graph has an odd cut, but no
odd vertices or ends, a contradiction to Theorems 5.4 and 1.4.

Dirac [36] proved that if a finite graph has minimum vertex degree k ≥ 2
then it contains a circuit of length k + 1. This becomes false for infinite
graphs: an easy counterexample is the k-regular infinite tree. But the tree
ceases to be a counterexample if a minimum degree is also imposed on the
ends, and indeed, then Dirac’s result extends to locally finite graphs:

Theorem 5.17. [23] Let G be a locally finite graph, and let H ⊆ G be a
subgraph so that every vertex and every end x ∈ H has degree at least k ≥ 2
in H. Then there is a circuit C ⊆ E(H) of G with length ≥ k + 1.

First, note that the theorem is best possible, even for infinite graphs.
Indeed, consider disjoint copies G1, G2, . . . of Kk+1. Identify a vertex in G1

with a vertex in G2. Then identify a different vertex in G2 with a vertex of
G3 and so on. In the resulting graph the minimum vertex degree is k, and it
is easy to see that the single end has degree k too, but there is no circuit of
length greater than k + 1. See Figure 5.4 for an example with k = 2.

...

Figure 5.4: Theorem 5.17 is best possible for k = 2

Next, let us remark that the long circuit provided by the theorem may be
infinite, and indeed the result becomes false if we require finite circuits. To
see this, consider a k-regular tree H with root r. Let G be the graph obtained
by adding an edge between any two vertices which the same distance to r.
Then G has a single end, which has infinite degree in H, but H does not
contain any finite circuits.

Before we can prove Theorem 5.17, we need a standard lemma, which can
be found in Hall and Spencer [42, p. 208].
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Lemma 5.18. Every topological path with distinct endpoints x, y in a Haus-
dorff space X contains an arc between x and y.

Proof of Theorem 5.17. First, observe that if H has an infinite block then H
contains two disjoint rays that are equivalent in H (and thus also in G). By
linking these by a path in H we obtain a double ray whose edge set is an
infinite circuit of G.

Therefore, we may assume that every block of H is finite. Next, suppose
that there is a block B of H that contains at most one vertex v with dB(v) <
k. Pick a longest path in B. One of the endvertices has at least k neighbours
on that path, and hence there is a finite circuit of length ≥ k + 1 in B.

So, every block B of H is finite and contains at least two vertices of H
with degree < k in B, which then are cutvertices of H. Now, replace every
block B of H by a tree T ⊆ B whose leaves are exactly the cutvertices of
H incident with B. Then every vertex of the resulting forest H ′ ⊆ H has
degree ≥ 2 as every block contains two cutvertices.

Assume that E(H ′) does not contain infinite circuits, and let v1, v2, . . .
be an enumeration of V (H ′). We will inductively construct for n ∈ N home-
omorphisms φn : [0, 1] → H ′ ⊆ |G|. Choosing b0 as any vertex in H ′ and
putting An := φn([0, 1]), we require that for n ≥ 1 both an := φn(0) and
bn := φn(1) are vertices, and satisfy:

(i) an = bn−1 for n ≥ 2;

(ii) Am ∩ An = ∅ for 1 ≤ m ≤ n− 2 and An−1 ∩ An = {bn−1};

(iii) there is a cutvertex v incident with two blocks B,B ′ of H such that
dB(v) < k and such that An contains two edges incident with v, one
in E(B) and the other in E(B ′) (let us call any arc with that property
deficient); and

(iv) if there is a topological path in H ′ from bn−1 to vn that is edge-disjoint
from Bn−1 :=

⋃n−1
i=1 Ai, then vn ∈ An.

Note that for n ≥ 1, Bn is a topological path.
In order to construct φn, assume φ1, . . . , φn−1 to be defined already. First,

suppose there is a topological path as required by (iv). By Lemma 5.18, either
bn−1 and vn are the endpoints of an arc A that is edge-disjoint from Bn−1, or
bn−1 = vn, in which case we put A := {vn}. We claim that A∩Bn−1 = {bn−1}.
Indeed, otherwise let v be the vertex with bn−1v ⊆ A. Then A∪Bn−1 contains
a topological path from v to bn−1 that avoids all inner points of bn−1v, and
hence, by Lemma 5.18, also a bn−1–v arc A′. Thus, A′∪bn−1v ⊆ A∪Bn−1 ⊆ H ′

is a circle, contradicting our assumption.
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We now lengthen A so that it also satisfies (iii). Because every vertex
has degree ≥ 2 in H ′, and because H ′ does not contain any circles, vn has a
neighbour in H ′\A∪Bn−1. Continuing in this way, we obtain a vn–B path in
H ′ that meets A∪Bn−1 only in vn, where B is a block of H which is adjacent
to the block that contains vn. As B ∩ H ′ is connected and as H ′ does not
contain any circles, B is disjoint from A∪Bn−1. So, since B has a cutvertex
b with dB(b) < k, there is a deficient path P ⊆ H ′ that starts in vn and is
otherwise disjoint from A ∪ Bn−1. Thus, we easily find a homeomorphism
φn : [0, 1]→ A ∪ P which satisfies (i)–(iv).

So suppose there is no topological path as in (iv). Again we find a deficient
path P ⊆ H ′ starting in bn−1 which is disjoint from Bn−1 \ {bn−1}, and the
respective homeomorphism φn : [0, 1]→ P has properties (i)–(iv).

This process yields a set of arcs An, to which we apply Lemma 5.9. We
obtain an x ∈ |G|, which is necessarily an end, such that A∗ :=

⋃∞
n=1 An∪{x}

is a topological path from b0 to x.
The end x has degree k in H, and hence there are k edge-disjoint arcs

R1, . . . , Rk ⊆ H that start in x. Each of the Ri meets A∗ \ {x} in every
neighbourhood of x. Indeed, suppose there is a neighbourhood U of x and
an index j such that Rj ∩U is disjoint from A∗ \{x}. Since Rj is continuous,
there is a subarc of Rj which starts in x and is completely contained in U .
Pick a vertex vm on this subarc, and denote by R the subarc of Rj between x
and vm. Then

⋃∞
n=m−1 An ∪ R clearly is a topological path from bm−1 to vm

which is edge-disjoint from Bm−1, a contradiction to (iv) as vm /∈ A∗ ⊇ Am.
Let φ : [0, 1]→ A∗ be a continuous function with range A∗ and φ(1) = x.

Choose an s ∈ [0, 1) such that each of the Ri hits A∗ in a φ(ri) with ri < s.
Because of (iii), we may assume that v := φ(s) is a cutvertex incident with
two blocks B,B′ of H such that dB(v) < k and such that A∗ contains two
edges incident with v, one in E(B) and the other in E(B ′). Not all of
the k arcs Ri can go through the cut F := EH(v, B − v) of H, which has
cardinality dB(v) < k; so assume Rj does not contain any edge of F . Let
uw be the (unique) edge in E(A) ∩ F , and assume φ−1(u) ≤ φ−1(w). Then
(A ∪ Rj) \ uw ∪ {u, w} contains a topological path from w to u (simply run
from w to x along A, then from x to φ(rj) along Rj and finally from φ(rj)
to u along A). Therefore, there is also an arc R ⊆ (A ∪ Rj) \ uw ∪ {u, w}
with endpoints u and w, by Lemma 5.18. Consequently, R ∪ uw ⊆ H is a
circle. Since E(R) is disjoint from F and every B–(B ′ − v) path in H has
to go through F , |E(R)| is infinite. Thus, E(R ∪ uw) ⊆ E(H) is an infinite
circuit, as desired.

In a finite graph the cycles are exactly the connected 2-regular subgraphs.
We extend this characterisation to locally finite graphs.
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Theorem 5.3.[23] Let C be a subgraph of a locally finite graph G. Then C
is a circle if and only if C is topologically connected and every vertex or end
x of G with x ∈ C has degree two in C.

We need a lemma:

Theorem 5.19 (Diestel and Kühn [35]). When a graph G is locally finite,
every closed connected subset of |G| is path-connected.

Proof of Theorem 5.3. If C is a circle, then it is clearly topologically con-
nected and every vertex and every end x ∈ C has degree two in C.

For the converse direction, Theorem 5.17 implies that there is a circle
D ⊆ C. Suppose there exists a point z ∈ C \ D. Theorem 5.19 yields an
arc A ⊆ C that starts at z and ends in D. As both A and D are closed, A
has a first point in D, ie. a point x such that the subarc A′ of A between z
and x meets D only in x. Thus, there are three edge-disjoint arcs in C with
common endpoint x, two in D and the arc A′. So, x is either a vertex or an
end and has degree at least 3 in C, a contradiction. Thus, C = D.

Let us now turn to two areas in which end degrees differ in their behaviour
from vertex degrees in finite graphs.

For a subgraph H of a graph G, deleting E(H) reduces the degree of a
vertex v ∈ V (G) by its degree inH, ie. dG(v) = dH(v)+dG−E(H)(v). Although
for an end ω it clearly holds that dG(ω) ≥ dH(ω) + dG−E(H)(ω), equality is
in general not ensured. Consider the 4×∞-grid, which has a single end. As
depicted in Figure 5.5, the removal of (the edge set of) a ray R leads to a
decrease of the end degree from 4 to any of 3, 2, 1 or 0, depending on how R
is chosen [23]. Similarly, deleting a circuit can lead to an odd decrease in the
degree.

Figure 5.5: Removal of a ray lets the end degree decrease by 1 or more

The second area where the end degree differs in its behaviour concerns
extremal results. A classical theorem by Mader [49], for instance, states
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that high average degree forces a finite graph to contain a large complete
minor. This, however, fails for locally finite graphs even if every end has
high degree. Figure 5.6 indicates how for every k ≥ 5 a planar k-regular

...

...

...

...

Figure 5.6: High degree in all vertices and in the single end but planar

graph with a single end of infinite degree can be constructed. Being planar,
such a graph can never contain even a K5 as a minor.

In finite graphs high degree guarantees not only the existence of a large
clique minor but also that of a highly connected subgraph. In contrast,
Stein [58] provides an example showing that high degree in all vertices and
ends is not sufficient for a locally finite graph to have a subgraph of high
connectivity. On the other hand, if we only require high edge-connectivity
then we are assured that there is such a subgraph.

5.6 Weakly even ends

Finally, let us briefly discuss an alternative degree concept [23]. It arises
from the observation that (ii) of Lemma 5.5 is equivalent to:

(iii) for every finite S ⊆ V (G) there is a finite set S ′ ⊇ S of vertices such
that the maximal number of edge-disjoint ω-rays starting in S ′ is even.

Lemma 5.5 (ii) was our main motivation for our definition of an even
end. In the same vein, (iii) leads to the following alternative definition of
parity, which differs from our original definition only in that the quantifiers
are exchanged:

Definition 5.20.[23] Let H be a subgraph of a locally finite graph G. Call ω
weakly even in H if for every finite S ⊆ V (G) there is a finite set S ′ ⊇ S of
vertices such that the maximal number of edge-disjoint ω-arcs in H starting
in S ′ is even. Otherwise, ω is strongly odd in H.
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Observe that an even end is weakly even, and that a strongly odd end is
odd. For ends of finite degree the two parity concepts are equivalent; this
can be seen in a similar way as the equivalence of (ii) and (iii). For ends of
infinite degree, however, this need not be true: consider a ray v1v2 . . ., and
replace each edge vivi+1 by i (subdivided) parallel edges. The obtained graph
has a single end, which is both odd and weakly even.

This construction only works because there are odd vertices present. But
could an odd end exist in a graph that has all vertices even and all ends
weakly even? Or, on the contrary:

Problem 5.21. [23] Does Theorem 5.4 remain true if we substitute “even
ends” by “weakly even ends”?

We have been unable to settle the problem. However, we can answer both
this question and Conjecture 5.8 positively for locally finite graphs with only
countably many ends:

Proposition 5.22. [23] Let G be a locally finite graph with only countably
many ends, and let H a subgraph. Then E(H) ∈ C(G) if and only if every
vertex has even degree in H and if every end has weakly even degree in H.

Proof. The forward direction follows immediately from Theorem 1.4 and
Corollary 5.15. For the backward direction, suppose E(H) /∈ C(G), which
by Theorem 1.4 means that G has a finite cut F with |F ∩ E(H)| odd. Let
ω1, ω2, . . . be an enumeration of Ω(G). We successively define a sequence
A0 ⊆ A1 ⊆ . . . of finite sets of disjoint regions A ⊆ G − F of G with
|∂A ∩ E(H)| even and such that for each ωi with i ≤ n there is an A ∈ An
with ωi ∈ A. Put A0 := ∅. In order to define the set An first check whether
there is an A ∈ An−1 such that ωn ∈ A, in which case we put An := An−1.
Otherwise consider the (finite) set S of all neighbours of each A ∈ An−1 and
of the endvertices of the edges in F . As ωn is weakly even, Lemma 5.12 yields
a region B ⊆ G − F with ωn ∈ B and A ∩ B = ∅ for all A ∈ An−1. Put
An := An−1 ∪ {B}. Finally, contracting all the disjoint regions A ∈ ⋃∞n=1An
to a vertex each yields a finite graph with all vertex degrees even in H that
has a cut F with |F ∩ E(H)| odd, a contradiction.
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Chapter 6

Hamilton cycles and long cycles

6.1 Introduction

While Hamilton cycles have been investigated intensively in finite graphs, less
attention has been paid to Hamilton cycles in infinite graphs. One reason
for this is that it was not entirely clear what the infinite analogon of a cycle
should be.

Adomaitis [1] avoided this question by defining a graph to be hamilto-
nian if for every finite subset of the vertex set there is a spanning cycle. In
contrast, Nash-Williams [52] addressed the problem and proposed spanning
double rays as infinite analogons of Hamilton cycles. He noticed that for a
spanning double ray to exist the graph needs to be 3-indivisible. (A graph is
k-indivisible if the deletion of finitely many vertices leaves at most k− 1 infi-
nite components.) Generalising the following classical result by Tutte, Nash-
Williams conjectured that a 3-indivisible 4-connected planar graph contains
a spanning double ray.

