Bicycles and left-right tours in locally finite graphs

Henning Bruhn

Universität Hamburg

Infinite Graphs Workshop 2007

joint with S. Kosuch & M. Win Myint
Bicycles in finite graphs

cycle space $\mathcal{C}(G)$

cut space $\mathcal{C}^*(G)$

bicycle space $\mathcal{B}(G) = \mathcal{C}(G) \cap \mathcal{C}^*(G)$
Tripartition theorem

Theorem (Read & Rosenstiehl)

Let G finite, e edge of G. Then exactly one of the following holds:

(i) $\exists B \in B(G)$ with $e \in B$
(ii) $\exists Y \in C(G)$ with $e \in Y$ and $Y + e \in C^*(G)$
(iii) $\exists Z \in C(G)$ with $e \notin Z$ and $Z + e \in C^*(G)$.
Theorem (Read & Rosenstiehl)

Let G finite, e edge of G. Then exactly one of the following holds:

(i) $\exists B \in \mathcal{B}(G)$ with $e \in B$

(ii) $\exists Y \in \mathcal{C}(G)$ with $e \in Y$ and $Y + e \in \mathcal{C}^*(G)$

(iii) $\exists Z \in \mathcal{C}(G)$ with $e \notin Z$ and $Z + e \in \mathcal{C}^*(G)$.
Tripartition theorem

Theorem (Read & Rosenstiehl)

Let G finite, e edge of G. Then exactly one of the following holds:

(i) $\exists B \in \mathcal{B}(G)$ with $e \in B$

(ii) $\exists Y \in \mathcal{C}(G)$ with $e \in Y$ and $Y + e \in \mathcal{C}^*(G)$

(iii) $\exists Z \in \mathcal{C}(G)$ with $e \not\in Z$ and $Z + e \in \mathcal{C}^*(G)$.

Henning Bruhn (U Hamburg)
Tripartition in ∞ graphs?

- no finite bicycle $\ni e$
- no finite $Z \in C(G)$ with $Z + e \in C^*(G)$
Tripartition in ∞ graphs?

- no finite bicycle $\ni e$
- no finite $Z \in \mathcal{C}(G)$ with $Z + e \in \mathcal{C}^*(G)$

\Rightarrow infinite bicycle $\ni e$
Hamburg version

Theorem

Let G locally finite, e edge of G. Then exactly one of the following holds:

(i) $\exists B \in \mathcal{B}(G)$ with $e \in B$

(ii) $\exists \text{finite } Y \in \mathcal{C}(G)$ with $e \in Y$ and $Y + e \in \mathcal{C}^*(G)$

(iii) $\exists \text{finite } Z \in \mathcal{C}(G)$ with $e \notin Z$ and $Z + e \in \mathcal{C}^*(G)$.

Waterloo version

Theorem (Casteels&Richter)

Let G locally finite, e edge of G. Then exactly one of the following holds:

(i) $\exists \text{finite } B \in \mathcal{B}(G)$ with $e \in B$

(ii) $\exists X \in \mathcal{C}(G)$ with $X + e \in \mathcal{C}^*(G)$

real tripartition

consequence of more general theorem
Ambiguous edges

\[\exists Y \in \mathcal{C}(G) \text{ with } e \in Y \text{ and } Y + e \in \mathcal{C}^*(G) \]

\[\exists Z \in \mathcal{C}(G) \text{ with } e \notin Z \text{ and } Z + e \in \mathcal{C}^*(G) \]
Property

Locally finite G is pedestrian iff for all $e \in E(G)$ there exist finite $Z \in C(G)$ with $Z + e \in C^*(G)$.

Theorem (Read & Rosenstiehl)

G finite and connected. Then G pedestrian iff

$\#$ of spanning trees $= \text{odd}$.

Question: when is an ∞ graph pedestrian?
A left-right tour...

...and its residue

Theorem (Shank)

The residue of a left-right tour in a finite plane graph is a bicycle.
A left-right tour...

...and its residue

Theorem (Shank)

The residue of a left-right tour in a finite plane graph is a bicycle.
Left-right tours

A left-right tour...

...and its residue

Theorem (Shank)

The residue of a left-right tour in a finite plane graph is a bicycle.
A left-right tour...

...and its residue

Theorem (Shank)

The residue of a left-right tour in a finite plane graph is a bicycle.
A left-right tour...

...and its residue

Theorem (Shank)

The residue of a left-right tour in a finite plane graph is a bicycle.

Theorem (Horton, Shank)

The residues of left-right tours generate $\mathcal{B}(G)$ in finite plane G.
How to define LRT in ∞ graphs?

Left-right tour should be...
How to define LRT in ∞ graphs?

Left-right tour should be...
How to define LRT in ∞ graphs?

Left-right tour should be...

- ...left-right
- ...a tour
- residue is bicycle
DEF of left-right tours

DEF A left-right tour is $\tau : S^1 \rightarrow |G|$ that is...

- locally left-right
- locally injective at edges

parity information is lost in ends
Results

Lemma
The residue of a left-right tour in a locally finite plane graph is a bicycle.

Theorem
The residues of left-right tours generate $B(G)$ in locally finite plane G.

Problems:

- Finite proof uses plane duals
- Existence of left-right tours?
Unique LRT in pedestrians

- pedestrian graph has unique LRT
- planarity criterion lists its properties
Unique LRT in pedestrians

- pedestrian graph has unique LRT
- planarity criterion lists its properties
Unique LRT in pedestrians

- pedestrian graph has unique LRT
- planarity criterion lists its properties
Unique LRT in pedestrians

- pedestrian graph has unique LRT
- planarity criterion lists its properties
Read&Rosenstiehl’s planarity criterion

DEF halves

DEF tour W is algebraic diagonal if
- double cover
- each residue of a half is a cut

Theorem (Read&Rosenstiehl)

Let G be finite and pedestrian. Then G is planar iff it has algebraic diagonal.

→ extends to locally finite
→ for non-pedestrian graphs: Archdeacon, Bonnington & Little
Read & Rosenstiehl’s planarity criterion

DEF halves

![Diagram of halves]

DEF tour W is algebraic diagonal if

- double cover
- each residue of a half is a cut

Theorem (Read & Rosenstiehl)

Let G be finite and pedestrian. Then G is planar iff it has algebraic diagonal.

→ extends to locally finite
→ for non-pedestrian graphs:
Archdeacon, Bonnington & Little
Open question

- characterise pedestrian graphs
- left-right tours on other surfaces
- left-right tours for other compactifications