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Abstract

We extend three results involving bicycles and left-right tours to in-
finite, locally finite graphs: Read and Rosenstiehl’s tripartition theorem,
Shank’s theorem that the residues of left-right tours generate the bicycle
space and the planarity criterion of Archdeacon, Bonnington and Little.
In order to achieve this it is necessary to allow infinite cycles as defined
by Diestel and Kühn.

1 Introduction

The set of edge sets in a graph G together with symmetric difference as addition
forms a Z2-vector space, the edge space E(G). Two important subspaces of E(G)
are the cycle space C(G), the set of all sums of (edge sets of) cycles, and the cut
space C∗(G), the set of all cuts. Although cuts and cycle space elements are, in
a sense, orthogonal to each other, it is possible for an edge set to be an element
of both, C(G) and C∗(G). Such an edge set is called a bicycle and the space
B(G) := C(G) ∩ C∗(G) is the bicycle space. See Figure 1 for an example.

(a) (b)

Figure 1: (a) a bicycle; (b) a left-right tour

In finite graphs, bicycles have been widely studied and a number of funda-
mental results involving bicycles are known. The aim of this work is to extend
three of these to an important class of infinite graphs, namely to locally finite
graphs, i.e. to graphs in which every vertex has finite degree.

The first theorem we will extend is Read and Rosenstiehl’s tripartition the-
orem:

Theorem 1 (Read and Rosenstiehl [15]). Let e be an edge in a finite graph G.
Then exactly one of the following holds:
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(i) there exists a B ∈ B(G) with e ∈ B; or

(ii) there exists a Y ∈ C(G) with e ∈ Y and Y + e ∈ C∗(G); or

(iii) there exists a Z ∈ C(G) with e /∈ Z and Z + e ∈ C∗(G).

With the naive definition of C(G), in which every element of the cycle space
is necessarily finite, Theorem 1 cannot be expected to carry over to locally
finite graphs. The double ladder, depicted in Figure 2, constitutes an obvious
counterexample: no finite bicycle contains the edge e, yet there is neither a
finite Y nor a finite Z as in (ii) or (iii) of the theorem.

e

Figure 2: There is no finite B, Y or Z as in Theorem 1 for e

The almost self-evident solution is that infinite graphs demand infinite cycles.
Indeed, lack of infinite cycles seems to be the reason why most properties of the
cycle space fail in infinite graphs; see Diestel [5] for a number of examples.
To remedy this, Diestel and Kühn [7, 8] provided a definition of cycles that
introduces infinite cycles but encompasses the usual finite cycles as well. They
defined a circle to be the homeomorphic image of the unit circle in the graph
compactified by its ends. (Ends are equivalence classes of rays; formal definitions
follow in the next section.) This definition has proved to be very fruitful, insofar
as almost all of the properties of the cycle space in a finite graph remain valid
in locally finite graphs. We also refer to a more general approach pursued by
Vella and Richter [17], that covers other compactifications of infinite graphs as
well.

Coming back to our counterexample to Theorem 1, we see that the set of
bold edges in the double ladder form an infinite cycle. (The two double rays
together with the end to the left and the one to the right are homeomorphic to
the unit circle.) Since this edge set is also a cut, we have found an infinite bicycle
containing e, and thus the counterexample ceases to be one. More generally, we
will prove in Sections 3 and 4 that the tripartition theorem becomes true for
locally finite graphs once infinite cycles, as defined by Diestel and Kühn, are
admitted.

In Sections 5 and 6 we will be concerned with plane graphs. In plane graphs,
there is an easy way to find bicycles. Starting with any edge uv, we traverse uv
from u to v, and then choose the leftmost edge at v, follow it along, then turn
right, again turn left at the next vertex, and we continue alternating between
left and right turns until we reach uv again. There we stop, provided we are
about to traverse uv again from u to v and provided our turn at v would, again,
be a left turn. The closed walk produced in this way is called a left-right tour.
Its residue, the set of edges traversed exactly once, forms a bicycle; see Figure 1.

Shank [16] observed that left-right tours not only yield bicycles but that
they, moreover, determine already all bicycles in the graph:

Theorem 2 (Shank [16]). In a finite plane graph the residues of the left-right
tours generate the bicycle space.
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This is the second of the theorems we shall extend to locally finite graphs.
See also Richter and Shank [13] and Lins, Richter and Shank [11].

The third and final result we shall treat, in Section 7, is a planarity criterion
that involves left-right tours and bicycles in a sophisticated way. For finite
graphs this is due to Archdeacon, Bonnington and Little [1].

2 Definitions and preliminaries

All our graphs are simple and undirected, unless otherwise noted. In general,
we follow the notation of [6], which also provides more background on the topo-
logical cycle space.

Let G be a locally finite graph. A ray is a one-way infinite path, and a double
ray is a two-way infinite path. We say that two rays R, S are equivalent if there
are infinitely many disjoint R–S paths. The equivalence classes are called the
ends of G. As an example, the double ladder in Figure 3 has two ends, one to
the left and one to the right. By contrast, the 3-regular tree has uncountably
many ends.

We define on G, viewed as a 1-complex, together with its ends a topology, and
denote the resulting topological space by |G|. The space |G| is sometimes called
the Freudenthal compactification of G. On G, the space carries the topology of
a 1-complex, so every edge is homeomorphic to the unit interval, and a basic
open neighbourhood of a vertex consists of half-open intervals, one for each edge
incident with v. So, let us now define the basic open neighbourhoods for an end
ω of G. Let S be a finite vertex set, and denote by C(S, ω) the component of
G− S that contains a ray in ω; then C(S, ω) contains a subray for every ray in
ω. We define Ĉ(S, ω) to be the union of C(S, ω) together with all interior points
of edges between C(S, ω) and S, and all the ends that have a ray in C(S, ω).
The sets Ĉ(S, ω) for all finite sets S ⊆ V (G) form a neighbourhood basis for ω.
It can be shown that if G is connected, then |G| is compact.

The image of a continuous mapping [0, 1] → |G| is called a topological path.
A circle of |G| is a homeomorphic image C in |G| of the unit circle; the subgraph
C∩G is called a cycle and its edge set a circuit. A cycle may be finite or infinite;
in the latter case it is the disjoint union of double rays.

The set of all subsets of E(G) is the edge space of G and denoted by E(G).
As noted in Section 1, together with the symmetric difference as addition, E(G)
is a Z2-vector space. In order to define the topological cycle space of Diestel and
Kühn we need to allow certain infinite sums as well. For this, we call a family
T of edge sets thin if no edge appears in infinitely many of its members. The
sum

∑
F∈F F is defined to be the set of edges that appear in exactly an odd

number of members of F . Whenever we take a sum over an (infinite) family it
is tacitly assumed to be thin.

Now, we call the set of all (thin) sums of circuits the topological cycle space
C(G) of G. If G is finite, it coincides with the usual cycle space. We will need
two key properties of the topological cycle space:

Theorem 3 (Diestel and Kühn [7]). Every element of the cycle space of a locally
finite graph is the (edge-)disjoint union of circuits.