Theorem 6.1 (Tutte [62]). Every finite 4-connected planar graph has a
Hamilton cycle.

Recently, Yu [66] announced a proof of Nash-Williams’ conjecture.
The restriction to 3-indivisible graphs is a quite serious one that at first

appears unavoidable. Yet, while double rays are the obvious first choice for
an infinite analogon of cycles we have seen in the previous chapters that
infinite cycles as we have defined them are far more suited. In particular,
our infinite cycles overcome the limitation to 3-indivisible graphs. Indeed,
in Figure 6.1 we see a Hamilton circle, ie. a spanning circle, in a graph that
is not k-indivisible for any k. The example is due to Diestel and Kühn [33].
I conjecture that, in this sense, Theorem 6.1 extends to locally finite graphs;
see Diestel [29].
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Figure 6.1: A Hamilton circle (drawn bold)

Conjecture 6.2. Let G be a locally finite 4-connected planar graph. Then
G has a Hamilton circle.

In this chapter, which is mainly based on [24], we shall present a partial
result in this direction:

Theorem 6.3.[24] Let G be a locally finite 6-connected planar graph that is
k-indivisible for some finite k ∈ N. Then G has a Hamilton circle.

A Hamilton cycle is the longest cycle a finite graph can have. Of interest
are also those cycles that while not Hamilton are still, in a certain sense,
long. We will turn to this subject in the last section of this chapter and show
that the longest cycles an infinite (locally finite) graph can have, namely the
infinite cycles, generate the topological cycle space.

In the next section, we will see that Hamilton circles behave in some
respect as their finite counterparts. In Section 6.3, we will show that Con-
jecture 6.2 fails for 3-connected infinite graphs, and in Section 6.4 we shall
prove Theorem 6.3.

6.2 Hamilton circuits and covers

Let us briefly give an indication that our concept of a Hamilton circle, i.e.
a circle that contains every vertex (and then also every end) of a graph,
behaves in similar ways as its finite analogon.

In Section 4.7, we showed that every locally finite graph that is planar can
be covered by two elements of the cycle space. If instead of being planar the
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graph has a Hamilton circuit, i.e. a circuit that is the edge set of a Hamilton
circle, then we can still find such a cover. This is, of course, well-known for
finite graphs.

Proposition 6.4.[13] Let G be a locally finite graph with a Hamilton circuit.
Then there are Z1, Z2 ∈ C(G) with E(G) = Z1 ∪ Z2.

Proof. Let H be the Hamilton circuit and fix a vertex u of G. We say that
an edge set C has distance n to u if the shortest path that starts in u and
ends in a vertex that is incident with C has length n. Since every edge e /∈ H
is a chord of H there are two circuits ⊆ H ∪ {e} containing e. Denote by Ce
the one which has greater distance to u (or choose arbitrarily if both have
the same distance). We claim that

{Ce : e /∈ H} is a thin set. (6.1)

If (6.1) is true, we are done. Putting Z1 := H and Z2 :=
∑

e/∈H Ce, we see
that E(G) = Z1 ∪ Z2.

So suppose (6.1) to be false. Then there is an N such that for in-
finitely many edges e /∈ H the circuit Ce is incident with SN := {v ∈
V (G) : v has at most distance N to u}. As |G| is compact there is a se-
quence e1, e2, . . . among these edges converging against an end ω. Let A be
the unique topological component of C(SN , ω) ∩ H that contains ω. Then
A is an arc. All but finitely many of the en have both their endvertices in
A. Indeed, C(SN , ω) ∩ H has only finitely many topological components,
and any of these components which is incident with infinitely many of the en
must contain ω. Since ω is contained in exactly one topological component
there is, thus, a en ∈ E(C(SN , ω)) with both its endvertices in A, and we
easily find a circuit in E(A) ∪ {en} ⊆ H ∪ {en} containing en. This circuit
then avoids SN , a contradiction to the choice of Cen.

6.3 An infinite Herschel-type graph

The Herschel graph (see Figure 6.2) is a well-known example for a 3-connected
planar graph without a Hamilton cycle, which shows that in a sense The-
orem 6.1 is best possible. In this section, let us briefly demonstrate that Con-
jecture 6.2 is also false for infinite graphs if we only assume 3-connectivity [24].

Consider Figure 6.3. There we have arranged copies of the Herschel graph
(greyed) in a hexagonal grid. The copies are glued together in such a way
that each copy of the vertex v in Figure 6.2 does not receive an extra edge and
thus still has degree 3. Now assume that the resulting graph has a Hamilton
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Figure 6.2: The Herschel graph

circle C, and consider a copy of the Herschel graph H in that graph. If the
Hamilton circle enters H in u and leaves H in either x or y then C induces a
Hamilton circle of H, which is impossible. Thus, C enters H in x and leaves
it in y, which implies that H has a Hamilton path, i.e. a spanning path,
between x and y. However, this is impossible since H is an odd bipartite
graph, where x and y are in the same partition class.

H

... ... ...
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u
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x

Figure 6.3: An infinite 3-connected planar graph without a Hamilton circle

6.4 Proof of Theorem 6.3

Before we start proving Theorem 6.3, let us reformulate the theorem slightly.
The notion of ends is central to the definition of infinite cycles, and we will
therefore express the theorem in terms of ends. It is straightforward to see
that a locally finite graph is k-indivisible if and only if it has at most k − 1
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ends. Thus, we obtain the following alternative version of Theorem 6.3:

Theorem 6.5. [24] Let G be a locally finite 6-connected planar graph with
at most finitely many ends. Then G has a Hamilton circle.

In the context of Hamilton cycles two concepts have been quite successful,
namely that of a bridge and a Tutte path; see for instance Thomassen [61].
Let us define these. For a subgraph H of a (finite) graph G, an H-bridge is
either a chord e /∈ E(H) together with its endvertices both of which lie in
V (H) or a component K of G−H together with all edges between K and H,
denoted by E(K,H), and their incident vertices. Note that this definition of
a bridge differs from the one given in Chapter 3. However, we will only apply
it to finite graphs, in which case the two definitions coincide. We say that an
H-bridge B is chordal if E(B) consists of a single edge. All the vertices of
an H-bridge B in H are attachments of B. For a subgraph F of G, we call
a path (resp. cycle) P a F -Tutte path (resp. cycle) in G if every P -bridge of
G has at most three attachments, and if every bridge containing an edge of
F has at most two attachments.

Our main tool in the proof will be the following result of Thomassen,
which itself implies Tutte’s theorem:

Theorem 6.6 (Thomassen [61]). Let G be a finite 2-connected plane graph
with a face boundary C. Assume that u ∈ V (C), e ∈ E(C) and v ∈ V (G) \
{u}. Then G contains a C-Tutte path P from u to v and through e.

Roughly, our strategy to prove Theorem 6.5 is as follows: we apply The-
orem 6.6 in a finite subgraph H (plus some extra vertices) of our graph G
and then extend the resulting Tutte cycle to (finite parts of) the components
G − H. For this to work, we need that all these components, which will
be infinite, are 3-connected. This is the task of our next lemma, and, in
particular, of its consequence, Lemma 6.9.

Lemma 6.7. [24] Let G be a 4-connected locally finite planar graph with
minimum degree at least 6, let U ⊆ V (G) be a finite vertex set, and let ω be
an end of G. Then, there is a finite vertex set S such that for Cω := C(S, ω)
holds

(i) Cω is disjoint from U ; and

(ii) if X ⊆ V (Cω) with |X| ≤ 2, then every component of Cω−X is infinite.

Proof. Choose a finite vertex set S such that Cω := C(S, ω) is disjoint from
U , and such that |E(Cω, G− Cω)| is minimal with that property.
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Suppose there is a set X ⊆ V (Cω) with |X| ≤ 2 such that there is a finite
component K of Cω−X. Denote by K ′ the subgraph obtained by adding the
vertices in X and the edges between X and K to K. Put r := |E(K,G−Cω)|,
and s := |E(X,K)|. We shall show that s < r. Then S ′ := S ∪ V (K) leads
to a smaller cut between C(S ′, ω) and the rest of the graph, a contradiction.

First, assume that K ′ is not a triangulation. Thus, putting n := |V (K)|,
Euler’s formula implies |E(K ′)| < 3(n + |X|)− 6 ≤ 3(n + 2) − 6 = 3n. On
the other hand,

2|E(K ′)| =
∑

v∈V (K′)

dK′(v) = |E(X,K)|+
∑

v∈V (K)

dK(v) ≥ s+ 6n− r.

Hence, 3n+ (s− r)/2 ≤ |E(K ′)| < 3n and thus s < r, as desired.

Second, let K ′ be a triangulation. We may assume that some vertices
in S lie in the outer face of K ′. Since G is 4-connected and since the face
boundary of the outer face of K ′ is a triangle, T , say, no vertices of G can be
contained in the interior face of T . Thus, T = K ′, and consequently there
are exactly two edges between X and K, ie. s = 2. Since the minimum
degree is at least 6 in G, and as the at most two vertices in K can have at
most one edge between them, it follows that r ≥ 3. Again, we get s < r, as
desired.

Lemma 6.8.[24] Let G be a k-connected graph, and let V (G) = A ∪B be a
partition such that G[B] is l-connected. Consider X ⊆ A with |X| ≤ k − l.
Then, for every component K of G[A] − X the graph G[K ∪ B] is still l-
connected.

Proof. Put B′ := V (K) ∪ B, and suppose there is a separator Y of G[B ′]
with |Y | < l, and consider two distinct components C and D of G[B ′]− Y .
If both C and D contain vertices of B then Y ∩ B is a separator of G[B],
contradicting that G[B] is l-connected. So we may assume that C ⊆ K.
Then, X ∪ Y separates C from B in G, but |X ∪ Y | < (k − l) + l = k, a
contradiction.

Lemma 6.9 will be used in each of the induction steps of the proof of
Theorem 6.5.

Lemma 6.9. [24] Let G be a locally finite planar 6-connected graph, let U
be a finite vertex set and ω an end of G. Let S ⊆ V (G) be a finite vertex
set such that C := C(S, ω) is 2-connected. Then there is a finite vertex set
T ⊇ U such that C(T, ω) ⊆ C is 3-connected and C − C(T, ω) 2-connected.
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Proof. Add to the union of U ∩ V (C) and the neighbours of S in C finitely
many vertices such that for the resulting set U ′ ⊆ V (C) the subgraph G[U ′]
is 2-connected. Then Lemma 6.7 applied to U ′ ∪ S yields a finite vertex
set T ′ so that D := C(T ′, ω) ⊆ C is 3-connected and disjoint from U ′ (and
thus from U). Since G[U ′] ⊆ C is 2-connected there is a block B of C −D
containing U ′. Observe that, as G is 6-connected, every component of C −
D − B has a neighbour in the finite set S ∪ T ′. Thus there are only finitely
many of them. Consider one such component, K say, and note that, as K
is disjoint from U ′ all its neighbours except possibly one, which lies in B,
are contained in D. Thus, by Lemma 6.8, G[D ∪ K] is still 3-connected.
Therefore, the neighbours of C − B together with U give rise to a set T as
desired.

We will construct our Hamilton circle in a piecewise manner. Slightly
more precise, we shall construct finite nested subgraphs Gi in which the
application of Theorem 6.6 will yield subgraphs Ci that are finite approxi-
mations of the desired infinite Hamilton circle. The following definition and
lemma make sure that these subgraphs Ci indeed tend to a cycle, ie. that⋃∞
i=1 Ci is a cycle.

Call a sequence (G1, C1), . . . , (Gk, Ck) of finite induced subgraphs Gi ⊆ G
and subgraphs Ci ⊆ G good, if for i = 1, . . . , k holds

(i) Ci−1 ⊆ Ci and Gi−1 ∪N(Gi−1) ⊆ Gi for i ≥ 2;

(ii) if K is an infinite component of G−Gi then |E(K,G−K)∩E(Ci)| = 2;
and

(iii) there is a cycle Z such that Z ∩Gi = Ci ∩Gi.

We say that a finite vertex set S separates an end ω from a vertex set U
if every ray R ∈ ω that starts in a vertex of U meets S. In a similar manner,
S separates two ends ω and ω′ if every double ray with one tail in ω and the
other in ω′ goes through S.

Lemma 6.10.[24] Let G be a locally finite graph with at most finitely many
ends, and let every finite initial segment of (G1, C1), (G2, C2), . . . be good.
Then the closure of C :=

⋃∞
i=1 Ci is a circle of |G|.

Proof. From (iii) and (i) it follow that C is a either a finite cycle or a disjoint
union of double rays. Assume the latter, and let ω be an end of one of
the double rays. Because of (i) there is an n such that the component K
of G − Gn to which ω belongs is separated from all the other ends by Gn.
Condition (ii) implies that C ∩ K consists of exactly two rays in ω, which
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shows that C is the disjoint union of circles. It is easy to see that (iii) implies
that C is topologically connected. Therefore, C is a circle.

Let us introduce one useful definition before we finally start with the
proof. We call a vertex set U in a graph G externally k-connected, if |U | ≥ k
and if for every set X ⊆ V (G) with |X| < k there is a path between any two
vertices of U \X in G−X.

Proof of Theorem 6.5. By Theorem 3.17, |G| can be embedded in the sphere.
We shall identify |G| with that embedding, and thus view G as a plane graph.
Note that, by Corollary 3.19, all face boundaries are circles.

Inductively, we shall construct connected finite induced subgraphs G1 ⊆
G2 ⊆ . . . ⊆ G and subgraphs H1 ⊆ H2 ⊆ . . . ⊆ G such that for every i ≥ 1
it holds that

(iv) (G1, H1), . . . , (Gi, Hi) is good;

(v) V (Gi) ⊆ V (Hi);

(vi) if Ci is the set of components of G−Gi then each C ∈ Ci is 3-connected
and belongs to exactly one end; and

(vii) for each C ∈ Ci it follows that |V (C) ∩ V (Hi)| = 2.

