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Abstract

A well-known conjecture of Erdős states that, given an infinite graph G
and sets A,B ⊆ V (G), there exists a family of disjoint A–B paths P
together with an A–B separator X consisting of a choice of one vertex
from each path in P. There is a natural extension of this conjecture in
which A, B and X may contain ends as well as vertices. We prove this
extension by reducing it to the vertex version, which was recently proved
by Aharoni and Berger.

1 Introduction

Erdős conjectured (see [6]) that Menger’s theorem should extend to infinite
graphs as follows:

Erdős-Menger Conjecture. For every graph G = (V,E) and any two sets
A,B ⊆ V there is a set P of disjoint A–B paths in G and an A–B separator X
consisting of a choice of one vertex from each of the paths in P.

A proof of this conjecture has recently been announced by Aharoni and Berger [1].

There is a natural extension of the Erdős-Menger conjecture in which the
sets A and B may contain ends as well as vertices. Here, the A–B paths in P
can be either finite paths linking two vertices, or rays linking a vertex to an end,
or double rays linking two ends. Similarly, the separator X may contain ends
(that lie in A or B), thus blocking any ray belonging (= converging) to that
end.

In this paper we prove the extended ends version of the conjecture by reduc-
ing it to the vertex version. Our proof uses a refinement of techniques developed
in [3], where this reduction was carried out for countable graphs.

The Erdős-Menger conjecture for ends is not true for arbitrary sets A and B
(of vertices and ends): a necessary condition is that the closure of A in the
topological space |G| associated with the graph G and its ends does not meet B,
and vice versa. A comprehensive introduction to this space is given in [2], and
we recall the basic definitions in Section 2. In those terms, our main result can
be stated as follows:

Theorem 1.1. Let G = (V,E,Ω) be a graph and let A,B ⊆ V ∪ Ω be such
that A ∩ B = ∅ = A ∩ B, the closures being taken in |G|. Then G satisfies the
Erdős-Menger conjecture for A and B.

One may also consider a purely topological version of the Erdős-Menger
conjecture, in which P is any set of A–B arcs in the space |G|, and the set X is
required to meet every A–B arc in |G|. This version of the conjecture can fail
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unless A and B have disjoint closures in |G|. But in that case it reduces easily
to Theorem 1.1; see [3].

2 Definitions and statement of result

The basic terminology we use can be found in [2]. All the graphs in this paper
are simple and undirected. As most of the graphs we deal with are infinite, we
recall a few (standard) concepts for infinite graphs. Let G = (V,E) be a fixed
infinite graph.

A 1-way infinite path is called a ray, a 2-way infinite path a double ray. The
subrays of rays or double rays are their tails. The ends of G are the equivalence
classes of rays under the following equivalence relation: two rays R1, R2 in G are
equivalent if no finite set of vertices separates them. As one easily observes, this
condition holds if and only if there are infinitely many disjoint (finite) R1–R2

paths. This in turn is equivalent to the existence of a ray that meets both R1

and R2 infinitely often. The set of ends of G is denoted by Ω = Ω(G), and we
write G = (V,E,Ω) to refer to G together with its set of ends.

Paths in G can be finite paths (which contain at least one vertex), rays,
double rays, or singleton sets {ω}, where ω is an end of G.

We will now define the standard topology on G together with its ends. We
start by viewing G itself as a 1-complex. (Thus, the basic open neighbourhoods
of an inner point of an edge are the open intervals on the edge containing that
point, while the basic open neighbourhoods of a vertex v are the unions of half-
open intervals containing v, one from every edge at v.1 The point set of this
1-complex will again be denoted by G.) To extend this topology to the set G∪Ω,
we have to define a neighbourhood basis for every end ω ∈ Ω. To do so, consider
any finite set S ⊆ V . Then G−S has exactly one component C = C(S, ω) that
contains a tail of every ray in ω. We say that ω belongs to C, and write C(S, ω)
for the component C together with all the ends of G belonging to C. As the
basic open neighbourhoods of ω we now take all sets of the form

Ĉ(S, ω) := C(S, ω) ∪ E′(S, ω),

where S is any finite subset of V and E ′(S, ω) is any union of half-edges
(z, y] ⊆ e, one for every edge e = xy with x ∈ S and y ∈ C (with z ∈ e̊).

