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Chapter 1

Introduction

A classical result of Tutte [7] states that in a finite 3-connected graph the cycle
space (the set of mod 2 sums of cycles) is generated by induced non-separating
cycles. Following Tutte we shall call those cycles peripheral.

Theorem 1.1 (Tutte [7]). The cycle space of a finite 3-connected graph is
generated by peripheral cycles.

The purpose of this work is to extend Tutte’s theorem to infinite graphs.
However, for arbitrary infinite graphs the cycle space need not be generated by
peripheral cycles. An obvious counterexample is the cartesian product G of a
cycle C with a double ray (a 2-way infinite path). There, every copy of C is
separating but not the sum of any set of peripheral cycles.

We pursue two ways to deal with the counterexample. In Chapter 2 we
restrict ourselves to a class of (infinite) graphs that excludes graphs such as G.
In fact, we show that Tutte’s theorem holds for (3-connected) graphs with at
most one end, thereby answering a question of Halin.

In contrast, we observe in Chapter 3 that if a generalized definition of the
cycle space is used, one that admits infinite cycles and respects the end structure
of the graph, then G is no longer a counterexample. Indeed, with that notion
of the cycle space we see that Tutte’s result generalizes neatly to (3-connected)
locally finite graphs.

Chapter 4 is the odd one out. There, we look at finite graphs that are no
longer required to be 3-connected. We obtain a simple extension of Tutte’s
result.

Each chapter is self-contained. In general our notation and terminology will
be that of Diestel [2]. All our graphs will be undirected and without loops or
multi-edges.
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Chapter 2

Graphs with at most one
end

2.1 Introduction

All known counterexamples to Tutte’s result (Theorem 1.1), such as the one
in Chapter 1, have at least two ends. (An end is the equivalence class of rays
(1-way infinite paths), where two rays are said to be equivalent if they cannot
be separated by finitely many vertices.) Halin [5], on the other hand, observed
that in certain classes of (3-connected) graphs with at most one end the cycle
space is indeed generated by peripheral cycles. In particular, this is true for
planar one-ended graphs and for rayless graphs (graphs without rays).

Theorem 2.1 (Halin [5]). The cycle space of a 3-connected rayless graph is
generated by induced non-separating cycles.

Motivated by these results he raised the following problem.

Problem 2.2 (Halin [5]). Is the cycle space of every 3-connected graph with
at most one end generated by induced non-separating cycles?

Weakening Problem 2, Halin made the following conjecture.

Conjecture 2.3 (Halin [5]). The cycle space of every 3-connected graph that
does not contain a double ray is generated by induced non-separating cycles.

We will give a positive answer to Problem 2.2, thereby proving Conjecture
2.3.

2.2 Generating the cycle space

We recall a standard concept that naturally arises when dealing with cycles.
Here, we have taken the definition from Bondy and Murty [1].

Definition 2.4. Let H be a subgraph of a graph G. We define an equivalence
relation on E(G)\E(H) by e ∼ f if there is a path P such that

(i) the first edge of P is e and the last is f .
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(ii) P meets H at most at its ends.

A connected non-trivial subgraph B of G−E(H) whose edge set is closed under
this equivalence relation is called a bridge of H. The vertices of B on H are
called the vertices of attachment of B.

One sees easily that a bridge is either a chord of H or a subgraph of G
consisting of a component K of G − H with the edges E(K,H) added. Note,
that a cycle is peripheral if and only if it has at most one bridge.

The key to the solution of Problem 2.2 is the following observation. Let
a cycle C in a 3-connected graph G with at most one end be given. Being
finite, C may not separate any two rays of G. Consequently, C has at most
one bridge containing rays. Substituting that bridge through a suitable rayless
one we obtain a rayless graph G′ whose cycle space differs not too much from
that of G. In addition, the cycle space of G′ is generated by peripheral cycles
(Theorem 2.1).

The following simple lemma shows how we can find an appropriate substitute
bridge for the unwanted bridge.

Lemma 2.5. Let G be a 3-connected graph and let C be a cycle in G with
a bridge B that is not a chord. Denote by G′ the graph obtained from G by
contracting the bridge B to a vertex vB (with any loops and multi-edges deleted).
Then G′ is 3-connected. Moreover, every peripheral cycle D in G′ that avoids
vB is a peripheral cycle in G as well.