Assume this can be achieved. Then, Lemma 6.10 shows that H :=
⋃∞
i=1 Hi is

a circle. In addition, H contains every vertex of G, by (v) and (i). Therefore,
H is a Hamilton circle.

As the construction of the base case, i.e. when i = 1, is quite similar to
the general case, i.e. when i ≥ 2, we will treat both at once. However, for
some of the steps we shall need to make case distinctions. Put G0 := ∅,
H0 := ∅ and C0 = {G}, and assume (Gi−1, Hi−1) to be constructed for some
i ≥ 1. Consider a component C ∈ Ci−1.

First, let i = 1, and note that as C = G has only finitely many ends, we
can choose a finite vertex set W such that none of the infinite components of
G−W belong to more than one end. Denote by FC a face boundary of |G|,
and pick an edge xCyC ∈ E(FC), a vertex uC ∈ V (FC) with uC /∈ {xC , yC},
and a vertex vC /∈ {uC, xC , yC} that is adjacent to uC . Put UC := W ∪
{uC, vC , xC , yC}.

For i ≥ 2, observe that, by (vii), Hi−1 contains exactly two vertices of
C, uC and vC say. In the by |G| induced embedding of C all the neighbours
of the connected graph Gi−1 that lie in C are incident with the same face
boundary FC , say. Pick an edge xCyC ∈ E(FC) such that xCyC 6= uCvC , and
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let UC be the union of {uC, vC , xC , yC} together with all neighbours of Gi−1

in C. Thus, UC ⊆ V (FC) separates C from the rest of G.
In any case, we obtain

uC 6= vC and |{uC, vC , xC , yC}| ≥ 3 (resp. = 4 for i = 1). (6.2)

Since C is 3-connected (resp. 4-connected for i = 1) there are three (resp.
four) internally disjoint paths in C between any two vertices in UC . Denote
by TC the vertex set of the union of three (resp. four) such paths for each pair
of vertices in UC . Observe that UC is externally 3-connected (resp. externally
4-connected for i = 1) in C[TC ].

Let ω1, . . . , ωn be an enumeration of the ends belonging to C. Put C1 :=
C, and apply Lemma 6.9 to C1, ω1, TC in order to find a finite vertex set S1

for which C(S1, ω1) ⊆ C1 is 3-connected and disjoint from TC and for which
C2 := C1−C(S1, ω1) is 2-connected. Continuing in this manner, we see that

G′C := C − ⋃n
i=1 C(Si, ωi) is a finite 2-connected graph, and UC is

externally 3-connected (resp. 4-connected for i = 1) in G′C .
(6.3)

Since UC ⊆ V (G′C) contains all neighbours of Gi−1 in C it follows that

G′i := G[Gi−1 ∪
⋃
B∈Ci−1

G′B] is connected, and every component of
G−G′i is 3-connected and belongs to exactly one end of G.

(6.4)

G′i will serve as a precursor to Gi.
Next, let DC be the components D of G−G′i with D ⊆ C, and consider

D ∈ DC . (Note that for i > 1 it holds that D = {D}). Let MD be obtained
from E(D,G−D) by deleting for each vertex in D all but one of the incident
edges in E(D,G−D). Thus,

every neighbour of G′C in D is incident with exactly one edge of MD.
(6.5)

Starting from G′C define a 2-connected finite plane graph G̃C as follows: for
every D ∈ DC put a vertex zD into the face of G′i that contains D and link
zD to the vertices in G′C that are incident with an edge in MD. We shall
identify these linking edges with the edges in MD. Note that the resulting
graph, which is a minor of G′C , may have parallel edges. Then, since, for
i = 1, FC is a face boundary of |G| such that uC, xC , yC ∈ V (FC) and since,
for i ≥ 2, UC ⊆ V (FC) this also holds for a face boundary F̃C of G̃C , i.e.

for i = 1 : uC , xC , yC ∈ V (F̃C) and UC separates the ends of G
for i ≥ 2 : UC ⊆ V (F̃C) and UC separates C from G− C (6.6)

We apply Theorem 6.6 to G̃C , and obtain a F̃C -Tutte path (resp. circle for
i = 1) H̃C from uC to vC and through xCyC . (More precisely, if G̃C has
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parallel edges we first subdivide these before using Theorem 6.6; the obtained
Tutte-path then induces one in G̃C .) From (6.2) it follows that

|V (H̃C) ∩ UC | ≥ 3 (resp. ≥ 4 for i = 1). (6.7)

xC
yC

uC

vC

G’C

D

C

MD

H

Gi−

i−1

1

Figure 6.4: Illustration of the proof of Theorem 6.5

Next, we show that

for every nonchordal H̃C-bridge K in G̃C , (K − H̃C) ∩G is disjoint
from UC , and all its neighbours in G lie in G′C ∪D for some D ∈ DC .

(6.8)

Suppose that K − H̃C meets UC . If i ≥ 2 then K contains an edge of
F̃C , as UC ⊆ V (F̃C), by (6.6). Thus, K has at most two (resp. three for
i = 1) attachments as H̃C is a F̃C-Tutte path (resp. cycle). Since UC is
externally 3-connected (resp. externally 4-connected) in G′C by (6.3), this
implies UC ⊆ V (K). Thus, by (6.7), K−H̃C contains a vertex in V (H̃C)∩UC ,
a contradiction. Therefore, K−H̃C is disjoint from UC . The second assertion
follows from the first together with (6.6) and the fact that |DC | = 1 if i ≥ 2.

It holds that
zD ∈ V (H̃C) for every D ∈ DC . (6.9)

Indeed, suppose there is a D ∈ DC with zD /∈ V (H̃C). Thus, zD ∈ V (K −
H̃C) for some H̃C-bridge K. Denote by fD the face boundary of G′i that
contains D. Then there exists a vertex v /∈ V (K) in the face boundary of
fD. Indeed, otherwise the at most three attachments of K separate D from
UC \ V (K) 6= ∅ in G, contradicting that G is 6-connected. Note that v is
not incident with any edge in MD as zD ∈ V (K − H̃C). Let f ⊆ fD be the
(unique) face of G′i ∪ D ∪MD whose face boundary F contains v. Because
G′i and D are connected there are exactly two vertices in V (F ∩D), a and b
say, that are incident with an edge in MD.

We claim that the at most three attachments of K together with a, b
separate D−{a, b} from v in G, which then contradicts that G is 6-connected,

82



thus establishing (6.9). So suppose there is a path from D to v that avoids
the attachments of K and a, b, and let xy be its last edge in E(D,G−D) =
E(D,G′i). Assume that x ∈ V (D) and y ∈ V (G′i). If xy is disjoint from f
then y is easily seen to be separated in G′i from v by the attachments of K,
which is impossible. Therefore, the interior of xy lies in f , and thus x in
its boundary F . By (6.5), x is incident with an edge in MD. Since a, b are
the only vertices in V (F ∩D) incident with an edge in MD, we obtain with
x ∈ {a, b} a contradiction. This establishes (6.9).

Consider E(H̃C) as a subset of E(G), and let HC be the subgraph of G
consisting of the edges E(H̃C) and the incident vertices. Put Hi := Hi−1 ∪⋃
C∈Ci−1

HC , and observe that the pair (G′i, Hi) already satisfies almost all

of the desired properties. In particular, it satisfies (i)–(iii) of the definion of
a good sequence: (i) holds because of UC ⊆ V (G′C) for every C ∈ Ci−1 (for
i ≥ 2), and (ii) because of (6.9). To see (iii), add a path through D between
the two vertices of Hi in D for every D ∈ DC , and denote the resulting
subgraph by Z. Clearly, Z is connected, and every w ∈ V (Z) has degree
two: if w ∈ V (Gi−1) then because of (iii) for i − 1, if w ∈ {uC, vC} then
because uC 6= vC , if w ∈ V (Hi−Hi−1) because Hi is a disjoint union of paths
for every C, and finally if w ∈ V (Z −Hi) because Z −Hi is a disjoint union
of paths. Thus, Z is a cycle. Moreover, of (iv)–(vii) only (v) is not satisfied:
(vi) is (6.4), and (vii) holds because of (6.9) and the definition of MD.

To fix (v), consider a nonchordal Hi-bridge K in G′i. By (v) for i− 1, we
deduce that K − Hi is disjoint from Gi−1. Observe that for each C ∈ Ci−1,
K ∩G′C is either empty, a chord or a union of HC-bridges. Thus, K −Hi is
disjoint from UC , by (6.8), which implies with Lemma 6.8 that G′i− (K−Hi)
still satisfies (i) and (vi), and then also (iv) and (vii). Thus, putting Gi :=
G′i−(G′i−Hi) we see that for the pair (Gi, Hi) conditions (iv)–(vii) hold.

6.5 Infinite circuits generate the cycle space

A triangle is certainly a short cycle, while a Hamilton cycle should clearly
be considered as long. Let us turn in this section to cycles that although
possibly far shorter than Hamilton cycles are still considerably longer than
triangles [21].

In Locke [46], it is conjectured that there is a constant 0 < m < 1 so that
the cycle space of any finite graph in which every two vertices can be joined
by a path of length at least k is generated by the cycles of length ≥ mk. To
motivate that conjecture Locke shows that if between any two vertices there
is a path of length ≥ (k − 1)2 + 1 then the circuits of length ≥ k generate
the cycle space.
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We prove the following theorem, which is a natural extension of Locke’s
observation to locally finite graphs. We say that an arc has infinite length if
it contains infinitely many edges.

Theorem 6.11.[21] Let G be a locally finite graph in which every two vertices
are linked by an arc of infinite length. Then C(G) is generated by the circuits
of infinite length.

Note that every arc linking two vertices of the same block lies entirely in
that block. As, in addition, the topological cycle space of a locally finite graph
is the direct sum of the topological cycle spaces of its blocks, it is sufficient
to prove Theorem 6.11 for 2-connected graphs. Therefore, Theorem 6.11 is
an immediate corollary of the following theorem. Call a circuit which is the
edge set of a double ray, a double ray-circuit.

Theorem 6.12. [21] Let G be an infinite 2-connected locally finite graph.
Then there is a thin set of double ray-circuits that generates C(G).

Diestel and Kühn [33] show that there is always a thin generating set
consisting of finite circuits. Thus, Theorem 6.12 may be understood as a
converse of that fact. A spanning tree T is end-faithful if for an arbitrary
root r, T has exactly one ray starting in r in every end of G.

Theorem 6.13 (Diestel and Kühn [33]). Let G be a locally finite con-
nected graph, and let T be any spanning tree of G. Then every element of
C(G) is generated by fundamental circuits of T if and only if T is end-faithful.
Also, if T is end-faithful, then the set of fundamental circuits of T is a thin
set.

Since every countable graph has a normal spanning tree (Jung [43]), and
since every normal spanning tree is end-faithful, there is always a thin set
of finite circuits that generates the topological cycle space in a locally finite
graph.

Lemma 6.14.[21] Let G be an infinite 2-connected locally finite graph. Then
there is for every edge vw of G a double ray D containing vw such that E(D)
is a double ray-circuit.

Proof. Choose an end ω of G. Put S1 := {v, w} and for i = 2, 3, . . . choose
Si with minimal cardinality subject to Si ∪ C(Si, ω) ⊆ C(Si−1, ω). (Thus,
Si separates Si−1 from the end ω.) Then Si is a minimal Si–Si+1 separator
(which for i = 1 is ensured by the 2-connectivity of G and for i = 2, 3, . . . by
the minimal choice of the Si). Thus for each i Menger’s Theorem yields |Si|
disjoint Si–Si+1 paths, the union of which contains two disjoint rays in ω one
starting in v and the other in w. Using these we obtain the desired double
ray D.
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Proof of Theorem 6.12. Let e1, e2, . . . be an enumeration of the edge set of G.
By Lemma 6.14, there is for each e ∈ E(G) a double ray-circuit De containing
e; let us assume De to be chosen such that the minimal edge index in De,
i.e. min{i : ei ∈ De}, is maximal. We claim that

the set D := {E(De) : e ∈ E(G)} is thin. (6.10)

Assume (6.10) to be true. By Theorem 6.13 there is a thin set C of
finite circuits that generates C(G). For each C ∈ C pick an edge eC ∈ C.
Since C and DeC share at least eC we easily find two double ray-circuits
DC

1 , D
C
2 ⊆ C ∪DeC with DC

1 +DC
2 = C. As both C and D are thin, the set

{DC
1 , D

C
2 : C ∈ C} is a thin set that generates the topological cycle space of

G (since C is a generating set).
So, suppose that (6.10) does not hold. Then, there is an edge en which is

met by infinitely many of the De. Putting En := {e1, . . . , en}, we note that
G−En has a component K that contains an infinite number of edges e with
en ∈ De. We claim that

the number of blocks of K is finite. (6.11)

Assume that K has an infinite number of blocks. Denote by S the finite
set of vertices in K that are incident with an edge in En. Since G is 2-
connected, there is, by Menger’s theorem, for every block B of K an S–S
path PB in K containing an edge of B. Then there are two vertices in S that
are the endvertices of infinitely many PB. We fix B as one of these blocks,
and then choose B′ as another which is disjoint from the finite path PB. This
yields two blocks B,B ′ of K such that PB and PB′ have the same endvertices
and PB ∩ E(B′) = ∅.

Let x be the last vertex in PB′ that also lies in PB before PB′ enters B′,
and let y be the first vertex in PB′ that also lies in PB after PB′ has left B′.
Then, E(xPB′y∪xPBy) is a circuit of K that meets both E(B ′) and E(K) \
E(B′), and thus contains a cutvertex of B ′. This yields a contradiction, as a
cutvertex may not lie on a circuit.

Having proved (6.11), we find an infinite block B∞ of K that contains
an edge e with en ∈ De. Lemma 6.14 yields a double ray-circuit containing
e in B∞, which, avoiding En, contradicts the choice of De as De meets En
in en.