Let |G| denote the topological space on G ∪ Ω thus defined. (When G is
locally finite, |G| is a compact space known as the Freudenthal compactification
of G; see [2, 4, 5] for more.)

We write X for the closure of a set X ⊆ |G| in |G|. For example, the set
C(S, ω) defined above is the closure in |G| of the set C(S, ω). Generally, the
difference between a subgraph H and its closure H is always a set of ends of G
(possibly empty). These need not correspond to ends of H and should not
be confused with them. For example, if G is the 1-way infinite ladder and H
consists of all the rungs, then H \ H consists of one point, the unique end ω

1Alternatively, we might fix for every edge [u, v] a homeomorphism with the real interval
[0, 1] and take as basic open neighbourhoods for a vertex v only those unions of half-open
edges [v, z) whose images in [0, 1] have the same length. This gives a different topology when
vertices have infinite degrees, but since all relevant sequences of points will be sequences of
vertices or of ends, the difference does not matter.
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of G. But H itself has no ends. Similarly, the subgraph H ′ = G − E(H) of G
is a double ray and thus has two ends, but H ′ \H ′ = {ω} as before.

The union of a ray R and infinitely many disjoint paths starting on R but
otherwise disjoint from R is a comb with spine R. The last points (vertices
or ends) of those paths are the teeth of the comb. We will frequently use the
following simple lemma:

Lemma 2.1. In the graph G = (V,E,Ω) let R be a ray of an end ω, and let
X ⊆ V ∪ Ω such that ω /∈ X. Then ω ∈ X if and only if G contains a comb
with spine R and teeth in X.

The closure of an infinite path P contains one or two ends of G. (Even if P
is a double ray, its closure may contain only one end, as in the ladder example
above.) We will often consider such an end as the first or last point of P , and
when we say that two paths are disjoint then these points too shall be distinct.
(The first and last point of a path P = {ω}, of course, is ω.) For A,B ⊆ V ∪Ω,
a path is an A–B path if its first but no other point lies in A and its last but no
other point lies in B.

A set X ⊆ V ∪ Ω is an A–B separator in a subspace T ⊆ |G| if every path
P in T with its first point in A and its last point in B satisfies P ∩X 6= ∅. (We
express this informally by saying that “P meets X”, though strictly speaking
we shall mean P rather than just P .) We say that a set Y ⊆ V ∪Ω lies on a set
P of disjoint A–B paths if Y consists of a choice of exactly one vertex or end
from every path in P . We say that G satisfies the Erdős-Menger conjecture for
A and B, or that the Erdős-Menger conjecture holds for G,A,B, if |G| contains
a set P of disjoint A–B paths and an A–B separator on P . (Thus, officially, we
always refer to the ends version of the conjecture. But this is compatible with
the traditional terminology: if neither A nor B contains an end then neither
can any A–B path, so the conjecture with ends automatically defaults to the
original conjecture in this case.)

The terms needed to state our main result are now precisely defined. We
shall prove the following slight strengthening of Theorem 1.1 which, as in the
vertex case, allows the intersection of A and B itself to be non-empty:

Theorem 2.2. Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪Ω be such that
A ∩ (B \ B) = ∅ = (A \ A) ∩ B. Then G satisfies the Erdős-Menger conjecture
for A and B.

We remark that the disjointness condition in Theorem 2.2 is necessary [3];
a counterexample for when it is violated is given in [3]. The condition means that
any ray whose end lies in A can be separated from B by a finite set of vertices,
and vice versa with A and B interchanged. Note that this does not imply the
much stronger condition that A and B can be finitely separated, in which case
the proof is immediate by standard alternating path techniques [3]. A more
typical example for the disjointness condition is to take as A and B distinct
levels of vertices in a tree: if the tree is ℵ0-regular, for example, it contains
infinitely many disjoint paths between these levels, so A and B have disjoint
closures (in fact, are closed and disjoint) but cannot be finitely separated.
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3 Proof of the theorem

Our aim is to reduce the ends version of the Erdős-Menger conjecture, Theo-
rem 2.2, to the original vertex version as stated in the Introduction and recently
proved by Aharoni and Berger.