An edge set F is called a cut if F = ∅ or if there is a set U ⊆ V (G) so that
each edge in F has precisely one endvertex in U and one outside U .
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Theorem 4 (Diestel and Kühn [7]). Let F be a set of edges in a locally finite
graph G. Then F is an element of the cycle space if and only if it meets every
finite cut in an even number of edges.

In the cut space C∗(G), the set of all cuts, a result that is analogous to
Theorem 4 holds; see the next lemma. A proof of this easy result can, for
instance, be found in [2].

Lemma 5. Let F be a set of edges in a graph G. Then F is a cut if and only
if it meets every finite circuit in an even number of edges.

We call the space B(G) := C(G) ∩ C∗(G) the bicycle space of G; an element
of B(G) is a bicycle.1

In Sections 5 and 7 we will be concerned with infinite plane graphs. The
usual drawings seem rather insufficient for infinite graphs. Indeed, several of
the expected properties may fail. For instance, in a 2-connected graph the face
boundaries do not need to be cycles. Moreover, they might even contain only
half an edge (for instance, in the drawing there might be vertices converging
against an interior point of an edge) or no edges at all. All these problems
are overcome when, instead of G, the space |G| is embedded in the sphere.
Fortunately, this is not a restriction at all:

Theorem 6 (Richter and Thomassen [14]). Let G be a locally finite 2-connected
planar graph. Then |G| embeds in the sphere.

While the theorem is formulated for 2-connected graphs, it is not hard to
extend it to graphs that are merely connected. And indeed, we will make use
of the theorem in graphs that are not necessarily 2-connected.

Assuming |G| to be embedded in the sphere S, we call a connected compo-
nent of S \ |G| a face and its boundary a face boundary. It can be seen that
each face boundary consists of a subgraph of G together with a subset of the
ends of G.

3 The tripartition theorem

In this section, we extend Read and Rosenstiehl’s tripartition theorem to locally
finite graphs. Since the proof is short and because it is worthwhile to see where
it breaks down for infinite graphs, we will start by repeating the proof for finite
graphs.

For this, let us recall two standard notions. There is a scalar product ∗
defined on E(G) for a multigraph G as follows: for X, Y ⊆ E(G), we let X∗Y = 0
if |X ∩ Y | is even, and we set X ∗ Y = 1 otherwise. With this product, for a
set of edge sets X , we can define the orthogonal space X⊥ := {Y ⊆ E(G) :
Y ∗X = 0 for all X ∈ X}. Clearly, this is standard linear algebra and all the
usual methods apply. We recall the well-known fact that C(G)⊥ = C∗(G), for a
finite (multi-)graph G.

1There is a certain inconsistency here. Following Diestel [6], we use “cycle” to denote
a subgraph stemming from a homeomorphic image of S1. In particular, a finite cycle is a
connected subgraph. On the other hand, a finite bicycle, which is an edge set, does not need
to span a connected graph.
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Proof of Theorem 1. Assume that there is no bicycle containing e. Thus

{e} ∈ B(G)⊥ = (C(G) ∩ C∗(G))⊥ = C(G)⊥ + C∗(G)⊥ = C∗(G) + C(G).

We omit the easy proof that only one of (i)–(iii) can hold, since these arguments
will appear later anyway.

The first problem we encounter when we apply this proof to infinite graphs
concerns the definition of the scalar product: What should the value of X ∗ Y
be if the edge sets X, Y have infinite intersection? Fortunately, we will be
able to circumvent this issue by only using the scalar product for X,Y ∈ E(G)
with |X ∩ Y | < ∞. A proper concept for orthogonal spaces appears to be
more difficult, as however defined they seem to lose a number of their usual
properties. For this reason, we will make do without them in infinite graphs. We
remark that, these problems notwithstanding, Casteels and Richter [4] introduce
orthogonal spaces in infinite graphs that still retain many of the usual properties.

Before we state the tripartition theorem for locally finite graphs, let us denote
by Cfin(G) (resp. C∗fin(G) or Bfin(G)) the set of all finite edge sets in C(G) (resp.
in C∗(G) or in B(G)).

Theorem 7. Let e be an edge of a locally finite graph G. Then either

(i) there exists B ∈ B(G) with e ∈ B; or

(ii) {e} ∈ Cfin(G) + C∗fin(G)

but not both.

The reader will have noticed that the theorem only divides the edges into
two classes rather than three. We will address this at the end of the section.
The proof uses Kőnig’s Infinity Lemma, a standard tool in infinite graph theory.
For a proof we refer the reader to [6].

Lemma 8 (Kőnig’s Infinity Lemma). Let W1,W2, . . . be an infinite sequence
of disjoint non-empty finite sets, and let H be a graph on their union. For
every n ≥ 2 assume that every vertex in Wn has a neighbour in Wn−1. Then H
contains a ray v1v2 . . . with vn ∈ Wn for all n.

Proof of Theorem 7. We may assume G to be connected and therefore count-
able. For each n ∈ N denote by Sn the set of the first n+1 vertices in some fixed
enumeration of the vertices of G that starts with the endvertices of e. Define
Gn to be the graph G[Sn] together with the edges in E(Sn, V (G) \ Sn) and
their incident vertices. Let G̃n be the minor of G obtained by contracting the
components of G − Sn (where we keep parallel edges but delete loops). Note
that e ∈ E(Gn) = E(G̃n). Put Wn := {B ∈ C∗(Gn) ∩ C(G̃n) : e ∈ B}.

We distinguish two cases. First, assume there exists an N such that WN = ∅.
As e ∈ E(GN ) this means that {e} ∈ (C∗(GN ) ∩ C(G̃N ))⊥ (where we take the
orthogonal space with respect to E(GN ), which is a finite vector space). Since
C(GN ) ⊆ Cfin(G) and C∗(G̃N ) ⊆ C∗fin(G) it follows that

{e} ∈ (C∗(GN ) ∩ C(G̃N ))⊥ = C∗(GN )⊥ + C(G̃N )⊥

= C(GN ) + C∗(G̃N ) ⊆ Cfin(G) + C∗fin(G)
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and hence (ii) holds.
Second, assume Wn 6= ∅ for all n. It is not hard to check that for each

K ∈ C∗(Gn+1) it holds that K∩E(Gn) ∈ C∗(Gn), and that for each Z ∈ C(G̃n+1)
the restriction Z ∩ E(G̃n) lies in C(G̃n). It follows that B ∈ Wn+1 implies
B ∩ E(Gn) ∈ Wn. We define a graph on

⋃∞
n=1 Wn such that B ∈ Wn+1 is

adjacent to B′ ∈ Wn if and only if B ∩ E(Gn) = B′. Thus, the conditions
for Lemma 8 are satisfied, and we obtain for each n ∈ N a Bn ∈ Wn so that
Bn+1 ∩ E(Gn) = Bn for all n. Clearly, B :=

⋃
n∈NBn contains e.

To see that B is a bicycle, consider a finite cut F of G. Choose N ∈ N large
enough so that F ⊆ E(G̃N )—then F is a cut in G̃N , too. We get

B ∗ F = B ∗ (F ∩ E(G̃N )) = (B ∩ E(G̃N )) ∗ F = BN ∗ F = 0,

where the last equality follows since BN ∈ C(G̃N ). As F was arbitrary, The-
orem 4 implies that B ∈ C(G). In a similar way, but using Lemma 5 in GN

instead of Theorem 4 in G̃N , we see that B ∈ C∗(G). Therefore, B ∈ B(G) and
(i) holds.