We remark that, in a similar way, Theorem 6.11 can be extended to the
space C(G̃) for graphs G satisfying (1.3). As in the case of Gallai’s theorem in
Chapter 2 or of dual graphs in Chapter 4, it is here, too, necessary to work
in G̃ rather than in |G|. Indeed, consider a ray R each of whose vertices
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are joined to a (dominating) vertex v. Clearly, there is for any two vertices
an arc of infinite length linking them. However, in |G| there are no infinite
circuits at all, and thus Theorem 6.11 fails if C(G) is used. In contrast, it is
straightforward to see that the infinite circuits in G̃ generate C(G̃).

Finally, let us observe that in a non-locally finite graph also the finite
circuits may not be sufficient to generate the topological cycle space (although
this is still true in any countable graph). Let v1, v2, . . . be some distinguished
vertices, and let there be a double ray Dr = . . . wr−1w

r
0w

r
1 . . . for every r ∈ R.

Join vn to wr−n and to wrn for all n and r. Then, the resulting graph G
has a single end, and the edge set of each Dr is a circuit. Suppose Z :=∑

r∈RE(Dr) =
⋃
r∈RE(Dr) ∈ C(G) is the sum of finite circuits. Since Z is

uncountable the sum contains uncountably many distinct finite circuits, each
of which is incident with one of the vn. Thus, there is a vn which is incident
with infinitely many of the summands, contradicting the definition of a thin
sum.
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Chapter 7

Linear algebra with thin sums

7.1 Introduction

The topological cycle space differs in two points from the traditional defi-
nition, Cfin(G), of a cycle space in infinite graphs, namely in that it allows
infinite cycles and infinite sums. In this chapter, we will focus on that second
point and study the ramifications of allowing infinite sums.

The effects of admitting infinite sums are most prominently seen in gener-
ating sets. For instance, Theorem 6.13 asserts that in a 2-connected infinite
locally finite graph G, the space C(G) is spanned by the fundamental circuits
of an end-faithful spanning tree. Thus, this is an example for a space of
uncountable cardinality which contains infinite objects that is nevertheless
generated by only countably many finite objects.

Generating sets of the cycle space have been of interest in previous chap-
ters: Tutte’s generating theorem (Theorem 1.3), MacLane’s planarity crite-
rion (Theorem 3.3), as well as Theorem 6.11 state that a certain set of circuits
is sufficient in order to generate the whole space. A standard approach in
linear algebra is to look at minimal generating sets, i.e. bases. We have suc-
cessfully employed a similar approach in Chapter 3 when we defined 2-bases.
There, in Chapter 3, it was not clear from the outset whether such a 2-basis
always existed in a simple generating set, and we used some ad-hoc methods
to prove their existence. We will pursue the question of the existence of bases
in this chapter in more generality. The second problem we will be interested
in, is, under which circumstances a family of edge sets is closed under taking
infinite sums; we know that this is the case for the topological cycle space.

As the context of graphs neither simplifies nor complicates these problems
we drop it and instead consider the problems in terms of abstract set systems.
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7.2 Bases

For the purpose of this chapter we call a family T of subsets of a set M a thin
family if each m ∈ M lies in at most finitely many of the members of T . The
sum

∑
T∈T T of a thin family is the set of all elements m ∈M that appear in

exactly an odd number of members of T . This definition is consistent with
the one for locally finite graphs that we have used throughout this thesis;
our ground set M was usually the edge set of a graph, and T a family of
circuits. For a family N of subsets of M , we denote by 〈N 〉 the set of sums
of all thin subfamilies of N . Calling a minimal subfamily B of N for which
〈B〉 = 〈N 〉 a basis of 〈N 〉, we shall prove the following theorem:

Theorem 7.1.[20] Let M be a countable set, and let N be a family of subsets
of M . Then N contains a basis of 〈N 〉.

In linear algebra the analogous theorem is usually proved with Zorn’s
lemma as follows. Starting from a chain (Bλ)λ of linear independent sub-
families of N it is observed that

⋃
λ Bλ is still linear independent since any

violation of linear independence is witnessed by finitely many elements, and
these would already lie in one of the Bλ. Thus, each chain has an upper
bound, which implies, by Zorn’s lemma, that there is a maximal linear inde-
pendent set, a basis. This approach fails in our context. Indeed, ‘dependence’
need not be witnessed by only finitely many elements, that is, we might ob-
serve that while no nonempty finite sum in

⋃
λ Bλ adds up to ∅ some infinite

sum does. Thus, we cannot get the contradiction that already one of the Bλ
was not ‘independent’.

Before proving the theorem let us give an alternative definition of a basis,
which is also standard in linear algebra. We call a subfamily L of N a
representation of N in N if N =

∑
L∈L L. Then it is easy to see that a

subfamily B of N is basis of N if and only if 〈B〉 = 〈N 〉 and if ∅ has a unique
representation in B (namely the empty set).

Proof of Theorem 7.1. If M is a finite set the result is immediate, so we
assume M to be infinite. By deleting members that appear more than once,
we may assume N to be a set. Let m1, m2, . . . be an enumeration of M , and
define Ni to be the set of those elements N ∈ N \⋃j<iNj for which mi ∈ N .
Clearly, {Ni : i ∈ N} is a partition of N .

For every i ∈ N, let Ni1, Ni2, . . . , Niλ, . . . be a (possibly transfinite) enu-
meration of Ni, and perform the following transfinite recursion. Start by
setting Ni0 = Ni, and then for every ordinal λ > 0 define sets Niλ ⊆ Ni and
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X i
iλ as follows: If there is a

X i
iλ ⊆ (

⋂

µ<λ

Niµ ∩ {Niµ : µ < λ}) ∪
∞⋃

k=i+1

Nk

with
∑

X∈X iiλ
X = Niλ then set Niλ :=

⋂
µ<λNiµ \ {Niλ}. Otherwise, set

Niλ :=
⋂
µ<λNiµ and X i

iλ := ∅. Having defined all Niλ, we put Bi :=
⋂
λNiλ.

We claim that ∅ has a unique representation in B :=
⋃
i Bi. Indeed,

suppose there is a nonempty thin set C ⊆ B whose elements sum up to ∅.
Let i ∈ N be minimal so that C contains an element of Bi, and observe that
as all the elements in Bi share mi there is a maximal ordinal λ such that
Niλ ∈ C. Then Niλ =

∑
C∈C\{Niλ} C and

C \ {Nij} ⊆ (
⋂

µ<λ

Niµ ∩ {Niµ : µ < λ}) ∪
∞⋃

k=i+1

Nk,

a contradiction to that Niλ ∈ Bi ⊆ Niλ.
Next, consider a Niλ /∈ Bi for some i, λ. We will show that it has a

representation in B. Inductively, define for integers k > i a thin set X k
iλ as

follows. Let E be the set of ordinals η for which Nkη ∈ X k−1
iλ but Nkη /∈ Bk.

Since X k−1
iλ is thin and since all these Nkη ∈ Nk share mk it follows that E is

a finite set, and so

X k
iλ := (X k−1

iλ \ {Nkη : η ∈ E})4η∈EX k
kη.

is thin, where 4 denotes the symmetric difference. By induction we easily
obtain that

X k
iλ is a thin set and Niλ =

∑

X∈X kiλ

X. (7.1)

Indeed

Niλ =
∑

X∈X k−1
iλ

X =
∑

X∈X k−1
iλ \{Nkη : η∈E}

X +
∑

η∈E

∑

X∈X kkη

X =
∑

X∈X kiλ

X.

By construction, and as X k+1
k+1,η is disjoint from

⋃k
s=1Ns it follows that

X k
iλ ∩

k⋃

l=1

Nl = X k+1
iλ ∩

k⋃

l=1

Nl ⊆
k⋃

l=i

Bl. (7.2)

Putting X ∗iλ :=
⋃∞
k=i(X k

iλ ∩ Bk), we obtain from (7.2) that

X ∗iλ ⊆
∞⋃

l=i

Bl. (7.3)
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We claim that

X ∗iλ is a thin set and Niλ =
∑

X∈X ∗iλ

X. (7.4)

Indeed, consider an element ms ∈ M . Since no element in Nt for t > s
contains ms, it holds that of the elements in X ∗iλ only those in

⋃s
t=1Nt may

contain ms. Since X ∗iλ∩
⋃s
t=1Nt = X s

iλ∩
⋃s
t=1Nt by (7.2) and since X s

iλ is thin
there may be only finitely many elements in X ∗iλ containing ms. Consequently,
X ∗iλ is thin, as claimed. Furthermore, X ∗iλ ∩

⋃s
t=1Nt = X s

iλ ∩
⋃s
t=1Nt implies

that ms ∈
∑

X∈X ∗iλ
X if and only if ms ∈

∑
X∈X siλ

X. Together with (7.1) this

establishes the claim.
Finally, consider a N ∈ 〈N〉, and let L ⊆ N be a representation of N

in N . We will show that N has a representation in B. Let I and Ji for
i ∈ I be the sets of indices such that L \ B = {Niλ : i ∈ I, λ ∈ Ji}, and
define the family X ′ := (X)X∈X ∗iλ,i∈I,λ∈Ji. Then, X ′ is a thin family. Indeed,
suppose there is a ms that lies in infinitely many members of X ′. The fact
that for t > s no element in Nt contains ms together with (7.3) implies that
there are infinitely many triples (X, λ, i) with ms ∈ X ∈ X ∗iλ, λ ∈ Ji and
i ∈ {1, . . . , s}. Since L is thin and since for fixed i all the Niλ contain mi

it follows that Ji is a finite set. Thus, there are i′ ∈ I and λ′ ∈ Ji′ such
that there are infinitely many X ∈ X ∗i′λ′ with ms ∈ X, contradicting that,
by (7.4), X ∗i′λ′ is thin. Therefore, X ′ is thin and we get with (7.4)

N =
∑

L∈L∩B
L +

∑

L∈L\B
L =

∑

L∈L∩B
L+

∑

i∈I

∑

λ∈Ji
Niλ

=
∑

L∈L∩B
L +

∑

i∈I

∑

λ∈Ji

∑

X∈X ∗iλ

X =
∑

L∈L∩B
L +

∑

X∈X ′
X.

As X ′ ⊆ B, by (7.3), we have thus found a representation of N in B. There-
fore, 〈B〉 = 〈N 〉.

We have formulated Theorem 7.1 only for countable sets M . The follow-
ing example shows that this is indeed best possible.

Example 7.2.[20] If M is the vertex set of the bipartite graph Kℵ0,ℵ1 , and if
N is the set of all pairs of adjacent vertices then N contains no basis of 〈N 〉.

Proof. Treating the edges as pairs of vertices we may view N as the edges
of Kℵ0,ℵ1 . First note, that each N ⊆ M of countable cardinality is contained
in 〈N 〉. Indeed, let n1, n2, . . . be a (possibly finite) enumeration of N , and
choose for each ni in the enumeration a ray Ri that starts in ni but avoids
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the first i − 1 vertices of each of the rays R1, . . . , Ri−1. Then, the family
(e)e∈E(Ri),i∈N is thin and its sum equals to N since

∑
e∈E(Ri)

e = ni.

Suppose that B ⊆ N is a basis of 〈N 〉. Since each of the uncountably
many vertices of Kℵ0,ℵ1 must lie in one of the edges in B, there is one vertex v
with (uncountably) infinite degree in H := (M,B). Next, note that H cannot
contain any cycles or double rays because the sum of the corresponding edges
would be ∅, contradicting that ∅ has a unique representation in B. Thus,
for the component C of H with which v is incident, infinitely many of the
components of C − v are rayless trees. Pick a leaf not adjacent with v from
countable infinitely many of these, and denote their set by N . Since N is
countable there is a thin set BN ⊆ B whose sum equals to N . Consider a
leaf l ∈ N , let Cl be the component of C − v that is incident with l, and let
ulv be the edge in B between v and Cl. Then, B induces a graph in Cl that
has even degree in all vertices apart from l and possibly ul. Since l has odd
degree, ul is odd too, which implies that ulv ∈ BN . Thus, v lies in infinitely
many ulv, which contradicts that BN is a thin set.

The example is in stark contrast to linear algebra, where we always find a
basis. Another point in which our bases differ is that two bases do not need
to have the same cardinality. Indeed, putting M := {m0, m1, . . .} we see
that B := {{mi} : i ≥ 0} is a countable basis of the power set P(M) of M .
On the other hand, N := {{m0} ∪ N : N ⊆ M}, for which 〈N 〉 = P(M),
contains, by Theorem 7.1, a basis B′. Since all thin subsets of N are finite,
B′ needs to be uncountable to generate the uncountable set P(M).

7.3 Closedness

In linear algebra, closedness is not an issue. Clearly, if only finite sums are
allowed then the span of some set is always closed under taking (finite) sums.
For graphs G it follows from Theorem 1.5 that C(G), which is the span of
all circuits, is closed under taking thin sums. In general, however, this need
not be the case. For instance, consider the set M consisting of the distinct
elements m0, m1, . . . and set N := {{m0, mi} : i ≥ 0}. Clearly, 〈N 〉 is
countable. On the other hand, the set L := {{mi} : i ≥ 0} for which
〈L〉 = P(M) is contained in 〈N 〉. Thus, 〈N 〉 cannot be closed under taking
thin sums since P(M) is uncountable.

Proposition 7.3.[20] Let M be a countable set and let T be a thin family
of subsets of M . Then 〈T 〉 is closed under taking (thin) sums.