Proof. First, we show that G′ is 3-connected. For this, consider any vertices x
and y of G′. We assume first that x = vB . Let u, v ∈ V (G′)\{vB , y} be two
vertices. Because G is 3-connected there is an u-v-path P in G − y. Should
this path be a valid path in G′ too we are done. If not, then P meets B.
Denote by w1 the first vertex of P in C and by w2 the last vertex. With a path
Q = w1 . . . w2 in C−y we obtain an u-v-path P ′ = uPw1Qw2Pv in G−{vB , y}.
By a similar reasoning we see that if vB /∈ {x, y}, G′ − {x, y} is connected as
well.

Finally, we have to deal with the second assertion. Clearly, a cycle D in G′

that avoids vB may be viewed as a cycle in G. We claim that D has only a
single bridge in G. For this, let e ∈ B be an edge. We show that every edge
f ∈ E(G)\D is equivalent to e. Should f be another edge of B this is obvious,
so assume f /∈ B. In particular, f is then an edge of G′ as well. Let e′ be an
edge of G′ incidident to vB . D avoids vB and has only a single bridge in G′.
Consequently, there is a path P ′ = f . . . e′ in G′ internally avoiding D. Denote
by v the predecessor of vB on P ′. Note that v is a common vertex of C and B.
Hence, there is a path Q = v . . . e ⊆ B internally disjoint to C (and, thus, to
D as well). Observe, that v lies not in D—otherwise P ′ could not be internally
disjoint to D. With this, we obtain the path P = P ′vQ from f to e which meets
D at most in its endvertices.

We know now how to obtain a rayless graph G′ from our original graph G
suitable to our problem. In that graph Theorem 2.1 delivers generating cycles
for an arbitrary cycle; we only have to ensure that these avoid our substitute
bridge. This amounts to the following slightly strengthened version of Halin’s
theorem.
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Lemma 2.6. Let G be 3-connected and rayless. Let C be a cycle in G with a
finite bridge B. Then C is the sum of peripheral cycles each meeting B at most
in C.

We start with the finite version of Lemma 2.6. For that, we need some further
terminology. Let C be a cycle in a finite graph G. Two bridges B,B ′ of C are
called overlapping if there is no path P ⊆ C such that all vertices of attachment
of B belong to P , but no inner vertex of P is a vertex of attachment of B ′. Two
bridges B,B′ are called skew if there are vertices u, u′, v, v′ appearing in that
circular order on C such that u, v ∈ B and u′, v′ ∈ B′. It is easy to see that in
a 3-connected graph two overlapping bridges are skew or have three vertices in
common.

Lemma 2.7 (Tutte [7]). Let G be a finite and 3-connected graph. Let C be
a cycle in G with a bridge B. Then either C is peripheral or there is another
bridge B′ of C overlapping B.

Lemma 2.8, the finite version of Lemma 2.6, is essentially Tutte’s [7] original
theorem. As the proof is rather short, we include it here for the convenience of
the reader.

Lemma 2.8. Let G be a finite and 3-connected graph. Let C be a cycle in G
with a bridge B. Then C is the sum of peripheral cycles each meeting B at most
in C.

Proof. Let U be the set of sums of peripheral cycles that meet B at most in C.
If C ∈ U we are done, so assume otherwise. Then there is a cycle D /∈ U with

(i) D has a bridge B′ ⊇ B,

(ii) no cycle D′ /∈ U has a bridge that properly contains B′.

By Lemma 2.7 there is another bridge B̃ that overlaps B′.
First, let B′ and B̃ be skew. Thus, there are vertices u, x, v, y that appear

in that circular order on D, such that u, v ∈ B′ and x, y ∈ B̃. Denote by
P = x . . . y ⊆ B̃ a path internally disjoint to D. Then C1 := xCyP and
C2 := yCxP are cycles each having a bridge that properly contains B ′. Thus,
we have C1, C2 ∈ U—in contradiction to D = C1 + C2.

Finally, let B′ and B̃ have three vertices x, y, z in common. There is a b ∈ B̃
and three paths Px = x . . . b, Py = y . . . b and Pz = z . . . b in B̃ meeting only in
b and that are each internally disjoint to D. With these we obtain three cycles:
Cxy := xCyPyPx, Cyz := yCzPzPy and Czx := zCxPxPz. Every one of these
has a bridge properly containing B′. Thus, we have again the contradiction of
Cxy, Cyz, Czx ∈ U but D = Cxy + Cyz + Czx.