Finally, suppose that there is a B ∈ B(G) with e ∈ B and Z ∈ Cfin(G),
K ∈ C∗fin(G) with {e} = Z + K. Then, as B is both a cut and an element of the
cycle space, we obtain

1 = {e} ∗B = (Z + K) ∗B = Z ∗B + K ∗B = 0,

which gives a contradiction.

Casteels and Richter [4] independently proved a complementary result:

Theorem 9 (Casteels and Richter [4]). Let e be an edge of a locally finite
graph G. Then either

(i) there exists B ∈ Bfin(G) with e ∈ B; or

(ii) {e} ∈ C(G) + C∗(G)

but not both.

It should be noted that Casteels and Richter in fact prove a more general
result of which Theorem 9 is but a consequence.

Theorems 7 and 9 look tantalisingly similar. The next lemma sheds some
light on their relation.

Lemma 10. Let G be a locally finite graph. If for an edge e of G two of the
following conditions hold, then the third one is satisfied, too:

(i) there is a Y ∈ C(G) with e ∈ Y and Y + e ∈ C∗(G);

(ii) there is a Z ∈ C(G) with e /∈ Z and Z + e ∈ C∗(G);

(iii) there is a B ∈ B(G) with e ∈ B.

If all of (i)–(iii) hold for e, then each of Y,Z, B in (i)–(iii) is an infinite set.

The lemma is reminiscent of a theorem by Richter and Shank [13] about
(finite) surface duals. In fact, our proof uses similar arguments. We mention,
moreover, that all of (i)–(iii) can hold for an edge. In Figure 2 we have already
seen that e lies in an infinite bicycle, while in Figure 3 we witness the other two
cases.
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e

e

Figure 3: (i), (ii) in Lemma 10 hold for e

Proof of Lemma 10. First, assume (iii) and one of (i),(ii) to hold. Thus, there
exist a B ∈ B(G) with e ∈ B and an X ∈ C(G) so that X + e ∈ C∗(G). Since
X + B ∈ C(G), we have that if X is as in (i), then X + B satisfies (ii) and if,
on the other hand, X is as in (ii), then X + B satisfies (i).

Second, assume that (i) and (ii) hold, and let Y be as in (i) and Z as in (ii).
Then B := Y + Z ∈ C(G), since Y,Z ∈ C(G). From B = (Y + e) + (Z + e) it
follows that B is also a cut. Finally, since e ∈ Y but e /∈ Z, we have e ∈ B.

For the second part of the lemma, assume that (i)-(iii) hold for e, and let
e ∈ B ∈ B(G). By (the trivial part of) Theorem 9, it follows that B cannot be
finite. On the other hand, Y and Z as in (i) resp. (ii) need to be infinite sets,
too, since otherwise this would give a contradiction to Theorem 7.

Read and Rosenstiehl’s theorem partitions the edges of a finite graph into
three classes. So far, our theorem yields only two classes. So, let us refine
Theorem 7. For this, we say that an edge e in a locally finite graph G is of
cut-type if there is a finite cut K containing e so that K \ {e} ∈ C(G). We say
that e is of flow-type if there is a finite element Z of the cycle space with e ∈ Z
and Z \ {e} ∈ C∗(G). Then, the following immediate corollary of Lemma 10
turns Theorem 7 into a true tripartition theorem:

Corollary 11. No edge in a locally finite graph can be of cut-type and of flow-
type at the same time.

We should point out that to denote by C∗(G) the set of all cuts is possibly a
bit misleading as it might give the impression that it is the dual space of C(G).
That, however, is not the case. Rather, Theorem 4 shows that, at least in some
sense, C(G) and C∗fin(G) are dual to each other. On the other hand, the dual
space of C∗(G) is Cinf(G), see for instance [2].

In this respect, our bicycle space B(G) is situated between these two du-
alities. Examples as the graph in Figure 2 indicate that this is nevertheless
justified since in order to make the tripartition theorem work in infinite graphs,
whether it is in the form of Theorem 7 or in the form of Theorem 9, we need
both spaces, C(G) and C∗(G).
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4 Principal cuts

Let e be an edge of flow- or of cut-type in a locally finite graph G. Then, by
definition, there is a Z ∈ Cfin(G) so that Z + e ∈ C∗(G). We call Z a principal
flow of e and Z + e a principal cut of e. In this section, we shall demonstrate,
partially without proofs, that the properties of principal cuts carry over from
finite graphs to locally finite graphs.

As a first notable property, let us see that the principal cuts are unique in a
pedestrian graph, that is a graph G for which B(G) = {∅}. Indeed, let K,K ′ ∈
C∗(G) so that K +e,K ′+e ∈ C(G). Then K +K ′ = (K +e)+(K ′+e) ∈ B(G),
which implies that K = K ′ as B(G) = {∅}. For the purpose of this section,
given a pedestrian graph let us denote the principal cut of an edge e by Ke and
the principal flow by Ze.

We need the following lemma, which (stated for finite graphs but with exactly
the same proof) appears in Read and Rosenstiehl [15]. (We note that the lemma
remains true in non-pedestrian graphs; Ze (resp. Zf ) is then simply any principal
flow through e (resp. f), as there is no longer a unique one. And similarly for
Ke,Kf .)

Lemma 12. Let e and f be edges in a locally finite pedestrian graph G. Then:

(i) e ∈ Zf if and only if f ∈ Ze; and

(ii) e ∈ Kf if and only if f ∈ Ke.

Proof. To prove (i) consider

{e} ∗ Zf = (Ze + Ke) ∗ Zf = Ze ∗ Zf + Ke ∗ Zf = Ze ∗ Zf

= Ze ∗ Zf + Ze ∗Kf = Ze ∗ (Zf + Kf ) = Ze ∗ {f}.

Note that all these scalar products are well-defined since the Ze and Ke are
finite sets. Assertion (ii) is proved analogously.

Proposition 13. In a locally finite pedestrian graph G both of the families
(Ze)e∈E(G) and (Ke)e∈E(G) are thin.

Proof. Suppose there is an edge e lying in infinitely many Zf . Since G is a
pedestrian graph, e is of flow- or cut-type and Ze is therefore defined. Thus
Lemma 12 implies that f ∈ Ze for all these infinitely many f , contradicting
that Ze is finite. Thus (Ze)e∈E(G) is thin. The proof for the principal cuts is
the same.

For an edge e to be of flow- or of cut-type we have required that there is a
finite Z ∈ C(G) with Z + e ∈ C∗(G). In the light of Theorem 9 one could also
quite reasonably relax this, and say that an edge is of flow- or cut-type if there
is any such Z, finite or infinite. A pedestrian graph, then, would be one without
any finite bicycles, since in precisely this case all edges are of flow- or cut-type.