Proof. By Theorem 7.1, we may assume that ∅ has a unique representation
in T , and by deleting duplicate members we may view T as a set. Consider
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a thin family (Ci)i∈I of elements Ci ∈ 〈T 〉. Then for each Ci there is a
Ti ⊆ T with Ci =

∑
T∈Ti T . Now, if S := (T )i∈I,T∈Ti is a thin family, then∑

i∈I Ci =
∑

S∈S S, and 〈T 〉 is closed. Therefore, we suppose that there is
a m ∈ M that lies in infinitely many members of S. Since S consists of
elements of the thin set T it follows that there is a T ∈ T and an infinite
index set I0 ⊆ I for which T ∈ Ti for i ∈ I0. Put C0 := {T}, and K0 := T .
Let m1, m2, . . . be an enumeration of M . Inductively, we will define infinite
sets I0 ⊇ I1 ⊇ . . ., finite sets C0 ⊆ C1 ⊆ . . . ⊆ T , and sets Ki ⊆M such that

(i) Ci ⊆ Tj for all j ∈ Ii; and

(ii) if k ∈ N is the smallest index for which mk ∈ Ki−1 :=
∑

C∈Ci−1
C then

mk /∈ Ki.

Assume I0, . . . , Ii−1 and C0, . . . , Ci−1 to be defined. Let k ∈ N be the
smallest index such that mk ∈ Ki−1. As (Cj)j∈I is thin, there is an infinite
set I ′i ⊆ Ii−1 such that mk /∈ Cj =

∑
T∈Tj T for j ∈ I ′i. Thus, there is for

each j ∈ I ′i a C ∈ Tj \ Ci−1 with mk ∈ C. Since, mk is contained in only
finitely many different C ∈ T , there is an infinite set Ii ⊆ I ′i and a D ∈ T
such that mk ∈ D ∈ Tj \ Ci−1 for all j ∈ Ii. Setting Ci := Ci−1 ∪ {D} we see
that both (i) and (ii) are satisfied.

We distinguish two cases, both of which will lead to contradiction. First,
suppose there is a k ∈ N and an infinite set N ⊆ N so that mk ∈ Kn for each
n ∈ N . Indeed, assume k to be chosen minimal. Then there is a n′ ∈ N with
ml /∈ Kn for all n ≥ n′ and 1 ≤ l < k. For each n ∈ N , we see by (ii) that
the number of members of Cn that contain mk is increased since k is also the
smallest index with respect to (ii). Since N is infinite this implies that there
are infinitely many members of T that contain mk, contradicting that T is
thin.

Next, suppose there is for each k a nk ∈ N such that mk /∈ Kn for all
n ≥ nk. Putting C∗ :=

⋃∞
i=1 Ci, we consequently get that

∑
D∈C∗ D = ∅,

which, as C∗ ⊇ C0 = {T} 6= ∅, contradicts that ∅ has a unique representation
in T .

For a locally finite graph G, Proposition 7.3 provides an alternative way
to show that C(G) is closed. Indeed, we only need to apply Proposition 7.3
to the set of fundamental circuits of an end-faithful spanning tree, which is,
by Theorem 6.13, a thin generating set of C(G).

In a similar way, we may conclude from Proposition 7.3 that the cuts are
closed under thin sums. However, this is more easily done using the simple
Lemma 4.11.
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Chapter 8

Menger’s theorem in infinite
graphs with ends

8.1 Introduction

The topological space |G|, for a graph G, is essential in defining the topologi-
cal cycle space C(G). In this last chapter, we will encounter another problem
that is intimately related to the space |G|.

Erdős conjectured (see Nash-Williams [51]) that Menger’s theorem should
extend to infinite graphs as follows:

Erdős-Menger Conjecture. For every graph G = (V,E) and any two sets
A,B ⊆ V there is a set P of disjoint A–B paths in G and an A–B separator
X consisting of a choice of one vertex from each of the paths in P.

There are several partial results; see Aharoni [4]. In particular, Aha-
roni [3] proved the conjecture for countable graphs; we have used this result
already in Chapter 4. In Aharoni and Diestel [6], this was extended as follows:

Theorem 8.1 (Aharoni and Diestel [6]). The Erdős-Menger conjecture
holds for all graphs G = (V,E) and sets A,B ⊆ V that are separated in G
by a countable set of vertices.

In particular, the conjecture holds whenever A is countable, regardless of the
cardinality of G.

Another approach was pursued in Diestel [30]. Again, an assumption
is made that A and B are easy to separate. But this time, the notion of
separation used is topological:

Theorem 8.2 (Diestel [30]). The Erdős-Menger conjecture holds for all
graphs G = (V,E) and sets A,B ⊆ V whose closures in the topological space
|G| are disjoint.
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Although Theorem 8.2 refers implicitly to the ends of G by its closure
condition, the conclusion is the original one from Erdős’s conjecture, which
makes no reference to ends. However, there is also a natural extension of the
conjecture that does refer to ends. Here, the sets A and B may contain ends
as well as vertices. The A–B paths in P can be either finite paths linking
two vertices, or rays linking a vertex to an end, or double rays linking two
ends. Similarly, the separator X may contain ends (that lie in A or B), thus
blocking any ray belonging (= converging) to that end. This extension was
proposed in Diestel [26], and found to be true for countable graphs under
certain necessary restrictions for A and B.

In this chapter, which is based on [19], we extend both Theorems 8.1
and 8.2 to ends, in the spirit of Diestel [26]. Our extension of Theorem 8.2
will build on our extension of Theorem 8.1.

We remark that recently Aharoni and Berger [5] have announced a proof
of the Erdős-Menger conjecture. If their proof holds up to scrutiny then our
results imply that the Erdős-Menger conjecture is true in the end version
too:

Theorem 8.3. [19] Let G be a graph and let A,B ⊆ V (G) ∪ Ω(G) be such
that A ∩ B = ∅ = A ∩ B, the closures being taken in |G|. Then G satisfies
the Erdős-Menger conjecture for A and B.

(For a formal definition of when a graph satisfies the Erdős-Menger conjecture
if A,B are allowed to contain ends see next section.)

We note that the condition A ∩ B = ∅ = A ∩ B is really necessary; see
Diestel [26]. The condition means that any ray whose end lies in A can be
separated from B by a finite set of vertices, and vice versa with A and B
interchanged. Note that this does not imply the much stronger condition
that A and B can be finitely separated, in which case the proof is immediate
by standard alternating path techniques; see Diestel [26]. A more typical
example for the disjointness condition is to take as A and B distinct levels of
vertices in a tree: if the tree is ℵ0-regular, for example, it contains infinitely
many disjoint paths between these levels, so A and B have disjoint closures
(in fact, are closed and disjoint) but cannot be finitely separated.

8.2 Definitions and statement of results

Fix a graph G = (V,E). Recall that the set of ends of G is denoted by
Ω = Ω(G), and we write G = (V,E,Ω) to refer to G together with its set of
ends.
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Following [19], we provide some more required terminology. In contrast
to previous chapters, we define paths here in a more general way: Paths in
G can be finite paths (which contain at least one vertex), rays, double rays,
or singleton sets {ω}, where ω is an end of G. The closure of an infinite path
P in |G| contains one or two ends of G. We will often consider such an end
as the first or last point of P , and when we say that two paths are disjoint
then these points too shall be distinct. (The first and last point of a path
P = {ω}, of course, is ω.) For A,B ⊆ V ∪ Ω, a path is an A–B path if its
first but no other point lies in A and its last but no other point lies in B.

The union of a ray R and infinitely many disjoint paths starting on R but
otherwise disjoint from R is a comb with spine R. The last points (vertices
or ends) of those paths are the teeth of the comb. We will frequently use the
following simple lemma:

Lemma 8.4. In the graph G = (V,E,Ω) let R be a ray of an end ω, and let
X ⊆ V ∪ Ω such that ω /∈ X. Then ω ∈ X if and only if G contains a comb
with spine R and teeth in X.

A set X ⊆ V ∪Ω is an A–B separator in a subspace T ⊆ |G| if every path
P in T with its first point in A and its last point in B satisfies P ∩X 6= ∅.
(We express this informally by saying that “P meets X”, though strictly
speaking we shall mean P rather than just P .) We say that a set Y ⊆ V ∪Ω
lies on a set P of disjoint A–B paths if Y consists of a choice of exactly
one vertex or end from every path in P. We say that G satisfies the Erdős-
Menger conjecture for A and B, or that the Erdős-Menger conjecture holds for
G,A,B, if |G| contains a set P of disjoint A–B paths and an A–B separator
on P. (Thus, officially, we always refer to the ends version of the conjecture.
But this is compatible with the traditional terminology: if neither A nor B
contains an end then neither can any A–B path, so the conjecture with ends
automatically defaults to the original conjecture in this case.)

We can now state the two main results of this chapter. First, our extension
of Theorem 8.1:

Theorem 8.5.[17] Let G = (V,E,Ω) be a graph, let A,B ⊆ V ∪ Ω satisfy
A∩B = ∅ = A∩B, and suppose that there exists a countable A–B separator
X ⊆ V ∪Ω in G. Then G satisfies the Erdős-Menger conjecture for A and B.

In particular, the ends version of the Erdős-Menger conjecture is true
whenever A is countable.

Our second main result, whose proof builds on Theorem 8.5, extends
Theorem 8.2 fully to its natural topological setting:

Theorem 8.6. [17] Every graph G = (V,E,Ω) satisfies the Erdős-Menger
conjecture for all sets A,B ⊆ V ∪ Ω that have disjoint closures in |G|.
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Let us complete this section with an outline of the proofs to come, and
of how this chapter is organised.

The proof of Theorem 8.5 will occupy us for the next two sections. It runs
roughly as follows. Most of the proof – all of Section 8.3 – will be spent on
transferring our problem to an equivalent problem in which G is replaced with
a suitable minor and A and B consist of vertices only. In this new situation,
the countable A–B separator X – which likewise may be assumed to consist
of vertices only – divides G into two parts: one between X and A (including
both) and the rest (which includes B). We now apply Theorem 8.1 to obtain
an A–X separator Y on a system of disjoint A–X paths in the first part.
Note that Y is again countable, and it separates A from B in G. Repeating
the same procedure for the part of G between Y and B yields a system of
Y –B paths with a separator Z on it, which again separates A from B. These
paths can be concatenated with the A–Y segments of the first, to give a
system of disjoint A–B paths (with the A–B separator Z on it). It remains
to transfer this solution back to the original sets A,B containing ends, in the
original graph G.

In Section 8.5 we prove Theorem 8.6. Employing techniques developed
in Section 8.3 and in Diestel [30], we will eliminate all ends in the closures
of A and B. Then the remaining ends can be discarded as well. In this
way, the problem is reduced to a rayless graph, for which the Erdős-Menger
conjecture is known to hold:

Theorem 8.7 (Aharoni [2], Polat [53]). The Erdős-Menger conjecture holds
for rayless graphs.

8.3 The reduction lemma

In this section we develop further some techniques from Diestel [26] designed
to reduce the ends versions of the Erdős-Menger conjecture to the related
vertex versions. Observe that in the finite Menger theorem we can ignore
all the vertices in A ∩ B and work with the graph G − (A ∩ B) instead. In
an infinite graph, however, we have to take care that no end in A ∪ B is
destroyed or split when the vertices of A ∩ B are deleted from G.

Lemma 8.8.[19] Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪Ω satisfy

A ∩ (B \B) = ∅ = (A \ A) ∩B.

Then for the graph G′ := G−(A∩B∩V ) there are sets A′, B′ ⊆ V (G′)∪Ω(G′)
satisfying
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(i) |A′| ≤ |A|;

(ii) if A ⊆ V then A′ ⊆ A, and if B ⊆ V then B ′ ⊆ B;

(iii) A′ ∩B′ = ∅ = A′ ∩B′;

(iv) if G′ satisfies the Erdős-Menger conjecture for A′ and B′, then G sat-
isfies it for A and B.

Proof. Put A′ := A \ B and B′ := B \ A, both of which are subsets of |G|.
Consider a ray R of an end α in A′ or B′, say in A′. Then R has a tail
in G′. Indeed, if not then there are vertices of A ∩ B ∩ V ⊆ B in every
neighbourhood of α ∈ A \ B. Consequently, α ∈ A ∩ (B \ B), which is a
contradiction. Similarly, two rays R1, R2 in G′ of which R1 is a ray of an
end ω ∈ A′ ∪ B′ are equivalent in G′ if and only if they are equivalent in G.
Indeed, if R1 and R2 are equivalent in G then there is a ray R3 ∈ ω that
meets both of R1 and R2 infinitely often. Now R3 has a tail in G′, showing
that R1 and R2 are also equivalent in G′.

Thus, mapping every end of G in A′ ∪ B′ to the unique end of G′ that
contains tails of its rays defines a bijection between the ends in A′ ∪ B′ and
certain ends in G′. Using this bijection (and a slight abuse of notation) we
may view A′ and B′ also as subsets of V (G′) ∪ Ω(G′). Clearly, A′ ∩ B′ is
empty and hence (iii) is satisfied. Also, (i) and (ii) are trivial.

For (iv), let X ′ be an A′–B′ separator on a set of disjoint A′–B′ paths P ′
in G′. Adding to P ′ the trivial paths {x} for all x ∈ A ∩B yields a set P of
disjoint A–B paths on the A–B separator X := X ′ ∪ (A ∩B).

Later on, in Lemma 8.12, we shall need a family of disjoint subgraphs
of G (with certain properties) such that every end of A lies in the closure
of one of these subgraphs. Such a family cannot always be found. But our
next lemma finds instead a family of subgraphs such that the ends of A not
contained in their closures form a set I that can be ignored: those ends will
automatically be separated from B by any (A \ I)–B separator on a set of
disjoint A–B paths.

Lemma 8.9. [19] Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪ Ω be
such that A ∩ B = ∅ = A ∩ B. Then for every set AΩ ⊆ A ∩ Ω there exist
a set I ⊆ AΩ, an ordinal µ∗, and families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ such that,
for every µ < µ∗, the graph Gµ− Sµ is a component of G− Sµ with Sµ as its
finite set of neighbours, and

(i) Gµ − Sµ ∩ B = ∅;

(ii) if Gµ 6= ∅ then Gµ ∩ AΩ 6= ∅;
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(iii) V (Gν ∩Gµ) ⊆ Sν ∩ Sµ for all ν < µ.

Moreover,

(iv) for every end α ∈ AΩ \ I there is a µ < µ∗ with α ∈ Gµ;

(v) every (A \ I)–B separator on a set of disjoint (A \ I)–B paths is also
an A–B separator.