Fortunately, Lemma 2.6 can be proven by closely following Halin’s proof of
Theorem 2.1. Our sole contribution is to include the bridge B into the reasoning,
which is an easy task as B is assumed to be finite. Before we can start, however,
we need a tool for handling rayless graphs that was developed by Schmidt [6] (see
Halin [5] for an exposition in English). This tool allows transfinite inductions
on rayless graphs.

Proposition 2.9 (Schmidt [6]). On the class of rayless graphs there is a
function o that assigns to each rayless graph G an ordinal such that the following
is satisfied
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(i) G is finite if and only if o(G) = 0,

(ii) if o(G) > 0 there is a finite set F ⊆ V such that for every component K
of G− F we have o(K) < o(G).

The function o will be called the order of the graph.

We will need the following properties below. For finitely many rayless graphs
G1, . . . , Gn the order of the union is the maximum of the orders of the con-
stituent graphs: o(G1 ∪ . . . ∪Gn) = maxi=1...n o(Gi).

It turns out, that for every infinite rayless graph G there is a unique minimal
vertex set satisfying (ii). This set is called the kernel of G and denoted by K(G).

Further, we need the notion of a subkernel of an infinite rayless graph G. For
a vertex set S ⊆ K(G) we denote by CS the set of all components K of G−K(G)
with N(K) = S. Then S is called a subkernel of G if the graph G[S ∪ ⋃ CS ]
has the same order as G. Below we will make use of the observation, that for a
subkernel S the set CS is necessarily infinite—otherwise G[S ∪ ⋃ CS ] would be
the finite union of graphs each having a strictly smaller order than G, which is
impossible.

Proof of Lemma 2.6. For the proof we make a transfinite induction on o(G).
For o(G) = 0, G is finite. Hence, Lemma 2.8 ensures the induction start.

So, assume o(G) ≥ 1 and let the assertion be true for smaller orders. There
is a set S of components of G−K(G) with the following properties

(i) C ∪ B is in G′ := G[K(G) ∪⋃S],

(ii) for every subkernel S of G the set of K ∈ S with N(K) = S is finite but
has at least |K(G)|+ 2 elements,

(iii) S contains all the components K of G−K(G) whose neighbourhood N(K)
is not a subkernel.

In fact, we may choose S as follows. First let S1 be the finitely many of the
components of G − K(G) that meet C ∪ B (which is a finite set). With this
we have ensured (i). Now consider a subkernel S for which the set S1 does not
satisfy (ii). By definition of a subkernel there are infinitely many components of
G−K(G) whose neighbourhood is S. Thus, by adding to S1 for each such S the
finitely many missing components we arrive at a finite set S2 that satisfies (i)
and (ii). All that is left to deal with is (iii), which is easily satisfied by including
the by (iii) required components into S2. Note that doing this violates neither
(i) nor (ii).

Having established the existence of such a set S we claim that G′ is 3-
connected and its order o(G′) is strictly smaller than o(G).

For the 3-connectivity consider two vertices x and y of G′. For any two other
vertices u and v of G′ − {x, y} there is an u-v-path P in G − {x, y}. The only
reason why P may fail to be a path in G′ as well is that P meets a component
K of G−K(G) not contained in S. By (iii) the neighbourhood N(K) of K has
to be a subkernel. As a result of (ii), there are at least three components of
G −K(G) in S with neighbourhood N(K). At least one of these components
is disjoint to {x, y} and thus may be used to substitute the part of P that goes
through K. By doing this for all such components K we arrive at an u-v-path
P ′ in G′ − {x, y}.
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For o(G′) < o(G) observe that the set S ′ of components in S whose neigh-
bourhood is a subkernel of G is finite. Indeed, this is because of (ii) and the fact
that there are only finitely many subkernels. Hence, we have o(G[

⋃ S ′]) < o(G)
as each of the components has smaller order than G. For a set S ⊆ K(G) that is
not a subkernel, the union of the components K ∈ S with S as neighbourhood
must have smaller order. Otherwise S would be a subkernel. Since the number
of subsets of K(G) is finite there are only finitely many of those unions. There-
fore, the order of the union of these unions is smaller than o(G) too. Combined
with the preceding observation for subkernels we have established o(G′) < o(G).