There are several problems with this definition. We have already seen (Fig-
ures 2 and 3) that this would not give a proper tripartition. Furthermore,
principal cuts in a pedestrian graph would not necessarily be unique and their
family may not be thin. For instance, the cuts in the lower graph in Figure 3
would form a non-thin family of principal cuts.
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The following corollary lists verbatim extensions of some basic properties of
principal flows and cuts. Their proofs for finite graphs (substantially) use the
finiteness only in one point, namely that it is allowed to take arbitrary sums
of principal cuts. While, clearly, this is never an issue in finite graphs, such
sums may be infinite in infinite graphs and then need to be thin in order to be
well-defined. But this is exactly what Proposition 13 asserts.

Corollary 14. Let G be a locally finite pedestrian graph. Then

(i) (Ze)e∈E(G) generates the cycle space; and

(ii) (Ke)e∈E(G) generates the cut space; and

(iii) the union of all flow-type edges is an element of the cycle space; and

(iv) the union of all cut-type edges is a cut.

Proof. (i) and (ii) can be found in Read and Rosenstiehl [15] and (iii) and (iv)
in Godsil and Royle [9].

5 Left-right tours

What should a left-right tour in an infinite plane graph be? Quite trivially,
the name suggests two requirements for a left-right tour. Firstly, it should be
“left-right”, that is, locally it should consist of alternating left and right turns.
And secondly, it should be a “tour”, which means it should close up.

The first requirement is fairly simple to guarantee. Just as with left-right
tours in finite graphs, we start a walk at an arbitrary edge and then alternately
turn left and right. If we reach our starting edge again in this way, we have found
a finite left-right tour. Otherwise, we prolong our walk in the other direction
from our starting edge, again taking left and right turns. The resulting walk,
which we call a left-right string, will be two-way infinite; two examples can be
seen in Figure 5. In general, the two ends of a left-right string will not be
identical, and the walk will therefore not be closed. So to achieve that we do
not get stuck in an end, it will be necessary to glue together several left-right
strings at ends. In this way we shall obtain a topological tour in |G|.

Let us start with left-right strings. To define these properly we shall first
need to describe what it means to do a left turn followed by a right turn.
We follow the treatment of [10]. Let G be a locally finite graph, and let |G| be
embedded in the sphere S. Recall that, by Theorem 6, every locally finite planar
graph has such an embedding. The interior of an edge of G is homeomorphic to
the open unit interval (0, 1). For each edge e, we fix a homeomorphism. If η1

denotes the image of the restriction of this homeomorphism to (0, 1
2 ) and η2 is

the image of the restriction to ( 1
2 , 1) then η1, η2 are the halves of e. We use the

notation η1 = η2 and η2 = η1 to switch back and forth between the two halves
of an edge. Furthermore, we fix for e two open, disjoint and connected subsets,
σ1 and σ2, of S \ |G| each of which has e in its boundary. These are the sides
of e, and as for the halves, we put σ1 = σ2 and σ2 = σ1. A triple (e, η, σ), where
e ∈ E(G), η is a half of e and σ is a side of e, is called a corner of |G|. We say
that c = (e, η, σ) is a corner at e, and it is a corner at v ∈ V (G) if the boundary
∂η contains v. Clearly, for each edge e there are four corners at e.
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For each v ∈ V (G) choose an open disc D around v, so that each half of
an edge at v intersects ∂D in exactly one point. Then ∂D defines in a natural
way a rotation of the halves. We say that two corners (e, η, σ), (e′, η′, σ′) at
v are matched if η and η′ appear consecutively in the local rotation at v, and
if the connected component K of σ ∩ D with η ∩ D ⊆ ∂K and the connected
component K ′ of σ′∩D with η′∩D ⊆ ∂K ′ are contained in the same connected
component of D \ |G|. It can be seen that this definition is independent of the
actual choice of D. See Figure 4 for an illustration.

σ

c’
c

η″

σ″

c"σ′

σ″

η
η′

D

__

Figure 4: We think of a corner c = (e, η, σ) at v ∈ V (G) as a point close to
v and η, and lying in σ. The corners c and c′ = (e′, η′, σ′) are matched; the
corners c and c′′ describe a left-right step.

Corners can be used to describe left-right steps. Formally, this works as
follows. Let W = . . . (e−1, η−1, σ−1), (e0, η0, σ0), (e1, η1, σ1) . . . be a (finite, one-
way infinite or two-way infinite) sequence of corners satisfying the following
properties:

(i) (ei, ηi, σi) and (ei+1, ηi+1, σi+1) are matched for all i; and

(ii) no corner appears twice in W .

We call such a sequence W a left-right walk, which is justified by the fact that
the edges . . . e−1e0e1 . . . do indeed form a walk. Moreover, we will sometimes
pretend that a left-right walk is in fact a walk, i.e. a sequence of vertices and
edges, rather than a sequence of corners. The corners c and c′′ in Figure 4
describe a left-right step as in (i).

We say that S is a left-right string (LRS for short) if it
is a maximal left-right walk. It is not hard to check that
if S = . . . (e−1, η−1, σ−1), (e0, η0, σ0), (e1, η1, σ1) . . . then S′ :=
. . . (e1, η1, σ1), (e0, η0, σ0), (e−1, η−1, σ−1) . . . is an LRS, too. Clearly, the
walks S and S′ traverse the same edges, but in opposite directions. Although
we will sometimes view S as an oriented walk, we will, in general, not distin-
guish between S and S′ and consider them to be identical. This slight abuse of
notation ensures that every edge is covered exactly twice by LRS; see the next
lemma. Figure 5 gives an example of two different LRS in the double ladder.

A set W of walks is a double cover of G if every edge e ∈ E(G) is traversed
exactly twice by walks in W (i.e. either once in two walks or twice in one walk).
We leave out the proof of the following elementary observation.

Lemma 15. For a locally finite graph G, let |G| be embedded in the sphere.
Then:
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Figure 5: Two LRS in the double ladder

(i) No two corners in an LRS are matched.

(ii) An LRS is either a closed walk or a two-way infinite walk.

(iii) The set of all LRS of G is a double cover of G.

Observe that because of our somewhat tortuous definition of left-right walks
as sequences of corners, (iii) remains true in pathological cases, such as when
G is a double ray. Then, there are precisely two (distinct) LRS, which together
form a double cover. Both of them traverse the double ray from one end to the
other and are as walks indistinguishable. The corner sequences, however, are
distinct.

Let G be a locally finite graph (not necessarily planar). We define a tour T
in |G| to be a continuous map T : S1 → |G| that is locally injective at every
x ∈ S1 for which T (x) is an interior point of an edge. Note that, therefore, every
edge with an interior point in the image of T , denoted by rge T , is completely
contained in rge T . We denote the set of all edges that lie in rge T by E(T ).
The residue 5T of a tour T is the set of those edges that are traversed exactly
once by T .

Now we can finally extend the definition of left-right tours to infinite graphs.
Assume that |G| is embedded in the sphere. Our aim is to give a definition so
that an LRT consists of a number of LRS that are glued together at ends so
as to constitute a tour in |G|. An example would be the two LRS shown in
Figure 5 together with the two ends of the double ladder.

Formally, we define a left-right tour L in |G| (LRT for short) to be a tuple
(S, τ) where S is a set of LRS of G and τ : S1 → |G| a tour of |G|, so that each
maximal subwalk of τ (in G, not in |G|) corresponds to one S ∈ S and vice
versa. Usually, however, we will think of L as being a tour in |G|, and say that
an LRS S lies in L if S ∈ S.