Proof. We construct the families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ and a transfinite
sequence I0 ⊆ I1 ⊆ . . . ⊆ AΩ recursively. The sets Iµ (µ < µ∗) will serve as
precursors to I. To simplify notation, we write Cµ := Gµ − Sµ for every µ.
For the construction, we will in addition to (i)–(iii) require for every µ that

(vi) Iµ ∩Gν = ∅ for all ν ≤ µ.

We start by setting I0, G0, S0 := ∅. Consider the least ordinal µ > 0 such
that the above sets are already defined for all λ < µ. If µ is a limit, we set

Iµ :=
⋃

λ<µ

Iλ

and Gµ, Sµ := ∅. This choice clearly satisfies (i)–(iii) and (vi).
Suppose now that µ is a successor, µ = λ+ 1 say. If every end in AΩ \ Iλ

lies in some Gν with ν < µ, we set µ∗ := µ and terminate the recursion.
So suppose there is an end α ∈ AΩ \ Iλ that lies in no earlier Gν. Then, if
possible, choose a finite vertex set S such that C(S, α) avoids all Gν with
ν < µ.

Such a choice of S is impossible if and only if

for every finite S ⊆ V there is a ν < µ with C(S, α) ∩Gν 6= ∅. (8.1)

In this case we choose to ignore α, i.e. set Iµ := Iλ ∪ {α} and Gµ, Sµ := ∅.
Again the requirements (i)–(iii) are clearly met, while (vi) holds by the choice
of α.

Now suppose we can find S as desired. As A ∩ B = ∅, we can also
find a basic open neighbourhood Ĉ(S ′, α) of α in |G| that is disjoint from
B. We now define Sµ as the set of neighbours of C(S ∪ S ′, α) and Gµ :=
G[Sµ ∪ C(Sµ, α)]. Then (i) holds since Sµ ⊇ S ′, while (ii) holds as α ∈ Gµ.
To see (iii), first note that

Gν ∩ Cµ = ∅ for all ν < µ

by the choice of S. So, all we have to show is that Gν ∩ Sµ ⊆ Sν. Consider
a vertex v ∈ Gν ∩ Sµ. Since Sµ is the set of neighbours of Cµ, there is a
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vertex w ∈ Cµ adjacent to v. As noted above, w /∈ Gν. So v is a vertex in
Gν = Cν ∪ N(Cν) with a neighbour outside Gν, implying v /∈ Cν and hence
v ∈ Sν, as desired.

Let us finally set Iµ := Iλ and verify (vi). We only need to show that
Iµ ∩ Gµ = ∅. Suppose that intersection contains an end α′. Let µ′ < µ be
minimal such that α′ ∈ Iµ′ . Then (8.1) should have been satisfied for µ′ and
α′, but fails with S := Sµ as C(Sµ, α

′) = Cµ, a contradiction.
Having defined Iµ, Gµ and Sµ for all µ < µ∗ so that (i)–(iii) and (vi) are

satisfied, we put

I :=
⋃

µ<µ∗
Iµ.

Together with the definition of µ∗ this implies (iv). Observe that from (vi)
we obtain I ∩Gµ = ∅ for all µ < µ∗.

To establish (v) let P be a system of disjoint (A \ I)–B paths and X an
(A \ I)–B separator on P. Now suppose that X is not an A–B separator in
|G|, i.e. there is a path Q from A to B that avoids X. By turning Q into a
path Q̃ from A \ I to B that avoids X, we will obtain a contradiction.

We may assume that Q starts at an end α ∈ I. Let µ be the step at which
α was added to I, i.e. let µ be minimal with α ∈ Iµ. Choose a finite vertex
set S such that C(S, α) is disjoint from B (this is possible, as A ∩ B = ∅).
Then any path of P that meets C(S, α) must pass through S. Hence only
finitely many paths of P can meet C(S, α), and so Xα := X ∩C(S, α) is also
finite. Conditions (iii) and (iv) ensure that every end in Xα lies in exactly
one Cλ; let {λ1, . . . , λm} be the set of these λ. Then for

S ′ := S ∪ (Xα ∩ V ) ∪
m⋃

i=0

Sλi

we have
C(S ′, α) ∩X = ∅.

Now, all we need is a point of A \ I that lies in C(S ′, α) (and thus can be
used to change Q into the desired path). Indeed, if there is an ordinal λ < µ
such that Gλ 6= ∅ and

Cλ ⊆ C(S ′, α), (8.2)

we can complete the proof as follows. By (ii) for λ there will be an end α′ ∈ A
in Cλ ⊆ C(S ′, α). Since I ∩Gλ = ∅, we have α′ ∈ A \ I. Take an α′–Q path
P in C(S ′, α) with last vertex x, say. Then P avoids X, and hence so does
the path Q̃ := PxQ. Thus, Q̃ is as desired.

So suppose there is no ordinal λ < µ satisfying (8.2). Then for all λ <
µ we have either Cλ ∩ C(S ′, α) = ∅ or Cλ ∩ S ′ 6= ∅. As all the Cλ are
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disjoint by (iii), only finitely many of them meet S ′; let λm+1, . . . , λn be the
corresponding ordinals. Then

S ′′ := S ′ ∪
n⋃

i=m+1

Sλi

satisfies C(S ′′, α) ∩ Cλ = ∅ for all λ < µ.
However, Gλ ∩ C(S ′′, α) cannot be empty for all λ < µ, as this would

contradict (8.1) for step µ with S := S ′′. So there exists an ordinal λ < µ
with Sλ∩C(S ′′, α) 6= ∅. A vertex v in this intersection must have a neighbour
in Cλ, which then also lies in S ′∪C(S ′, α) because C(S ′′, α) ⊆ C(S ′, α). Thus,

(S ′ ∪ C(S ′, α)) ∩ Cλ 6= ∅.

Since Cλ * C(S ′, α) by assumption, this implies that Cλ meets S ′. But then
λ ∈ {λm+1, . . . , λn} and hence Sλ ⊆ S ′′, contradicting the fact that v lies in
both Sλ and C(S ′′, α).

For our end-to-vertex reduction we need two more lemmas.

Lemma 8.10 (Diestel [26]). Let H be a subgraph of a graph G, let S ⊆
V (H) be finite, and let T ⊆ V (H) ∪ Ω(G) be such that T ⊆ H. Then H
contains a set P of disjoint S–T -paths and an S–T -separator (in H) on P.

For a set T of vertices in a graph H, a T -path is a path that meets T
only in its first and last vertex. A set of paths will be called disjoint outside
a given subgraph Q ⊆ H if distinct paths meet only in Q.

Lemma 8.11 (Stein [57]; see also Diestel [26]). Let H be a graph,
T ⊆ V (H) finite, and k ∈ N. Then H has a subgraph H ′ containing T such
that for every T -path Q = s . . . t in H meeting H − H ′ there are k distinct
T -paths from s to t in H ′ that are disjoint outside Q.

Our next lemma allows us to replace the set A ⊆ V ∪ Ω in Theorem 8.5
with a set A′ consisting only of vertices.

Lemma 8.12. [19] Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪ Ω be
such that A ∩ B = ∅ = A ∩ B. Then there are a minor G′ = (V ′, E ′,Ω′) of
G and sets A′ ⊆ V ′, B′ ⊆ V ′ ∪ Ω′ satisfying

(i) |A′| ≤ |A|;

(ii) if B ⊆ V then B′ ⊆ B;

(iii) A′ ∩B′ = ∅ = A′ ∩ B′;
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(iv) G satisfies the Erdős-Menger-conjecture for A and B if G′ satisfies it
for A′ and B′.

Proof. Applying Lemma 8.9 with AΩ := A ∩ Ω we obtain an ordinal µ∗,
subgraphs Gµ, finite vertex sets Sµ and a set of ends I ⊆ A. Our aim is to
change G into G′ by deleting and contracting certain connected subgraphs
of our graphs Gµ − Sµ. By Lemma 8.9 (iii) we shall be able to do this
independently for the various Gµ: for each µ < µ∗ separately, we shall find
in Gµ − Sµ a set D1(µ) of connected subgraphs to be deleted, and another
set D2(µ) of connected subgraphs that will be contracted.

Fix µ < µ∗. If Gµ is empty we let D1(µ) = D2(µ) = ∅. Assume now that
Gµ 6= ∅. Put Aµ := A∩Gµ. Applying Lemma 8.10 to H = Gµ we find in Gµ

a finite set P of disjoint Sµ–Aµ paths and an Sµ–Aµ separator Xµ on P. We
write Xµ = Uµ ∪ Oµ, where Uµ = Xµ ∩ V and Oµ = Xµ ∩ Ω, both of which
are finite since |Xµ| ≤ |P| ≤ |Sµ|. Moreover,

Uµ separates Sµ from Aµ \Oµ in G. (8.3)

Indeed, every Sµ–(Aµ \ Oµ) path in G lies in Gµ and hence meets Xµ, and
since it cannot meet Oµ unless it ends there, it meets Xµ in Uµ.

We define D1(µ) as the set of all the components D of G − Uµ whose
closure D meets Aµ \Oµ. By (8.3), these components satisfy D ⊆ Gµ − Sµ,
and their neighbourhood N(D) ⊆ Uµ in G is finite. In addition,

D ∩Oµ = ∅ for all D ∈ D1(µ). (8.4)

For if α ∈ D ∩ Oµ, say, and P is the Sµ–Aµ path in P that ends in α, then
P has a tail in D. Since P does not meet Uµ ⊇ N(D), this implies P ⊆ D.
Consequently, Sµ ∩D is not empty as it contains at least the first vertex of
P . This contradicts D ⊆ Gµ − Sµ.

Put
Hµ := Gµ −

⋃
D1(µ).

Note that, as every v ∈ Uµ lies on a path in P,

Gµ contains a set of disjoint Hµ–Aµ paths whose set of first points
is Uµ.

(8.5)

By (8.3) and the definition of Hµ, we have Hµ∩A ⊆ Uµ∪Oµ = Xµ. Since
Oµ is finite, we can extend Uµ ∪Sµ to a finite set Tµ ⊆ V (Hµ) that separates
the ends in Oµ pairwise in G. Let H ′µ be the finite subgraph of Hµ containing
Tµ which Lemma 8.11 provides for k := |Sµ|+ 1, and for each α ∈ Oµ let Dα

be the component of G − H ′µ to which α belongs. Finally, we conclude our
definitions for µ by setting D2(µ) := {Dα |α ∈ Oµ}.
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Define for i = 1, 2

Di :=
⋃

µ<µ∗
Di(µ).

Observe that, by Lemma 8.9 (iii) and since their neighbourhoods in G are
finite, the elements of D1 ∪ D2 have pairwise disjoint closures.

Before we can define G′, we first have to introduce a graph G] =
(V ], E],Ω]) from which we will obtain G′ by deleting certain vertices. Let G]

be obtained from G−⋃D1 by contracting every Dα ∈ D2 to a single vertex
aα, and put

A∗ := {aα |Dα ∈ D2}.
Then for Z :=

⋃D1 ∪
⋃D2 we have

G− Z = G ∩G] = G] − A∗.

By Lemma 8.9 (iii) and by (8.3), the union of the sets of paths in (8.5)
for all µ < µ∗ is a set of disjoint paths. Thus, for U :=

⋃
µ<µ∗ Uµ

there is a set of disjoint U–A paths whose set of first points is U ,
and whose paths meet G] only in U .

(8.6)

An important property of G] is that the ends of G in B ∩ Ω correspond
closely to ends of G]. To establish this correspondence formally, we begin
with the following observation:

Every ray of an end β ∈ B has a tail in G− Z. (8.7)

To see this, recall that all the D ∈ D1 ∪ D2 have pairwise disjoint closures,
and that each of them is a connected subgraph of G whose closure contains
an end or a vertex of A. Hence, a ray R of β meets only finitely many
D ∈ D1 ∪D2, as we could otherwise find infinitely many disjoint R–A paths,
giving A ∩ B 6= ∅ by Lemma 8.4 – a contradiction. Also, R meets every
D ∈ D1 ∪ D2 only finitely often. Indeed, D lies in Gµ for some µ < µ∗ and
is thus, by Lemma 8.9 (i), separated from β by its finite set of neighbours
N(D). This establishes (8.7).

Let R1, R2 be two rays in G ∩G], and assume that the end of R1

lies in B. Then R1 and R2 are equivalent in G if and only if they
are equivalent in G].

(8.8)

To prove (8.8), suppose first that R1, R2 are equivalent in G, i.e. belong to the
same end β ∈ B. Then there is a ray R3 that meets both R1 and R2 infinitely
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often, and hence ends in β. By (8.7), R3 has a tail in G − Z = G] − A∗,
showing that R1 and R2 are equivalent also in G].

Conversely, if R1 and R2 are joined in G] by infinitely many disjoint paths,
we can replace any vertices aα ∈ V ] \ V = A∗ on these paths by finite paths
in Dα to obtain infinitely many disjoint R1–R2 paths in G. This completes
the proof of (8.8).

We can now define our correspondence between the ends in B and certain
ends of G]. For every end β ∈ B there is by (8.7) an end β ′ ∈ Ω] such that
β ∩ β ′ 6= ∅. By (8.8), this end β ′ is unique and the map β 7→ β ′ is injective.
Moreover,

B] := (B ∩ V ) ∪ {β ′ | β ∈ B ∩ Ω} ⊆ V ] ∪ Ω]

by Lemma 8.9 (i). For each µ < µ∗, let

A]µ := Uµ ∪ {aα |α ∈ Oµ},

if Gµ 6= ∅; if Gµ = ∅, put Aµ, A
]
µ := ∅. Then let

A] :=

(
A \

( ⋃

µ<µ∗
Aµ ∪ I

))
∪
⋃

µ<µ∗
A]µ,

which is a subset of V ] by Lemma 8.9 (iii),(iv). Finally, let

G′ := G] − (A] ∩B]).