We begin by showing that, as in the vertex case of the conjecture, we may
assume without loss of generality that A∩B = ∅. In the vertex case, one simply
deletes A∩B from the graph, finds a path system and separator in G− (A∩B),
and then adds the deleted vertices both to the path system (as singleton A–B
paths) and to the separator, to obtain a solution for G. When A∩B is infinite,
however, deleting it can result in the destruction or splitting of ends. Before
we allow ourselves to assume that A ∩ B = ∅, therefore, we have to make sure
that this will not affect any ends in A or B. Our first lemma ensures this, and
thereby reduces the stronger form of our theorem (Theorem 2.2) to the version
stated in the introduction, Theorem 1.1.

Lemma 3.1. Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪ Ω satisfy

A ∩ (B \B) = ∅ = (A \A) ∩ B.

Then for the graph G′ := G− (A∩B ∩V ) there are sets A′, B′ ⊆ V (G′)∪Ω(G′)
satisfying the following conditions:

(i) if A ⊆ V then A′ ⊆ A, and if B ⊆ V then B′ ⊆ B;

(ii) A′ ∩ B′ = ∅ = A′ ∩ B′;

(iii) if G′ satisfies the Erdős-Menger conjecture for A′ and B′, then G satisfies
it for A and B.

Proof. Put A′ := A \ B and B′ := B \ A, both of which are subsets of |G|.
Consider a ray R of an end α in A′ or B′, say in A′. Then R has a tail in G′.
Indeed, if not then there are vertices of A∩B ∩ V ⊆ B in every neighbourhood
of α ∈ A\B. Consequently, α ∈ A∩(B\B), which is a contradiction. Similarly,
two rays R1, R2 in G′ of which R1 is a ray of an end ω ∈ A′ ∪B′ are equivalent
in G′ if and only if they are equivalent in G. Indeed, if R1 and R2 are equivalent
in G then there is a ray R3 ∈ ω that meets both of R1 and R2 infinitely often.
Now R3 has a tail in G′, showing that R1 and R2 are also equivalent in G′.

Thus, mapping every end ofG in A′∪B′ to the unique end ofG′ that contains
tails of its rays defines a bijection between the ends in A′ ∪B′ and certain ends
in G′. Using this bijection (and a slight abuse of notation) we may view A′ and
B′ also as subsets of V (G′)∪Ω(G′). Clearly, these satisfy (i). Moreover, A′∩B′
is still empty, so the disjointness assumption stated in the lemma implies (ii).

For (iii), let X ′ be an A′–B′ separator on a set of disjoint A′–B′ paths P ′
in G′. Adding to P ′ the trivial paths {x} for all x ∈ A ∩ B yields a set P of
disjoint A–B paths with the A–B separator X := X ′ ∪ (A ∩B) on it.

In Lemma 3.5, we shall need a family of disjoint subgraphs of G (with certain
properties) such that every end of A lies in the closure of one of these subgraphs.
Such a family cannot always be found. But our next lemma finds instead a
family of subgraphs such that the ends of A not contained in their closures form
a set I that can be ignored: those ends will automatically be separated from B
by any (A \ I)–B separator on a set of disjoint A–B paths.
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Lemma 3.2. Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪ Ω be such that
A∩B = ∅ = A∩B. Then for every set AΩ ⊆ A∩Ω there exist a set I ⊆ AΩ, an
ordinal µ∗, and families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ such that, for every µ < µ∗, the
graph Gµ −Sµ is a component of G−Sµ with Sµ as its finite set of neighbours,
and

(i) Gµ − Sµ ∩ B = ∅;

(ii) if Gµ 6= ∅ then Gµ ∩ AΩ 6= ∅;

(iii) V (Gν ∩Gµ) ⊆ Sν ∩ Sµ for all ν < µ.

Moreover,

(iv) for every end α ∈ AΩ \ I there is a µ < µ∗ with α ∈ Gµ;

(v) every (A \ I)–B separator on a set of disjoint (A \ I)–B paths is also an
A–B separator.

Proof. We construct the families (Gµ)µ<µ∗ and (Sµ)µ<µ∗ and a transfinite se-
quence I0 ⊆ I1 ⊆ . . . ⊆ AΩ recursively. The sets Iµ (µ < µ∗) will serve as
precursors to I . To simplify notation, we write Cµ := Gµ − Sµ for every µ. For
the construction, we will in addition to (i)–(iii) require for every µ that

(vi) Iµ ∩Gν = ∅ for all ν ≤ µ.