Having defined LRTs, our first task is to prove that the residue of an LRT
is indeed a bicycle. In finite graphs, this is due to Shank:

Lemma 16 (Shank [16]). If G is a finite plane graph, then the residue of a
left-right tour is a bicycle.

Lemma 16 is proved with the help of plane dual graphs. While abstract
dual graphs have been defined in [2], a suitable theory of plane dual graphs that
involves infinite cycles has yet to be formulated. This is probably not overly
difficult but checking the sometimes tedious geometrical details would take too
much space and effort here. Rather, with the help of the next lemma, we will
circumvent this obstacle by reducing the problem to finite graphs.

Lemma 17. For a locally finite graph G, let |G| be embedded in the sphere. Let
H be a finite plane subgraph, and let L1, . . . , Lk be a set of LRTs of G so that no

11



LRS of G lies in more than one Li. Then there exist a finite plane supergraph
H ′ of H and a set L′1, . . . , L

′
k of LRTs of H ′ so that for all i = 1, . . . , k, the

LRT Li traverses precisely the edges e1, . . . , en of H and in this order if and
only if L′i does.

Proof. From the given finite plane subgraph H of G we will construct a finite
plane supergraph H ′ of H (which will not necessarily be a subgraph of G) with
the required properties. We may assume H to be induced. Each Li decomposes
in H into a set of walks. Our task is to draw in the faces of H finite graphs so
that the subwalks in the set Li ∩H connect up in the same order as in G (for
all i). Since this will be done in the same way in every face, we may assume in
what follows that all of G−H is contained in one face.

Denote by F those edges in the cut E(H, G −H) that lie in some Li, and
find in the one face that contains G−H an open disc D so that each edge in F
meets ∂D in its interior. For each edge e in F , running along e from H towards
G−H we pick the first point, x say, in ∂D and cut off the edge at x. We draw
a vertex at x and let the set of these x be X. We denote by H0 the finite plane
graph consisting of H together with the cut-off edges in F (plus the vertices in
X). While, technically, F is a subset of E(G), we will view it as a subset of
E(H0), too.

Consider an LRT L, and let S be the set of LRS that lie in L (here, of the
two orientations of an LRS S ∈ S, we pick the one that is induced by L). We
define the set of corners KL to be

⋃
S∈S S, and observe that L induces a cyclic

ordering on the LRS in S, and therefore also on KL. Furthermore, we let M be
those of the corners in

⋃k
i=1KLi that are corners at edges in F . Clearly, for each

corner in M, which is a corner in G, there is a corresponding corner in H0. For
the sake of simplicity, we will not distinguish between these two and, depending
on the context, view M as a set of corners either in G or in H0. Corners in M
come in two kinds: there are outgoing corners, i.e. corners at vertices in V (H),
and ingoing corners, those at vertices in X.

Next, we will construct a pairing of the corners in M. For each i, we
arbitrarily pick an outgoing corner c1 in M∩KLi . Then, let c1, . . . , cl be the
corners in M ∩ KLi in the cyclic order of KLi . Since Li is a tour, l is even
and for each odd j the corner cj is outgoing while cj+1 is ingoing. We pair up
consecutive corners: {c1, c2}, . . . {cl−1, cl} ∈ P. For later use, we note that

if {c, c′} ∈ P then one of c, c′ is outgoing and one ingoing. (1)

Our task is to find finite left-right walks between each pair {c, c′} ∈ P. The
definition of P then ensures that for each i the order of the corners in KLi within
H is maintained.

Define for each c ∈ M a left-right walk K0(c) := (c), i.e. K0(c) is a walk
of length 1, which traverses an edge in F . To simplify the construction in the
next steps we will, with the help of a suitable homeomorphism, identify D with
(0, 3) × (0, 1) ⊆ R2, where all the vertices in X are assumed to lie in the open
segment {0} × (0, 1); see Figure 6.

Next, we pick m := |M| distinct points x1
1, . . . , x

1
m in {1} × (0, 1), where

we choose the labelling so that x1
j has a smaller y-coordinate than x1

j+1 for
all j. We consider these points to be vertices and draw non-crossing edges in
(0, 1)× (0, 1) in order to join each x1

j to a vertex w in X so that w receives one
edge if its incident edge in F is only traversed once by L1, . . . , Lk; otherwise
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(when the edge is used twice) we make w adjacent to two of the x1
j . Clearly, in

the resulting plane supergraph H1 of H0 each vertex in x1
1, . . . , x

1
m has degree 1.

H1
H4

s2
x2

s2
2x +1 s2

3x +1

s2
x3

0 1 2 3

0

1

D

1

2

3

H’

u w

1

2

3

Figure 6: The construction of the Hi (not to scale)—corners with the same
number are supposed to be paired.

Consider c = (e, η, σ) ∈ M. Assume first that c is an ingoing corner. If
c is matched with (e′, η′, σ′) (in H1), we precede the edge e in K0(c) by e′ in
order to obtain the left-right walk K1(c), i.e. we put K1(c) := ((e′, η′, σ′), c).
(Observe, that in this case, the walk is directed towards H, and hence we have
to lengthen it in backward direction.) Second, assume that c is outgoing. If
(e, η, σ) is matched with c′′ := (e′′, η′′, σ′′) (in H1) we lengthen K0(c) along
the edge e′′ to K1(c), that is, we set K1(c) := (c, c′′). In this way, we define
left-right walks K1(c) for all c ∈ M, so that each vertex in x1

1, . . . , x
1
m is used

by a unique K1(c), and this K1(c) either starts or ends in that vertex.
We will construct supergraphs Hi of H1 with corresponding left-right walks

Ki(c) ⊇ K1(c), c ∈ M. More precisely, we will construct finitely many nested
plane supergraphs with H1 ⊂ H2 ⊂ . . . ⊂ Ht+1, where Hi \ Hi−1 is entirely
drawn in (a, b]× (0, 1) for some 1 ≤ a < b < 3 (we will determine the respective
a and b in a moment). The intersection of Hi with {b} × (0, 1) will consist of
m vertices; in the order we encounter them on {b} × (0, 1) going from (b, 0) to
(b, 1) these will be denoted by xi

1, . . . , x
i
m. For each j = 1, . . . , m there will then

be a unique corner pi
j ∈ M so that the left-right walk Ki(pi

j) either starts or
ends in xi

j (and is otherwise disjoint from xi
1, . . . , x

i
m).