To show the assertions (i)–(iv), we will apply Lemma 8.8 to the graph G]

and the sets A] and B].
So, let us show that

(A] \ A]) ∩B] = ∅ = A] ∩ (B] \B])

(with closures taken in |G]|). We trivially have A] ∩ (B] \ B]) = ∅ because
A] ⊆ V ]. To prove that (A] \ A]) ∩ B] = ∅, consider an end β ′ ∈ B]. The
corresponding end β ∈ B has a neighbourhood C := Ĉ(S, β) in |G| that
avoids A. By (8.6), and since S is finite, the intersection C ∩ U =: UC is
finite. Also, as in the proof of (8.7), C may meet only finitely many Dα ∈ D2.
Denote by OC the set of the corresponding aα ∈ G]. Adding to S \ Z the
sets UC and OC then yields a finite set S ′ ⊆ V ] such that the neighbourhood
Ĉ(S ′, β ′) in |G]| even avoids A].

Thus, Lemma 8.8 is applicable and yields sets A′ ⊆ V ′ and B′ ⊆ V ′ ∪ Ω′

satisfying (iii). For (i) use Lemma 8.8 (i), and observe that |A]| ≤ |A|.
(Indeed, A] is comprised of two sets, one of which is contained in A. The
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other set,
⋃
µ<µ∗ A

]
µ, has cardinality at most |A| by (8.6).) Assertion (ii)

follows from the definition of B] and Lemma 8.8 (ii).
We now prove assertion (iv) of the lemma. Suppose G′ satisfies the Erdős-

Menger conjecture for A′ and B′. Then, by Lemma 8.8, there is also in G] a
set P ] of disjoint A]–B] paths and an A]–B] separator X ] on P ]. In order to
turn P ] into a set P := {P |P ] ∈ P ]} of disjoint A–B paths in G, consider
any P ] ∈ P ]. If the first point a of P ] lies in A we leave P ] unchanged, i.e. set
P := P ]. If a ∈ A] \ (A∪A∗), then a ∈ Uµ for some µ < µ∗, and we let P be
the union of P ] with an Aµ–Uµ path in Gµ that ends in a; this can be done
disjointly for different P ] ∈ P ] if we use the paths from (8.6). Moreover, the
Aµ–Hµ path concatenated with P ] in this way has only its last vertex in G],
so it will not meet any other vertices on P ]. Finally if a = aα ∈ A∗, we let P
be obtained from P ] by replacing a with a path in Dα that starts at the end
α and ends at the vertex of Dα incident with the first edge of P ] (the edge
incident with a). In all these cases we have P ⊆ G, because P ] has no vertex
in A∗ other than possibly a. And no vertex of P other than possibly its last
vertex lies in B, because B ∩ V = B] ∩ V ] and any new initial segment of P
lies in a subgraph Gλ − Sλ of G which avoids B by Lemma 8.9 (i).

It remains to check that the paths P just defined have distinct last points
in B even when the last points of the corresponding paths P ] are ends.
However if P ] ends in β ′ ∈ B] then its tail P ] − a ⊆ P ⊆ G is equivalent in
G] to some ray in β ′∩β, by definition of β ′. By (8.8) this implies P ]−a ∈ β,
so the last point of P is β ∈ B. And since the map β 7→ β ′ is well defined,
these last points differ for distinct P , because the corresponding paths P ]

have different endpoints β ′ by assumption.
We still need an A–B separator on P. The only vertices x ∈ X ] that do

not lie on the path P obtained from the path P ] containing x are points in
A∗. So let X be obtained from X ] by replacing every end β ′ ∈ X] ∩B] with
the corresponding end β ∈ B and replacing every aα ∈ X] ∩A∗ with the end
α ∈ A. Since P ∈ P starts in α if P ] starts in aα (and P ends in β if P ] ends
in β ′), this set X consists of a choice of one point from every path in P.

Let us then show that

X is an A–B separator in G. (8.9)

Suppose there exists a path Q ⊆ G − X that starts in A and ends in B.
Lemma 8.9 (v) enables us to choose Q as a path starting in A \ I. Our aim
is to turn Q into an A]–B] path Q′ in G] that avoids X ], which contradicts
the choice of X ].

If Q meets
⋃D1, it has a last vertex there by (8.7), in D ∈ D1(λ), say.

Its next vertex a lies in Uλ, by the definition of D. We then define (for the
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time being) Q′ as the final segment aQ of Q starting at a. If Q has no vertex
in
⋃D1, then either the first point of Q is a vertex a ∈ A∩A] (in which case

we put Q′ := Q), or Q starts at an end α ∈ A \ I. By Lemma 8.9 (iv), there
exists a λ < µ∗ such that α ∈ Gλ, which implies α ∈ Oλ. We make a := aα
the starting vertex of Q′ and continue Q′ along Q, beginning with the last
Dα–G] edge on Q. Our assumption of α /∈ X implies that aα /∈ X ], by the
definition of X. Thus in the first two cases, Q′ is now a path in G−⋃D1; in
the third, Q′ is a path in (G−⋃D1)/Dα, which starts at the vertex a ∈ A]

and avoids X ].

However, Q′ may still meet D2. And although we know from (8.7) that
Q′ has a last vertex in

⋃D2, say in Dα′, we cannot simply shorten Q′ to a
path aα′Q

′ in G], because it may happen that aα′ ∈ X]. Instead, we will use
Lemma 8.11 to replace any segments of Q′ that meet some Dα ∈ D2 (with
aα 6= a) by paths through the corresponding Gµ that avoid X ]. As we only
have to deal with a finite initial segment of Q′ and the Dα are all disjoint,
we are able to modify Q′ step by step. Eventually, we will obtain a (walk
that can be pruned to a) path Q′ in G] that avoids X ], yielding the desired
contradiction.

So consider a segment of Q′ that meets some Dα ∈ D2. By definition of
Dα we may assume that segment to be a Tµ-path sQ′t in Hµ, where µ is such
that Dα ⊆ Gµ. By definition of H ′µ (which is a subgraph of G] by Lemma 8.9
(iii), i.e. no parts of H ′µ were deleted or contracted when we defined G]),
there are |Sµ|+ 1 paths from s to t in H ′µ that are disjoint outside sQ′t. But
H ′µ contains at most |Sµ| vertices from X ]: since these lie on disjoint paths
ending in B] and Sµ separates H ′µ ⊆ Gµ from B in G and hence from B] in
G], all of these paths must meet Sµ. So one of our |Sµ|+ 1 s–t paths in H ′µ
avoids X ], and we can use this path to replace sQ′t on Q′. This completes
the proof of (8.9).

We can now repeat the reduction for the ends of B.

Lemma 8.13. [17] Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪ Ω be
such that A ∩ B = ∅ = A ∩ B. Then there are a minor G′ of G and sets
A′, B′ ⊆ V (G′) satisfying

(i) |A′| ≤ |A|,

(ii) G satisfies the Erdős-Menger conjecture for A and B if G′ satisfies it
for A′ and B′.

Proof. Apply Lemma 8.12 twice, once for A and once for B.
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One immediate consequence of Lemma 8.13 is the validity of the Erdős-
Menger conjecture for ends, i.e. of Theorem 8.3, assuming the announced
proof of Aharoni and Berger [5] to be correct. As another consequence we
obtain the main part of Theorem 8.5:

Proposition 8.14.[17] Let G = (V,E,Ω) be a graph, let A,B ⊆ V ∪ Ω be
such that (A \ A) ∩ B = ∅ = A ∩ (B \ B), and let A be countable. Then G
satisfies the Erdős-Menger conjecture for A and B.

Proof. Use Lemmas 8.8 and 8.13, and Theorem 8.1.

The next section will be spent on strengthening Proposition 8.14 to the
full generality of Theorem 8.5.

8.4 Countable separators

In this section we prove Theorem 8.5. But first, let us establish a weaker
version in which the separator X also satisfies A ∩ (X \X) = ∅:

Lemma 8.15. [17] Let G = (V,E,Ω) be a graph, let A,B ⊆ V ∪ Ω satisfy
A ∩ B = ∅ = A ∩ B, and suppose there exists a countable A–B separator
X ⊆ V ∪ Ω in G with A ∩ (X \X) = ∅. Then G satisfies the Erdős-Menger
conjecture for A and B.

Proof. First, we find a countable A–B separator Y and a set PY of disjoint
Y –A paths satisfying

(a) in every y ∈ Y there starts a path of PY ;

(b) Y ∩ Ω ⊆ A ∪B;

(c) (Y \ Y ) ∩B = ∅ = Y ∩ (B \B).

We may clearly assume that X ∩ Ω ⊆ A ∪ B. As A ∩ B = ∅, this implies
that X ∩ (A \ A) = ∅. As also A ∩ (X \X) = ∅ and X is countable, we can
use Proposition 8.14 to obtain a set P1 of disjoint X–A paths and an X–A
separator Y on P1 in G.

We claim that Y together with the set

PY := {yP |P ∈ P1 and y ∈ Y ∩ P}

of disjoint Y –A paths is as desired.
Indeed, Y is countable because P1 is. Further, Y is an A–B separator

in G: any path starting in B and ending in A meets X and thus has a
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subpath P starting in X and ending in A. But then P also meets Y . The
conditions (a) and (b) are easily checked; for the latter recall that we assumed
X ∩ Ω ⊆ A ∪ B.

Next, we show (c). By (b), any end α ∈ Y ∩ (B \B) lies in A∩B, which
is empty by assumption. Now consider an end β ∈ (Y \ Y ) ∩ B. Every
neighbourhood of β contains a point of Y ; it even contains infinitely many
points of Y , as otherwise we could find a neighbourhood containing no point
of Y . Choose a neighbourhood Ĉ(S, β) of β that contains no point of A
(which is possible, as A ∩ B = ∅). The infinitely many points of Y lying in
Ĉ(S, β) are linked to A by disjoint paths in PY . All of these infinitely many
paths must meet the finite set S, a contradiction. Therefore, (c) is proved.

Having found Y and PY , we now apply Proposition 8.14 again, this time
for the sets Y and B. Thus, we get a system P2 of disjoint B–Y paths and
a B–Y separator Z on P2 in G.

Finally, let P be the system of disjoint B–A paths obtained by concate-
nating every B–Y path P ∈ P2 with the unique Y –A path P ′ ∈ PY from
(a) that starts at the endpoint of P . Note that these are indeed paths: if P
terminates in an end ω ∈ Y then, by (b), ω ∈ A or ω ∈ B. In the former case
P ′ is trivial, in the latter case P . Clearly, Z lies on P. All that is left to show
is that Z is also an A–B separator. So consider a path P that starts in A and
ends in B. By definition of Y , P meets Y and thus has a subpath starting
in Y and ending in B. This subpath cannot avoid the Y –B separator Z.

We can now complete the proof of Theorem 8.5, which we restate:

Theorem 8.5.[17] Let G = (V,E,Ω) be a graph, let A,B ⊆ V ∪ Ω satisfy
A∩B = ∅ = A∩B, and suppose that there exists a countable A–B separator
X ⊆ V ∪Ω in G. Then G satisfies the Erdős-Menger conjecture for A and B.

Proof. We will start by constructing a set A′ ⊆ A and a countable A′–B
separator X ′ with

(X ′ \X ′) ∩ A′ = ∅, (8.10)

to which we will then apply Lemma 8.15.
Using Lemma 8.9 with

AΩ := (X \X) ∩ A,

we find I, µ∗ and families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ satisfying the assertions
(i)–(v) of Lemma 8.9. As before, write Cµ := Gµ − Sµ. Setting A′ := A \ I
and

X ′ :=
⋃

µ<µ∗
Sµ ∪

(
X \

⋃

µ<µ∗
Cµ

)
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we claim that X ′ is a countable A′–B separator satisfying (8.10).
To see that X ′ is countable, recall that the sets Cµ are disjoint for dif-

ferent µ (Lemma 8.9 (iii)), and that each Cµ with Sµ 6= ∅ contains an end
α ∈ AΩ (Lemma 8.9 (ii)). Since α ∈ X (by definition of AΩ), we have
Cµ ∩X 6= ∅, so by the countability of X there are only countably many such
µ.

Let us now show that X ′ is an A′–B separator. Consider a path Q from
A′ to B. Since X is an A–B separator, Q must meet X. If Q meets X
outside X ′, it meets X in Cµ for some µ < µ∗. By Lemma 8.9 (i), however,
Q cannot be contained in Cµ, so Q meets Sµ ⊆ X ′.

To prove (8.10), suppose there is an end ω ∈ (X ′ \X ′)∩A′. Let us show
first that

ω /∈ X. (8.11)

Suppose otherwise; then we have either ω ∈ (X \X)∩A = AΩ or ω ∈ X \X ′.
In both cases (in the first by Lemma 8.9 (iv), observe that ω /∈ I as ω ∈ A′;
in the second by construction of X ′) there is a µ < µ∗ with ω ∈ Gµ. Then

by Lemma 8.9 (iii), the sets of the form Ĉ(Sµ, ω) are neighbourhoods of ω
that avoid X ′, contradicting ω ∈ X ′ \X ′.

By (8.11), there exists a finite set S such that C(S, ω) ∩X = ∅. By our
choice of ω, however, C(S, ω) contains infinitely many vertices from X ′, and
hence from X ′ \ X ⊆ ⋃µ<µ∗ Sµ. Since each Sµ is finite, we can thus find
infinitely many µ < µ∗ and corresponding vertices sµ ∈ Sµ∩C(S, ω) that are
distinct for different µ. By Lemma 8.9 (ii) and Sµ = N(Cµ), each sµ sends

a path Pµ ⊆ G[Cµ ∪ {sµ}] to an end in AΩ ⊆ X. These Pµ are disjoint by
Lemma 8.9 (iii), so only finitely many of them meet S. Every other Pµ lies
entirely in C(S, ω), so C(S, ω) ∩ X 6= ∅. But then also C(S, ω) ∩ X 6= ∅,
contradicting our choice of S. This establishes (8.10).