We start by setting I0, G0, S0 := ∅. Consider the least ordinal µ > 0 such that
the above sets are already defined for all λ < µ. If µ is a limit, we set

Iµ :=
⋃

λ<µ

Iλ

and Gµ, Sµ := ∅. This choice clearly satisfies (i)–(iii) and (vi).
Suppose now that µ is a successor, µ = λ+ 1 say. If every end in AΩ \ Iλ lies

in some Gν with ν < µ, we set µ∗ := µ and terminate the recursion. So suppose
there is an end α ∈ AΩ \ Iλ that lies in no earlier Gν . Then, if possible, choose
a finite vertex set S such that C(S, α) avoids all Gν with ν < µ.

Such a choice of S is impossible if and only if

for every finite S ⊆ V there is a ν < µ with C(S, α) ∩Gν 6= ∅. (1)

In this case we choose to ignore α, i.e. set Iµ := Iλ∪{α} and Gµ, Sµ := ∅. Again
the requirements (i)–(iii) are clearly met, while (vi) holds by the choice of α.

Now suppose we can find S as desired. As A ∩ B = ∅, we can also find a
basic open neighbourhood Ĉ(S′, α) of α in |G| that is disjoint from B. We now
define Sµ as the set of neighbours of C(S ∪ S ′, α) and Gµ := G[Sµ ∪ C(Sµ, α)].
Then (i) holds since Sµ ⊇ S′, while (ii) holds as α ∈ Gµ. To see (iii), first note
that

Gν ∩ Cµ = ∅ for all ν < µ

by the choice of S. So, all we have to show is that Gν ∩ Sµ ⊆ Sν . Consider
a vertex v ∈ Gν ∩ Sµ. Since Sµ is the set of neighbours of Cµ, there is a
vertex w ∈ Cµ adjacent to v. As noted above, w /∈ Gν . So v is a vertex in
Gν = Cν ∪ N(Cν) with a neighbour outside Gν , implying v /∈ Cν and hence
v ∈ Sν , as desired.
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Let us finally set Iµ := Iλ and verify (vi). We only need to show that
Iµ ∩ Gµ = ∅. Suppose that intersection contains an end α′. Let µ′ < µ be
minimal such that α′ ∈ Iµ′ . Then (1) should have been satisfied for µ′ and α′,
but fails with S := Sµ as C(Sµ, α

′) = Cµ, a contradiction.
Having defined Iµ, Gµ and Sµ for all µ < µ∗ so that (i)–(iii) and (vi) are

satisfied, we put

I :=
⋃

µ<µ∗
Iµ.

Together with the definition of µ∗ this implies (iv). Observe that from (vi) we
obtain I ∩Gµ = ∅ for all µ < µ∗.

To establish (v) let P be a system of disjoint (A \ I)–B paths and X an
(A \ I)–B separator on P . Now suppose that X is not an A–B separator in |G|,
i.e. there is a path Q from A to B that avoids X . By turning Q into a path Q̃
from A \ I to B that avoids X , we will obtain a contradiction.

We may assume that Q starts at an end α ∈ I . Let µ be the step at which
α was added to I , i.e. let µ be minimal with α ∈ Iµ. Choose a finite vertex set
S such that C(S, α) is disjoint from B (this is possible, as A ∩ B = ∅). Then
any path of P that meets C(S, α) must pass through S. Hence only finitely
many paths of P can meet C(S, α), and so Xα := X ∩ C(S, α) is also finite.
Conditions (iii) and (iv) ensure that every end in Xα lies in exactly one Cλ; let
{λ1, . . . , λm} be the set of these λ. Then for

S′ := S ∪ (Xα ∩ V ) ∪
m⋃

i=0

Sλi

we have
C(S′, α) ∩X = ∅.

Now, all we need is a point of A \ I that lies in C(S ′, α) (and thus can be used
to change Q into the desired path). Indeed, if there is an ordinal λ < µ such
that Gλ 6= ∅ and

Cλ ⊆ C(S′, α), (2)

we can complete the proof as follows. By (ii) for λ there will be an end α′ ∈ A
in Cλ ⊆ C(S′, α). Since I ∩ Gλ = ∅, we have α′ ∈ A \ I . Take an α′–Q path
P in C(S′, α) with last vertex x, say. Then P avoids X , and hence so does the
path Q̃ := PxQ. Thus, Q̃ is as desired.