Let (p1, . . . , pm) be a permutation of M. For the rest of the proof let us
call a flip at s ∈ {1, . . . ,m − 1} the operation that turns (p1, . . . , pm) into
(p1, . . . , ps−1, ps+1, ps, ps+2, . . . , pm). Clearly, for some t there is a sequence of t
flips at s1, . . . , st that turns (p1

1, . . . , p
1
m) into (q1, . . . , qm) so that for each odd

j in {1, . . . , m} it holds that {qj , qj+1} ∈ P.
Our aim now is to define Hi+1, for i ∈ {1, . . . , t}, in such a way that

(pi+1
1 , . . . , pi+1

m ) is obtained from (pi
1, . . . , p

i
m) by performing a flip at si. More-

over, with the exception of the points xi+1
1 , . . . , xi+1

m , we will draw Hi+1 \Hi in
(1+ i−1

t , 1+ i
t )×(0, 1). Assume H1, . . . , Hi to be constructed. We put m distinct
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vertices xi+1
1 , . . . , xi+1

m (in this order) on the segment {1 + i
t} × (0, 1). For each

j ∈ {1, . . . , m} with j 6= si, si + 1, draw a straight line between xi
j and xi+1

j .
We extend Ki(pi

j) to a left-right walk Ki+1(pi
j) along the edge xi

jx
i+1
j . Then

we draw an edge uw in (1 + i−1
t , 1 + i

t ) × (0, 1) so that no crossing edges arise
when we connect u to xi

si
and xi

si+1, and w to xi+1
si

and xi+1
si+1. If necessary, we

subdivide the edge xi
si

u in order to guarantee the existence of a left-right walk
from xi

si
through uw to xi+1

si+1 (that is disjoint from xi
si+1). We extend Ki(pi

si
)

by this walk to a left-right walk Ki+1(pi
si

), and proceed in an analogous way
for Ki(pi

si+1). This ensures that (pi+1
1 , . . . , pi+1

m ) is obtained from (pi
1, . . . , p

i
m)

by performing a flip at si.
Finally, assume all the Hi up to Ht+1 to be constructed. For each odd j in

{1, . . . , m}, we draw an edge in (2, 3)×(0, 1) that joins xt+1
j to xt+1

j+1. Subdividing
xt+1

j xt+1
j+1 if necessary, we can join Kt+1(pt+1

j ) by this (possibly subdivided) edge
to Kt+1(pt+1

j+1), so that the resulting walk is left-right (here, (1) ensures that the
corner sequences fit with respect to orientation). By construction of the pairing
P, we ensure that the resulting LRTs L′i in the plane graph H ′ (:= Ht+1 plus
the possibly subdivided edges in (2, 3) × (0, 1)) behave on H in the same way
as the Li do.

Lemma 18. For a locally finite graph G, let |G| be embedded in the sphere.
Then the residue of an LRT in G is an element of the bicycle space.

Proof. Let F be a finite cut and L an LRT. As a tour, L passes an even number
of times through F . Therefore, | 5L∩F | is even and it follows, by Theorem 4,
that 5L is an element of the cycle space.

To see that the residue 5L is a cut, consider a finite cycle C. Lemma 17
(with H = C) yields a finite plane supergraph H ′ of C and an LRT L′ of H ′

so that 5L ∩ E(C) = 5L′ ∩ E(C). As 5L′ is a cut in H ′ (by Lemma 16) and
C ⊆ H ′ a cycle, we have that 5L′∩E(C) is an even set. Since this implies that
5L ∩ E(C) is even, too, it follows from Lemma 5 that 5L ∈ C∗(G) and hence
5L ∈ B(G).

6 LRTs generate the bicycle space

In this section we will prove the analogue of Theorem 2 for locally finite graphs.
Let G be a locally finite graph for which |G| is embedded in the plane, and

consider a bicycle B of G. Since the cuts of the form E(v) generate the cut
space, there is a vertex set X such that B =

∑
x∈X E(x). On the other hand,

B is also an element of the cycle space. As in finite graphs, C(G) is generated
by the residues of the face boundaries (this is shown in [3]). Thus, there is a
set F of face boundaries such that B =

∑
f∈F 5f . For each bicycle B assume

such a pair X, F to be fixed. Following Richter and Shank [13], we say that an
LRS S is of type I if there is a corner c = (e, η, σ) in S for which the following
statements are either both true or both false:

(i) ∂η contains a vertex in X; and

(ii) σ lies in a face whose face boundary is in F .
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It is not hard to check that if for one corner in S either both of (i) and (ii) are
true or are both false then this holds for every corner in S; see also Richter and
Shank [13]. If S is not of type I, then S is of type II.

Lemma 19. Let G be a locally finite plane graph, and let B be a bicycle. Then
an edge e of G lies in B if and only if it lies in exactly one LRS of type I and
in one LRS of type II with respect to B.

Proof. The proof is identical to the one given for finite graphs in Richter and
Shank [13].

An LRT L is called B-uniform if every two LRS contained in L are of the
same type. In finite graphs, Lemma 19 is already enough to prove Theorem 2:
we only need to sum up all LRS (which are identical to LRTs in finite graphs)
of type I (or type II, for that matter). By contrast, in locally finite graphs, it
is not even clear whether there is a single B-uniform LRT, let alone a set of
B-uniform LRTs with the properties as in the last lemma. The next lemma
asserts the existence of B-uniform LRTs.

Lemma 20. Let G be a locally finite graph, let |G| be embedded in the sphere,
and let B be a bicycle of G. Then there exists a set L of B-uniform LRTs so
that each LRS of G is contained in exactly one L ∈ L.

Proof. We may assume G to be connected. Then there is an enumeration
S1, S2, . . . of the set of LRS of G, since G is countable.

We construct from G another locally finite graph G′ (which, in all likelihood,
will not be planar). The vertex set of G′ consists of vertices vp, one for each
vertex v of G and for each subwalk p of the form p = evf in each Si (e, f ∈
E(G)). Such a vertex vp ∈ V (G′) is called a clone of v. The edge set of G′ is
comprised of two disjoint sets, E′ and F ′. The set F ′ contains one edge between
each pair of clones vp and vq of the same vertex v ∈ V (G); i.e. the clones of
a vertex span a complete graph. Two clones up and vq of distinct vertices
u, v ∈ V (G) are connected by an edge in E′ if p and q are subwalks in the same
LRS Si and appear consecutively in Si, i.e. if Si = . . . e−1v−1e0v0e1v1e2 . . .
then p = ej−1vj−1ej and q = ejvjej+1 (or the other way round) for some j. See
Figure 7 for an illustration.

vr
vq

vp

iS
iS’

G G’

v

Figure 7: Construction of G′ in the proof of Lemma 20; the edges in E′ are
dotted.

Let us define a mapping φ : V (G′) ∪ E(G′) → V (G) ∪ E(G). For each
v ∈ V (G) we map all clones of v and all edges (in F ′) between two clones of v
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to v. An edge upvq in E′, where up is a clone of u ∈ V (G) and vq is a clone of
v 6= u, is mapped to the edge uv of G. Clearly, this map is surjective.

We note, furthermore, that because of Lemma 15 (iii),

each e ∈ E(G) has exactly two preimages under φ, and these are in E′. (2)

For each Si = . . . e−1v−1e0v0e1v1e2 . . ., the map φ defines a walk in G′.
Indeed, since there is a vertex vpj in G′ for each subwalk pj := ejvjej+1,
and since each vpj

is linked by an edge e′j+1 in E′ to vpj+1 , the sequence
. . . e′−1vp−1e

′
0vp0e

′
1vp1e

′
2 . . . is a walk in G′, which we denote by S′i. We claim

that for all i it holds that

(i) if S′i = . . . e′−1v
′
−1e

′
0v
′
0e
′
1v
′
1e
′
2 . . . then

Si = . . . φ(e′−1)φ(v′−1)φ(e′0)φ(v′0)φ(e′1)φ(v′1)φ(e′2) . . .; and

(ii) each S′i is either a cycle or a double ray; and

(iii) S′i and S′j are disjoint for all j 6= i.