Applying Lemma 8.15 to A′,B and the separator X ′ (note that A′ ∩B =
∅ = A′ ∩ B, as A′ ⊆ A), we obtain a set P of disjoint A′–B paths and an
A′–B separator on P, which by Lemma 8.9 (v) is also an A–B separator.

8.5 Disjoint closures

We restate the second main result of this chapter, which we shall prove in
this section.

Theorem 8.6. [17] Every graph G = (V,E,Ω) satisfies the Erdős-Menger
conjecture for all sets A,B ⊆ V ∪ Ω that have disjoint closures in |G|.

Our proof follows that of Theorem 8.2 as given in Diestel [30], and in
addition we will draw on techniques from the proof of Lemma 8.12. Our
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aim is to reduce our problem to rayless graphs, and then apply Theorem 8.7.
We thus need to dispose of the ends in G, which will be achieved in three
steps. First, we delete all ends in A. More precisely, we reduce the problem
to a minor G′ of G and to sets A′, B′ so that the closure of A′ contains no
ends. In the next step we repeat this procedure for B ′. To preserve what
we have gained in the first step, we have to be careful that no new ends are
introduced into A′. All this amounts to the following lemma:

Lemma 8.16. [17] Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪ Ω be
such that A ∩ B = ∅. Then there exists a minor G′ = (V ′, E ′,Ω′) of G and
sets A′, B′ ⊆ V ′ ∪ Ω′ that satisfy the following conditions:

(a) Ω′ ∩ A′ = ∅ (in particular A′ ⊆ V ′);

(b) if Ω ∩B = ∅ then Ω′ ∩B′ = ∅ (and in particular B ′ ⊆ V ′);

(c) A′ ∩ B′ = ∅; and

(d) the Erdős-Menger conjecture holds for A and B in G if it holds for A′

and B′ in G′.

Two applications of Lemma 8.16, one for A and another for B, reduces
our problem to the case that G has no ends in A∪B. We then eliminate the
remaining ends by the following lemma from Diestel [30]:

Lemma 8.17 (Diestel [30]). Let G = (V,E,Ω) be a graph, and let A,B ⊆
V be such that Ω ∩ (A ∪ B) = ∅. Then G has a rayless subgraph G′ ⊆ G
containing A ∪ B such that the Erdős-Menger conjecture for A and B holds
in G if it does in G′.

Finally, we apply Theorem 8.7 to complete the proof. It thus remains to
establish Lemma 8.16. We shall need the following easy lemma from Diestel
and Kühn [32]:

Lemma 8.18 (Diestel and Kühn [32]). Let G be a connected graph, and
let U ⊆ V (G) be an infinite set of vertices. Then G contains either a comb
with |U | teeth in U or a subdivided star with |U | leaves in U .

Proof of Lemma 8.16. First, we construct a subgraph M ⊆ G whose closure
does not contain ends of A. More formally, our aim is that in |G|

Ω ∩ A ∩M = ∅. (8.12)

Our desired graph G′ will then be obtained from a supergraph of M .
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We define M by transfinite ordinal recursion, as a limit M =
⋂
µ≤µ∗Mµ

of a well-ordered descending family of subgraphs Mµ indexed by ordinals.
Put M0 := G, and for a limit ordinal µ 6= 0 let Mµ :=

⋂
µ′<µMµ′ . Now,

consider a successor ordinal µ + 1. If Ω ∩ A ∩ Mµ = ∅ put µ∗ := µ and
M := Mµ, and terminate the recursion. Otherwise, there is an αµ ∈ Ω∩A∩
Mµ. Since A ∩ B = ∅, we can choose a finite vertex set Lµ such that the

open neighbourhood Ĉ(Lµ, αµ) is disjoint from B. Put Cµ := C(Lµ, αµ) and
Mµ+1 := Mµ−Cµ. Observe that Cµ ∩Mµ is never empty as αµ ∈Mµ. Thus,
the recursion terminates.

Let C be the set of components of G −M . For every C ∈ C put SC :=
NG(C), GC := G[V (C) ∪ SC ] and AC := A ∩ GC . We shall now proceed in
a similar way as in the proof of Lemma 8.12: in order to obtain G′ we will
delete and contract certain connected subgraphs, each of which will lie in a
C ∈ C. Thus, the GC here play a similar role as the Gµ in Lemma 8.12. Now,
in contrast to the set of neighbours Sµ we deal with there, the sets SC here
are not necessarily finite. Consequently, it may happen that two C ∈ C do
not have disjoint closures. However, for our purposes it is sufficient to know
that no end in A lies in the closure of two elements of C:

AC ∩ AD ⊆ SC ∩ SD for two different C,D ∈ C (8.13)

Indeed, suppose there is an end α ∈ AC ∩ AD = A ∩ GC ∩ GD. Then every
neighbourhood Ĉ(T, α) of α contains vertices of both GC and GD. Being
connected, C(T, α) also contains a GC–GD path, and therefore a vertex of
SC ⊆ V (M). This implies α ∈ M , a contradiction to (8.12). As no vertices
other than those of SC ∩ SD lie in AC ∩ AD, (8.13) is proved.

Now, consider a given C ∈ C. Although SC may be infinite it can be
separated from AC by finitely many vertices and ends. Indeed, we claim that

GC contains a finite set PC of disjoint SC–AC paths and a SC–AC
separator XC on PC .

(8.14)

First, consider a non-trivial SC–AC path P . P is either completely con-
tained in GC or in G−C. Suppose the latter. Then P terminates in an end
α ∈ AC . By (8.13), P can meet every D ∈ C only finitely often, hence it
meets M infinitely often, a contradiction to (8.12). Thus, every SC–AC path
lies completely in GC .

Next, let us show that each set of disjoint SC–AC paths in GC is finite.
So suppose there is a an infinite set P1, P2, . . . of such paths. Let S ⊆ SC be
the set of first vertices of the Pi. We claim there is a comb in G with teeth in
S. If not, applying Lemma 8.18 to H := C ∪⋃i∈N Pi we obtain a subdivided
infinite star with leaves in S. Since each vertex s ∈ S has degree 1 in H, the
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centre v of the star must lie in C. Let µ be the step when v was deleted from
G, i.e. µ := min{µ′ | v ∈ V (Cµ′)}. Then, the finite set Lµ separates v from
S, which is impossible. Thus, there is a comb with teeth in S. Let ω ∈ Ω be
the end of its spine. Then every neighbourhood of ω contains infinitely many
vertices of S and then also infinitely many of the Pi. Consequently, infinitely
many elements of A lie in the neighbourhood. Thus, ω ∈ SC ∩ A ⊆ M ∩ A,
a contradiction to (8.12).

Taking an inclusion-maximal (and hence finite) set of disjoint SC–AC
paths in G we see that SC is separated from AC in G by a countable separator
(namely by the union of the vertex sets of the paths together with the set
of last points). Furthermore, (8.12) implies SC ∩ AC ∩ Ω = ∅. Thus, by
Lemma 8.8 and Theorem 8.5, there is a set PC of disjoint SC–AC paths in G
and a separator XC on PC . By the preceding arguments, PC is a finite set
of paths in GC , which establishes (8.14).

For C ∈ C, put UC := XC ∩ V and OC := XC ∩ Ω. As in the proof of
Lemma 8.12 we will delete certain subgraphs of GC that lie “behind” UC
and contract others that contain ends of OC . First of all, we see that UC
separates SC from AC \OC. This is exactly the same as (8.3) in the proof of
Lemma 8.12.

We then define D1(C) as the set of all the components D of G−UC whose
closure D meets AC \OC . Because UC is an SC–(AC \OC) separator, these
components satisfy D ⊆ GC − SC , and their neighbourhood N(D) ⊆ UC in
G is finite. Also, D∩OC = ∅ for all D ∈ D1(C), which can be proved as (8.4)
of Lemma 8.12. We put HC := GC −

⋃D1(C) and see that GC contains a
set of disjoint HC–AC paths whose set of first points is UC .

To find the subgraphs which will be contracted, we extend in the proof of
Lemma 8.12 the finite set Uµ ∪ Sµ to a finite set Tµ that separates the ends
in Oµ pairwise. This enables us to apply Lemma 8.11. Here, SC may be an
infinite set, so to find a suitable finite set TC we cannot use a superset of SC .
Instead, consider for each α ∈ OC the ordinal µα for which α ∈ Cµα . Then,
the finite set Lµα separates α from SC ⊆ V (M). The union of these finitely
many finite sets together with UC can be taken as the finite set TC we need
for Lemma 8.11.

Define H ′C as the finite subgraph of HC containing TC which Lemma 8.11
provides for k := |TC | + 1, and for each α ∈ OC let Dα be the component
of G − H ′C to which α belongs. Finally, we set D2(C) := {Dα |α ∈ OC}
and Di :=

⋃
C∈C Di(C), i = 1, 2. By deleting all subgraphs in D1 and by

contracting each subgraph Dα ∈ D2 to a vertex aα we obtain the graph
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G] = (V ], E],Ω]). We put

A] := (A \
⋃

C∈C
AC) ∪

⋃

C∈C
UC ∪ {aα |Dα ∈ D2}.

Observe that A] ⊆ V ] because of (8.12).
Let us show that (a) holds for A] in G]. Indeed, suppose not. Then,

there is by Lemma 8.4 a comb K] ⊆ G] with teeth in A] and spine R, say.
Consider a R–A] path P of the comb. If P ends in a vertex of UC for some
C ∈ C then we extend P using the corresponding path in PC to a R–A path.
If P ends in one of the contracted vertices aα we substitute its last edge by a
path through Dα ending in α so that again we obtain a R–A path. Because
of (8.13), and since the Dα and all the paths in

⋃
C∈C PC are disjoint, all

these changed paths are still disjoint. Thus we have found a comb K ⊆ G
with spine R and teeth in A. Only finitely many of the R–A paths of K
may meet M as otherwise the end of R lies in the closure of both A and M ,
a contradiction to (8.12). Thus, we may assume that K is contained in a
C ∈ C. In particular, R ⊆ C ∩ G]. But the finite set XC separates C ∩ G]

from AC , contradicting that K contains infinitely many disjoint R–AC paths.
This proves (a) for A].

Making use of (8.13), we see in a similar way as in the proof of Lemma 8.12,
that every ray R of an end β ∈ B has a tail in G∩G]. There thus is a β ′ ∈ Ω]

with β ∩ β ′ 6= ∅ and it can be shown as in the proof of Lemma 8.12 that this
mapping is injective. Put

B] := (B ∩ V ) ∪ {β ′ | β ∈ B ∩ Ω} ⊆ V ] ∪ Ω].

The graph G] together with the sets A] and B] is almost what we want.
Indeed, (a) is satisfied and below we shall see that (b) and (d) hold as well.
Only (c) fails since A] and B] may share some vertices. However, A] does
not contain ends by (a). Thus

∅ = A] ∩B] ∩ Ω] = (A] \ A]) ∩ (B] \B]).

Now, in a similar way as in Lemma 8.8 we find sets A′ and B′ in the graph
G′ := G] − (A] ∩B]) such that (c) holds and properties (a), (b) and (d) are
preserved. Therefore, to finish the proof it suffices to show (b) and (d) for
A] and B] in G].

For (b), assume that Ω] ∩ B] 6= ∅. Then either B] contains ends, or
there is an end ω ∈ Ω] such that every neighbourhood Ĉ(S, ω) in G] contains
vertices of B]. In the latter case, by (a), we may suppose that Ĉ(S, ω)
does not contain vertices of A], and thus view it as a neighbourhood in G
containing vertices of B. Thus, in both cases, Ω ∩ B 6= ∅, which proves (b).
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The proof of (d) is completely analogous to the proof of (iv) in Lemma 8.12.
Note that when we change the set P ] of disjoint A]–B] paths into A–B paths,
the paths still have, by (8.13), distinct first points.
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Summary and conclusion

Diestel and Kühn were motivated by a question of Richter [54], who asked
how the fact that the fundamental circuits of every spanning tree generate
the cycle space might best be generalised to locally finite graphs. When
they developed the topological cycle space C(G) they answered this question
and showed that two other basic properties extend as well, which resulted
in Theorems 1.4 and 1.5. Only afterwards it was realised that infinite cycles
and the space C(G) are much more powerful concepts.

The main objective of this thesis was to contribute to the effort of showing
the usefulness of C(G) in extending finite theorems to locally finite graphs.
We have presented a number of results in support of this. In particular,
we have extended the following theorems to either locally finite graphs or,
slightly more generally, to graphs satisfying (1.3):

• Gallai’s theorem (Theorem 2.4);

• MacLane’s planarity criterion (Theorem 3.3);

• Kelmans’ planarity criterion (Theorem 3.22);

• Whitney’s planarity criterion (Theorem 4.6); and

• duality in terms of spanning trees (Theorem 4.17).

We have seen that each of these results either fails or is weakened considerably
if infinite cycles are disregarded.

Diestel and Kühn did not deal with the characterisation of cycle space
elements in terms of degrees but indicated that this would necessitate a
notion of an end degree. We have introduced such a notion, which enabled
us to prove the following important special case:

• for a locally finite graph G, E(G) ∈ C(G) if and only if every vertex
and every end has even degree (Theorem 5.4).

115



Moreover, we demonstrated that spanning infinite cycles are a also worthy
contender for being the right infinite analogons of Hamilton cycles. Indeed,
we showed that:

• every locally finite planar 6-connected graph with at most finitely many
ends has a Hamilton circle (Theorem 6.5).

This supports our conjecture that Tutte’s theorem about Hamilton cycles
extends to locally finite graphs.

The finite versions of these theorems together with Tutte’s generating
theorem make up a good part of what is known about the cycle space of a
finite graph. That all these extend to C(G) seems to be a very good indication
of the usefulness of C(G), and make it a quite successful and fruitful notion.

We also studied two related problems. First, we asked whether and when
minimal generating systems exist if infinite sums are allowed. Second, we
used the topological space |G| to prove certain special cases of the end version
of the Erdős-Menger conjecture.
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