So suppose there is no ordinal λ < µ satisfying (2). Then for all λ < µ we
have either Cλ ∩ C(S′, α) = ∅ or Cλ ∩ S′ 6= ∅. As all the Cλ are disjoint by
(iii), only finitely many of them meet S ′; let λm+1, . . . , λn be the corresponding
ordinals. Then

S′′ := S′ ∪
n⋃

i=m+1

Sλi

satisfies C(S′′, α) ∩ Cλ = ∅ for all λ < µ.
However, Gλ ∩ C(S′′, α) cannot be empty for all λ < µ, as this would con-

tradict (1) for step µ with S := S ′′. So there exists an ordinal λ < µ with
Sλ ∩C(S′′, α) 6= ∅. A vertex v in this intersection must have a neighbour in Cλ,
which then also lies in S′ ∪ C(S′, α) because C(S′′, α) ⊆ C(S′, α). Thus,

(S′ ∪ C(S′, α)) ∩ Cλ 6= ∅.
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Since Cλ * C(S′, α) by assumption, this implies that Cλ meets S′. But then
λ ∈ {λm+1, . . . , λn} and hence Sλ ⊆ S′′, contradicting the fact that v lies in
both Sλ and C(S′′, α).

For our end-to-vertex reduction we need two more lemmas.

Lemma 3.3. [3] Let H be a subgraph of a graph G, let S ⊆ V (H) be finite, and
let T ⊆ V (H)∪Ω(G) be such that T ⊆ H. Then H contains a set P of disjoint
S–T -paths and an S–T -separator (in H) on P.

For a set T of vertices in a graph H , a T -path is a path that meets T only
in its first and last vertex. A set of paths will be called disjoint outside a given
subgraph Q ⊆ H if distinct paths meet only in Q.

Lemma 3.4. [7, 3] Let H be a graph, T ⊆ V (H) finite, and k ∈ N. Then H
has a subgraph H ′ containing T such that for every T -path Q = s . . . t in H
meeting H −H ′ there are k distinct T -paths from s to t in H ′ that are disjoint
outside Q.

Our next lemma allows us to replace the set A ⊆ V ∪Ω in Theorem 1.1 with
a set A′ consisting only of vertices.

Lemma 3.5. Let G = (V,E,Ω) be a graph, and let A,B ⊆ V ∪ Ω be such that
A ∩ B = ∅ = A ∩ B. Then there exist a minor G′ = (V ′, E′,Ω′) of G and sets
A′ ⊆ V ′ and B′ ⊆ V ′ ∪ Ω′ satisfying the following conditions:

(i) if B ⊆ V then B′ ⊆ B;

(ii) A′ ∩ B′ = ∅ = A′ ∩ B′;

(iii) G satisfies the Erdős-Menger-conjecture for A and B if G′ satisfies it for
A′ and B′.

Proof. Applying Lemma 3.2 with AΩ := A ∩ Ω we obtain an ordinal µ∗, sub-
graphs Gµ, finite vertex sets Sµ and a set of ends I ⊆ A. Our aim is to change G
into G′ by deleting and contracting certain connected subgraphs of our graphs
Gµ − Sµ. By Lemma 3.2 (iii) we shall be able to do this independently for the
various Gµ: for each µ < µ∗ separately, we shall find in Gµ − Sµ a set D1(µ)
of connected subgraphs to be deleted, and another set D2(µ) of connected sub-
graphs that will be contracted.

Fix µ < µ∗. If Gµ is empty we let D1(µ) = D2(µ) = ∅. Assume now that
Gµ 6= ∅. Put Aµ := A ∩ Gµ. Applying Lemma 3.3 to H = Gµ we find in Gµ
a finite set P of disjoint Sµ–Aµ paths and an Sµ–Aµ separator Xµ on P . We
write Xµ = Uµ ∪Oµ, where Uµ = Xµ ∩ V and Oµ = Xµ ∩ Ω, both of which are
finite since |Xµ| ≤ |P| ≤ |Sµ|. Moreover,

Uµ separates Sµ from Aµ \Oµ in G. (3)

Indeed, every Sµ–(Aµ \Oµ) path in G lies in Gµ and hence meets Xµ, and since
it cannot meet Oµ unless it ends there, it meets Xµ in Uµ.