Claim (i) is clear by construction, and for (ii) and (iii) simply note that a clone
vp of a vertex v ∈ V (G) is adjacent to exactly two vertices that are not clones
of v.

Denote by XI the set of all those S′i for which Si is of type I with respect to
B, and let XII be the set of the other S′i (those for which Si is of type II). We
will show that

both of XI :=
⋃

S′∈XI

E(S′) and XII :=
⋃

S′∈XII

E(S′) lie in C(G′). (3)

To show that XI ∈ C(G′), consider a finite cut K ′ of G′; by Theorem 4, it
suffices to prove that |XI ∩K ′| is even.

Fix a vertex a′ of G′, and for each finite cut L = EG′(A,B) of G′ with a′ ∈ A
denote by c(L) the number of vertices w′ ∈ B so that there exists a clone u′ ∈ A
of the same vertex as w′. Since, by definition, each such w′ is adjacent to a
vertex in A, the number c(L) is finite.

Now, among all finite cuts L for which |L ∩ XI | has the same parity as
|K ′ ∩XI | choose one, K say, so that c(K) is minimal. Suppose that c(K) > 0,
and let K = EG′(A, B) with a′ ∈ A. Since c(K) > 0 there exist u′ ∈ A and
w′ ∈ B that are clones of the same vertex v ∈ V (G). As w′ = vp for some
subwalk p in some Si, we obtain from (iii) that w′ lies in exactly one S′i, which
implies that w′ is incident with exactly zero or two edges in XI , depending on
whether Si is of type II or of type I. Thus, the cut K̃ := K + E(w′) meets
XI in an even number of edges if and only if |K ∩ XI | is even. On the other
hand, we have K̃ = EG′(A∪{w′}, B \ {w′}), which implies c(K̃) < c(K), which
contradicts the choice of K.

Therefore, it holds that c(K) = 0. Since all clones of a vertex are on the
same side of K, it follows that K ⊆ E′, that φ(K) is a finite cut of G, and that
for each e ∈ φ(K) both of the preimages of e under φ lie in K. Thus, if we can
show that φ(K) is traversed an even number of times by LRS of type I (with
respect to B), then |XI ∩K| is even, and hence so is |XI ∩K ′|.

Lemmas 15 (iii) and 19 imply that φ(K) \ B is traversed an even number
of times by LRS of type I. Since B is an element of the cycle space, the set
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B ∩ φ(K) is even, by Theorem 4. Thus, Lemma 19 implies that also B ∩ φ(K)
is traversed an even number of times by LRS of type I. With (2) we get that
|XI ∩K| is even. The proof for XII is the same.

Next, we use Theorem 3 to decompose XI+XII into a setD of (edge-)disjoint
circuits. We observe that

for all i and D ∈ D it holds that if E(S′i)∩D 6= ∅ then E(S′i) ⊆
D. Moreover, for each D ∈ D, all the Si with E(S′i) ⊆ D are of
the same type.

(4)

Indeed, by (ii) and (iii) every vertex of G′ is incident with exactly two or zero
edges of XI (resp. XII). Since this also holds for circuits, the assertion follows.

Next, we define a continuous mapping φ′ : |G′| → |G|. On the 1-complex G′

we extend φ to a continuous mapping φ′ so that the following holds:

(a) φ′(e′) = e if and only if φ(e′) = e for all e′ ∈ E(G′) and e ∈ E(G) (where,
with regard to φ′ we view e′ and e as point sets, while for φ we see them as
edges of graphs); and

(b) at each interior point of an edge of G′, the map φ′ is locally injective.

To define φ′ on ends, consider a ray R′ in an end ω′ of G′. Then φ(R′) is a
one-way infinite walk, and thus contains a ray in an end, say ω. We map ω′ to
ω.

It remains to check that φ′ is continuous at ends. So, consider an end ω′ of
G′ and let a basic open neighbourhood C := ĈG(U, φ′(ω′)) of φ′(ω′) in |G| be
given (recall that U is a finite vertex set). Denoting by U ′ the set of all clones
of vertices in U , we see that C ′ := ĈG′(U ′, ω′) is a basic open neighbourhood of
ω′ in |G′| and that φ′(C ′) ⊆ C. Therefore, φ′ is continuous.

Finally, since each D ∈ D is a circuit, by definition there exists a home-
omorphism σD : S1 → |G′| with image D. By (b), the continuous mapping
φ′ ◦ σD : S1 → |G| is locally injective at points x ∈ S1 that are mapped to inte-
rior points of edges. Furthermore, (i) and (a) imply that each maximal subwalk
in φ′ ◦σD is an LRS, and that these are precisely those Si for which E(S′i) ⊆ D.
Therefore, each φ′ ◦ σD describes an LRT in |G|. By (4), each such LRT is
B-uniform. We denote the set {φ′ ◦ σD : D ∈ D} of LRTs by L.

Since for every Si the set E(S′i) is contained in some D ∈ D, every Si occurs
in one of the LRTs in L, and on the other hand, since all the D ∈ D are
(edge-)disjoint, no Si appears in two elements of L.

We remark that the LRTs in L have an additional property, of which we
will, however, make no use: each L ∈ L is minimal in the sense that, if L′ is an
LRT with ∅ 6= E(L′) ⊆ E(L) then E(L′) = E(L). In order to briefly sketch the
proof, let D ∈ D be the circuit in G′ so that φ′ ◦ σD describes the LRT L. Let
Y be the subset of LRS contained in L that also lie in L′. Then it is easy to
check that Y :=

⋃
S∈Y E(S′) is an element of the cycle space of G′. Since Y is

not empty and a subset of the circuit D, it follows that Y = D which implies
E(L) = E(L′), as claimed.

With Lemma 20 we can extend Theorem 2 to locally finite graphs using
arguments of Richter and Shank [13]. Given a bicycle B, Lemma 20 yields
a set M of LRTs, so that every LRS of type I appears in exactly one element
ofM. Lemma 19 assures that

∑
M∈M5M = B. On the other hand, Lemma 18
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shows that all sums of residues of LRTs are elements of the bicycle space. In
conclusion, we have proved:

Theorem 21. Let G be a locally finite graph, and let |G| be embedded in the
sphere. Then the residues of the left-right tours in |G| generate the bicycle space
of G.

In a finite graph, the set of LRTs is a double cover. In the double ladder,
by contrast, we can construct LRTs by glueing together any two of the four
LRS, which results in a set of six LRTs that cover all edges more than twice;
see Figure 5. Moreover, while Lemma 20 asserts that there are double covers
consisting of LRTs, in the case of the double ladder none of these are sufficient
to generate the bicycle space. Indeed, consider a double cover L of LRTs for the
double ladder. Pick an LRT of the double cover and observe that it traverses
some edge e twice (in Figure 5 this is the case for every second rung). It is easy
to check that every edge in the double ladder lies in a bicycle, and hence, no
bicycle containing e can be expressed as the sum of residues of L ∈ L.

