Proof of Hu’s theorem

This short note contains the details of the proof of Theorem 24 in [1].

Theorem 1 (Hu [2]). Suppose there is a ¢ > 2 so that any separating union-
closed family A" with |A’| < c|U(A")| satisfies the union-closed sets conjecture.
Then, in every union-closed family A, there is an element that appears in at
least 2((:@;—21)|-A| member-sets of A.

Proof. Let A be a union-closed family. Clearly, we may assume A to be sepa-
rating. Moreover, we can suppose that n := |A| > e¢m, where m := |U(A)| is
the size of the universe; otherwise there is even, by assumption, an element in
U(A) that appears in at least half of the member-sets.
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Pick some element zy € U(A), and introduce p new elements X := {z1,...,2p},

disjoint from U(.A). We define a family

A ={AUX:AecA e A}U{Ac A:xo ¢ A}
U{UAU(X —2;):i=1,...,p}

The family is obviously union-closed, and moreover, it is separating. Indeed, any
elements of U(.A) can still be separated as A is separating, while the elements
x1,...,T, are separated by the sets {U(A) U (X —x;) :i=1,...,p}.

The number of sets in A’ is n+p, while the universe has grown to m+p. We
can easily check that n+p < ¢(m + p), so that we can use the assumption that
there is an element u* in U(A’) that appears in at least "T“’ member-sets. Note
that z¢ appears more often than any of z1,...,x,, so that we may assume that
u* € U(A). Then, however, we see that u* appears in at least "Tﬂ” —-p="52
of the member-sets of A.

We compute with (1) that
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as ¢ > 2 entails that ecm > ¢ — 1. Thus, there is an element that appears in at
least Q(Cc;fl)n of members-sets of A. O
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