We define D1(µ) as the set of all the components D of G−Uµ whose closure
D meets Aµ \ Oµ. By (3), these components satisfy D ⊆ Gµ − Sµ, and their
neighbourhood N(D) ⊆ Uµ in G is finite. In addition,

D ∩ Oµ = ∅ for all D ∈ D1(µ). (4)
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For if α ∈ D ∩ Oµ, say, and P is the Sµ–Aµ path in P that ends in α, then
P has a tail in D. Since P does not meet Uµ ⊇ N(D), this implies P ⊆ D.
Consequently, Sµ ∩D is not empty as it contains at least the first vertex of P .
This contradicts D ⊆ Gµ − Sµ.

Put
Hµ := Gµ −

⋃
D1(µ).

Note that, as every v ∈ Uµ lies on a path in P ,

Gµ contains a set of disjoint Hµ–Aµ paths whose set of first points
is Uµ.

(5)

By (3) and the definition of Hµ, we have Hµ∩A ⊆ Uµ∪Oµ = Xµ. Since Oµ
is finite, we can extend Uµ ∪ Sµ to a finite set Tµ ⊆ V (Hµ) that separates the
ends in Oµ pairwise in G. Let H ′µ be the finite subgraph of Hµ containing Tµ
which Lemma 3.4 provides for k := |Sµ|+ 1, and for each α ∈ Oµ let Dα be the
component of G−H ′µ to which α belongs. Finally, we conclude our definitions
for µ by setting D2(µ) := {Dα |α ∈ Oµ}.

Define for i = 1, 2

Di :=
⋃

µ<µ∗
Di(µ).

Observe that, by Lemma 3.2 (iii) and since their neighbourhoods in G are finite,
the elements of D1 ∪ D2 have pairwise disjoint closures.

Before we can define G′, we first have to introduce a graph G̃ = (Ṽ , Ẽ, Ω̃)
from which we will obtain G′ by deleting certain vertices. Let G̃ be obtained
from G−⋃D1 by contracting every Dα ∈ D2 to a single vertex aα, and put

A∗ := {aα |Dα ∈ D2}.

Then for Z :=
⋃D1 ∪

⋃D2 we have

G− Z = G ∩ G̃ = G̃−A∗.

By Lemma 3.2 (iii) and by (3), the union of the sets of paths in (5) for all
µ < µ∗ is a set of disjoint paths. Thus, for U :=

⋃
µ<µ∗ Uµ

there is a set of disjoint U–A paths whose set of first points is U ,
and whose paths meet G̃ only in U .

(6)

An important property of G̃ is that the ends of G in B ∩ Ω correspond
closely to ends of G̃. To establish this correspondence formally, we begin with
the following observation:

Every ray of an end β ∈ B has a tail in G− Z. (7)

To see this, recall that all the D ∈ D1 ∪ D2 have pairwise disjoint closures, and
that each of them is a connected subgraph of G whose closure contains an end
or a vertex of A. Hence, a ray R of β meets only finitely many D ∈ D1 ∪D2, as
we could otherwise find infinitely many disjoint R–A paths, giving A ∩ B 6= ∅
by Lemma 2.1 – a contradiction. Also, R meets every D ∈ D1 ∪D2 only finitely
often. Indeed, D lies in Gµ for some µ < µ∗ and is thus, by Lemma 3.2 (i),
separated from β by its finite set of neighbours N(D). This establishes (7).
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Let R1, R2 be two rays in G∩ G̃, and assume that the end of R1 lies
in B. Then R1 and R2 are equivalent in G if and only if they are
equivalent in G̃.

(8)

To prove (8), suppose first that R1, R2 are equivalent in G, i.e. belong to the
same end β ∈ B. Then there is a ray R3 that meets both R1 and R2 infinitely
often, and hence ends in β. By (7), R3 has a tail in G− Z = G̃−A∗, showing
that R1 and R2 are equivalent also in G̃.

Conversely, if R1 and R2 are joined in G̃ by infinitely many disjoint paths,
we can replace any vertices aα ∈ Ṽ \ V = A∗ on these paths by finite paths in
Dα to obtain infinitely many disjoint R1–R2 paths in G. This completes the
proof of (8).