7 The ABL planarity criterion

MacLane’s well-known planarity criterion [12] characterises planar graphs in
terms of the cycle space. MacLane observed that, in (finite) plane graphs, the
set of facial walks is a double cover that generates the cycle space. Then he
proved that, conversely, any double cover of closed walks with this property can
be realised as a set of facial walks and is therefore a certificate for planarity.

The planarity criterion of Archdeacon, Bonnington and Little [1] works in
a similar way with the difference that they list the essential properties of the
left-right tours. These properties are rather more elaborate and necessitate a
number of definitions, which we will give below. In this section it is our aim to
show that the ABL criterion remains true in locally finite graphs.

Consider a locally finite graph G, and let W be a double cover of tours in
|G|, i.e. every edge is traversed twice by W. For any l, let H be a cyclic sequence
e = f1,W1, . . . , fl,Wl, fl+1 = e where the Wi are distinct members of W and
the fj are distinct edges of G, so that Wi contains both of fi and fi+1. We call
such a sequence H a ladder (with respect to W), and we say that the fi are the
rungs of H.

For each i, let W ′
i be one of the two orientations of Wi, and denote by

Pi the topological subpath in W ′
i between fi and fi+1, and by P ′i the one

between fi+1 and fi; i.e. traversing fi, then following Pi, traversing fi+1 and
finally running along P ′i describes the same tour in |G| as W ′

i . An edge that
is traversed both times in the same direction by the W ′

i (either by one W ′
i ,

in which it appears twice, or by two distinct tours), is said to be consistent ;
otherwise it is inconsistent. We call the family (Pi)i=1,...,l together with the
set of inconsistent rungs (with respect to the W ′

i ) a side of H. Furthermore,
if the side is denoted by S, then we write 5S for

∑l
i=15Pi +

∑
j∈J fj where

J = {j : 1 ≤ j ≤ l and fj is inconsistent}.
Finally, a double cover D of tours of G is called a diagonal if both 5D and

5S are cuts, for every D ∈ D and every side S of any ladder in D.
We can now state the ABL criterion:
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Theorem 22 (Archdeacon, Bonnington and Little [1]). A finite graph is planar
if and only if it has a diagonal. In particular, the set of LRTs of a finite plane
graph is a diagonal.

A simple proof of the ABL criterion can be found in Keir and Richter [10].
Theorem 22 extends to locally finite graphs:

Theorem 23. A locally finite graph is planar if and only if it has a diagonal.

Proof. Let G be a locally finite graph. First, assume G to be planar. From The-
orem 6 we know that |G| has an embedding in the sphere, and thus Lemma 20
yields (with, for instance, B = ∅) a set L of LRTs so that each LRS of G lies
in exactly one element of L. Hence, L is a double cover of G (Lemma 15 (iii)).
Furthermore, Lemma 18 implies that 5L is a cut for each L ∈ L.

For L to be a diagonal, it remains to show that for any side S of any ladder
H (with respect to L), 5S is a cut as well. We show that 5S meets every finite
cycle C in an even number of edges, thereby proving 5S to be a cut (Lemma 5).

If R is the set of rungs of H, then we define H to be the plane subgraph of G
consisting of C and all the edges in R together with their incident vertices. We
apply Lemma 17 to H and the LRTs inH, which yields a finite plane supergraph
H ′ and a set H′ of LRTs of H ′. It is straightforward to see that H′ is a ladder
in H ′ with a side S′ for which it holds that 5S′ ∩ E(H) = 5S ∩ E(H). Since
5S′ is a cut, by Theorem 22, the intersection 5S′∩E(C) = 5S∩E(C) is even.
This proves L to be a diagonal.

For the converse direction, let us now suppose that G has a diagonal D but
also contains a subdivision X of K3,3 or of K5. Denote by H the (finite) induced
subgraph of G on V (X), and set F := E(H,G−H), which is a finite cut. One
by one, we delete the edges of F from G. We claim that after each edge deletion,
the graph G still has a diagonal. For finite graphs, this is proved in Archdeacon,
Bonnington and Little [1]. As their arguments remain still valid in locally finite
graphs, we will not repeat them.

Once we have deleted all of F , the diagonal will split into two parts: into
the set D′ of those that are completely contained in H, and into those tours
that are disjoint from H. Clearly, D′ is then a diagonal of the finite non-planar
graph H, which is impossible by Theorem 22.

For pedestrian graphs, i.e. those graphs G for which B(G) = {∅}, Read
and Rosenstiehl [15] gave a slightly simpler planarity criterion. Let a tour W
traverse an edge e = uv twice. If e is consistent, and traversed from u to v, say,
then W decomposes into four topological subpaths uv, H1, uv and H2. We call
each of H1 and H2 a half of W (with respect to e). If e is inconsistent, then W
is equally comprised of four topological subpaths: namely of uv, H ′

1, vu and of
H ′

2. In this case we call the topological subpaths uvH ′
1 and vuH ′

2 halves of W .
We note two facts: first, if e is inconsistent in W then it is contained in each

half of W ; and second, if e,W, e is seen as a ladder then a half is simply a side
of this ladder (more precisely, they have the same residues).

We say that a tour D in |G| is an algebraic diagonal of G if D is a double
cover and if for every edge e, every half of D is a cut.

Theorem 24 (Read and Rosenstiehl [15]). A finite connected pedestrian graph
is planar if and only if it has an algebraic diagonal.
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Theorem 25. A locally finite connected pedestrian graph is planar if and only
if it has an algebraic diagonal.

Proof. Let G be a locally finite connected pedestrian graph. If G is planar, then
|G| can be embedded in the sphere (Theorem 6) and there is a family L of LRTs
of G that forms a double cover (by Lemma 20). We already know (from the
proof of Theorem 23) that L is a diagonal. If L has only a single member D,
then D is an algebraic diagonal of G: since every half H of D is the side of a
ladder, it follows that 5H is a cut.

So, assume that L has two members, and denote one of them by L. Since G
is pedestrian, Lemma 18 implies 5L = ∅. As G is connected there is therefore a
vertex v which is met by L but also incident with edges not lying in L. Consider
an edge e incident with v that lies in L. Let η be the half of e with v /∈ ∂η,
and let σ be a side of e. Since L traverses e twice (as 5L = ∅), L (or, more
precisely, the LRS lying in L) contains one corner of each of {(e, η, σ), (e, η, σ)}
and {(e, η, σ), (e, η, σ)}. Let (e1, η1, σ1) be the corner that is matched with
(e, η, σ), and let (e2, η2, σ2) be the one matched with (e, η, σ). By definition,
if L contains (e, η, σ) then it also contains (e1, η1, σ1). If, on the other hand,
(e, η, σ) lies in L, then (e1, η1, σ1) is a corner of L. In any case, e1 is traversed
by L. As, in a similar way, we see that e2 lies in L as well, it follows that the
predecessor and the successor of e in the local rotation at v both lie in L, and
thus that all of E(v) is covered by L, a contradiction to our assumption.

If, conversely, G has an algebraic diagonal D, then the set {D} is a diagonal.
Theorem 23 shows that G is planar.
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