We can now define our correspondence between the ends in B and certain
ends of G̃. For every end β ∈ B there is by (7) an end β′ ∈ Ω̃ such that
β ∩ β′ 6= ∅. By (8), this end β′ is unique and the map β 7→ β′ is injective.
Moreover,

B̃ := (B ∩ V ) ∪ {β′ |β ∈ B ∩ Ω} ⊆ Ṽ ∪ Ω̃

by Lemma 3.2 (i). For each µ < µ∗, let

Ãµ := Uµ ∪ {aα |α ∈ Oµ},

if Gµ 6= ∅; if Gµ = ∅, put Aµ, Ãµ := ∅. Then let

Ã :=

(
A \

( ⋃

µ<µ∗
Aµ ∪ I

))
∪
⋃

µ<µ∗
Ãµ,

which is a subset of Ṽ by Lemma 3.2 (iii),(iv). Finally, let

G′ := G̃− (Ã ∩ B̃).

To show the assertions (i)–(iii), we will apply Lemma 3.1 to the graph G̃
and the sets Ã and B̃.

So, let us show that

(Ã \ Ã) ∩ B̃ = ∅ = Ã ∩ (B̃ \ B̃)

(with closures taken in |G̃|). We trivially have Ã∩ (B̃ \ B̃) = ∅ because Ã ⊆ Ṽ .

To prove that (Ã \ Ã)∩ B̃ = ∅, consider an end β′ ∈ B̃. The corresponding end
β ∈ B has a neighbourhood C := Ĉ(S, β) in |G| that avoids A. By (6), and
since S is finite, the intersection C ∩ U =: UC is finite. Also, as in the proof
of (7), C may meet only finitely many Dα ∈ D2. Denote by OC the set of the
corresponding aα ∈ G̃. Adding to S \Z the sets UC and OC then yields a finite
set S′ ⊆ Ṽ such that the neighbourhood Ĉ ′(S′, β′) in |G̃| even avoids Ã.

Thus, Lemma 3.1 is applicable and yields sets A′ ⊆ V ′ and B′ ⊆ V ′ ∪ Ω′

satisfying (ii). Assertion (i) follows from the definition of B̃ and Lemma 3.1 (i).
We now prove assertion (iii) of the lemma. Suppose G′ satisfies the Erdős-

Menger conjecture for A′ and B′. Then, by Lemma 3.1, there is also in G̃ a set
P̃ of disjoint Ã–B̃ paths and an Ã–B̃ separator X̃ on P̃ . In order to turn P̃
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into a set P := {P | P̃ ∈ P̃} of disjoint A–B paths in G, consider any P̃ ∈ P̃.
If the first point a of P̃ lies in A we leave P̃ unchanged, i.e. set P := P̃ . If
a ∈ Ã \ (A ∪ A∗), then a ∈ Uµ for some µ < µ∗, and we let P be the union

of P̃ with an Aµ–Uµ path in Gµ that ends in a; this can be done disjointly

for different P̃ ∈ P̃ if we use the paths from (6). Moreover, the Aµ–Hµ path

concatenated with P̃ in this way has only its last vertex in G̃, so it will not meet
any other vertices on P̃ . Finally if a = aα ∈ A∗, we let P be obtained from
P̃ by replacing a with a path in Dα that starts at the end α and ends at the
vertex of Dα incident with the first edge of P̃ (the edge incident with a). In all
these cases we have P ⊆ G, because P̃ has no vertex in A∗ other than possibly
a. And no vertex of P other than possibly its last vertex lies in B, because
B ∩ V = B̃ ∩ Ṽ and any new initial segment of P lies in a subgraph Gλ − Sλ of
G which avoids B by Lemma 3.2 (i).

It remains to check that the paths P just defined have distinct last points in
B even when the last points of the corresponding paths P̃ are ends. However if
P̃ ends in β′ ∈ B̃ then its tail P̃ − a ⊆ P ⊆ G is equivalent in G̃ to some ray in
β′ ∩ β, by definition of β′. By (8) this implies P̃ − a ∈ β, so the last point of
P is β ∈ B. And since the map β 7→ β′ is well defined, these last points differ
for distinct P , because the corresponding paths P̃ have different endpoints β′

by assumption.
We still need an A–B separator on P . The only vertices x ∈ X̃ that do

not lie on the path P obtained from the path P̃ containing x are points in A∗.
So let X be obtained from X̃ by replacing every end β′ ∈ X̃ ∩ B̃ with the
corresponding end β ∈ B and replacing every aα ∈ X̃ ∩A∗ with the end α ∈ A.
Since P ∈ P starts in α if P̃ starts in aα (and P ends in β if P̃ ends in β′), this
set X consists of a choice of one point from every path in P .

Let us then show that

X is an A–B separator in G. (9)

Suppose there exists a path Q ⊆ G − X that starts in A and ends in B.
Lemma 3.2 (v) enables us to choose Q as a path starting in A\ I . Our aim is to
turn Q into an Ã–B̃ path Q′ in G̃ that avoids X̃, which contradicts the choice
of X̃.

If Q meets
⋃D1, it has a last vertex there by (7), in D ∈ D1(λ), say. Its

next vertex a lies in Uλ, by the definition of D. We then define (for the time
being) Q′ as the final segment aQ of Q starting at a. If Q has no vertex in⋃D1, then either the first point of Q is a vertex a ∈ A ∩ Ã (in which case we
put Q′ := Q), or Q starts at an end α ∈ A\I . By Lemma 3.2 (iv), there exists a
λ < µ∗ such that α ∈ Gλ, which implies α ∈ Oλ. We make a := aα the starting
vertex of Q′ and continue Q′ along Q, beginning with the last Dα–G̃ edge on Q.
Our assumption of α /∈ X implies that aα /∈ X̃ , by the definition of X . Thus in
the first two cases, Q′ is now a path in G−⋃D1; in the third, Q′ is a path in
(G−⋃D1)/Dα, which starts at the vertex a ∈ Ã and avoids X̃.

However, Q′ may still meet D2. And although we know from (7) that Q′ has
a last vertex in

⋃D2, say in Dα′ , we cannot simply shorten Q′ to a path aα′Q
′

in G̃, because it may happen that aα′ ∈ X̃. Instead, we will use Lemma 3.4 to
replace any segments of Q′ that meet some Dα ∈ D2 (with aα 6= a) by paths
through the corresponding Gµ that avoid X̃. As we only have to deal with a
finite initial segment of Q′ and the Dα are all disjoint, we are able to modify Q′

10



step by step. Eventually, we will obtain a (walk that can be pruned to a) path
Q′ in G̃ that avoids X̃, yielding the desired contradiction.

So consider a segment of Q′ that meets some Dα ∈ D2. By definition of Dα

we may assume that segment to be a Tµ-path sQ′t in Hµ, where µ is such that

Dα ⊆ Gµ. By definition of H ′µ (which is a subgraph of G̃ by Lemma 3.2 (iii),

i.e. no parts of H ′µ were deleted or contracted when we defined G̃), there are
|Sµ|+ 1 paths from s to t in H ′µ that are disjoint outside sQ′t. But H ′µ contains

at most |Sµ| vertices from X̃: since these lie on disjoint paths ending in B̃ and

Sµ separates H ′µ ⊆ Gµ from B in G and hence from B̃ in G̃, all of these paths

must meet Sµ. So one of our |Sµ| + 1 s–t paths in H ′µ avoids X̃ , and we can
use this path to replace sQ′t on Q′. This completes the proof of (9).

Proof of Theorem 2.2: Let G = (V,E,Ω) be given, and let A,B ⊆ V ∪Ω be
such that A ∩ (B \B) = ∅ = (A \A) ∩B. By Lemma 3.1, we may assume that
A ∩B = ∅ = A ∩B. Applying Lemma 3.5 twice, first for A and then for B, we
may further assume that A∪B ⊆ V . Now the statement to be proved is Erdős’s
conjecture as stated in the Introduction, which has been proved by Aharoni and
Berger [1]. �
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[5] R. Diestel and D. Kühn. Graph-theoretical versus topological ends of
graphs. J. Combin. Theory (Series B), 87:197–206, 2003.

[6] C.St.J.A. Nash-Williams, Infinite graphs, a survey, J. Combin. Theory (Se-
ries B), 3:286–301, 1967.

[7] M. Stein. Die Erdős-Menger’sche Vermutung für abzählbare Graphen mit
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