Next, we show that a peripheral cycle D in G′ is still peripheral in G. It
is sufficient to assume D to be separating in G as D is induced in G′ which,
in turn, is an induced subgraph. G′ −D is connected and therefore contained
in a component K of G − D. Suppose there is a different component K ′ of
G−D and denote its set of neighbours N(K ′) by S. K ′ being disjoint to G′ is
therefore certainly disjoint to K(G) as well. But S is contained in K(G) since
all the neighbours of D−K(G) are in G′. As a consequence, K ′ is a component
of G −K(G) and by condition (iii), S a subkernel. Condition (ii) asserts that
there are |K(G)|+2 ≥ |S|+2 components in S with neighbourhood S. As K ′ is
separated from K by D, any other component of G−K(G) with neighbourhood
S that is not met by D is as well separated from K by D. But D may meet
at most |S| of the components in S with neighbourhood S and, hence, avoids
at least two of those components. But then D is already separating in G′—a
contradiction.

Since B is completely contained in G′ it is still a bridge of C in G′. By
applying the induction hypothesis to the cycle C with bridge B in G′ we obtain
C as the sum of peripheral cycles that each meet B at most in C. By the
argument above these cycles are peripheral in G as well and the theorem is
proven.

As noted the proof of Halin’s problem follows easily.

Theorem 2.10. The cycle space of a 3-connected graph G with at most one
end is generated by peripheral cycles.

Proof. As every element of the cycle space is the (finite) sum of cycles it is
sufficient to consider a cycle C in G. Since C is finite and G has at most one
end there is a bridgeB of C containing a tail for every ray in G. Hence, the graph
G′ obtained from G as in Lemma 2.5 is rayless and 3-connected. Lemma 2.6
yields a set of peripheral cycles in G′ each avoiding vB whose sum is C. By
Lemma 2.5 these cycles are peripheral cycles in G too, as required.
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Chapter 3

Locally finite graphs

3.1 Introduction

In this chapter we show that despite obvious counterexamples Tutte’s result
(Theorem 1.1) generalizes to locally finite graphs. This will be achieved by
admitting infinite cycles and sums as recently proposed by Diestel and Kühn [3].

Let us look at a simple example. Consider the cartesian product of a double
ray (an infinite 2-way) with a 4-cycle (Figure 3.1). The peripheral cycles of
this graph are exactly its non-separating 4-cycles. We see that the (separating)
cycle C in the figure is not the sum of any such cycles, so Tutte’s theorem fails
for this graph.

PSfrag replacements

C

Figure 3.1: The cycle C is not the finite sum of peripheral cycles

It can be mended, however, by allowing infinite sums. Indeed, C is clearly
the (infinite) sum of all the peripheral 4-cycles to the left of C (or to the right
for that matter).

However, infinite sums of cycles can also produce edge sets of subgraphs
such as the double ray shown in Figure 3.2, which should then also be legiti-
mate elements of the cycle space closed under (well-defined) infinite sums. This
complicates matters, but not beyond control: the subspace of the edge-space
of a locally finite graph G that is generated by (possibly) infinite sums of the
(finite) cycles of G has been studied by Diestel and Kühn in [3, 4] who obtained
this space as an adaptation of the cycle space to infinite cycles involving the
ends of G. (These infinite cycles are homeomorphic images of the unit circle
in the standard compactification of G by its ends; for example, the double ray
in Figure 3.2 forms an infinite cycle with the left end of the graph.) We shall
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Figure 3.2: An infinite edge set that arises from an infinite sum of cycles

make use of the results in [3, 4] throughout this paper.
A short overview of the chapter follows. Section 3.2 contains the definition of

the cycle space and the statement of our main result. In Section 3.3 we examine
bridges and in particular the overlap graph of a cycle in a 3-connected graph.
This will be seen to be connected. In Section 3.4 we prove the main lemma for
our main result. In Section 3.5 we prove our main result, that every element of
the (generalized) cycle space C(G) in a 3-connected locally finite graph is the
sum of peripheral cycles. Also, we see that for some graphs G a generating set
of C(G) consisting of peripheral cycles must contain infinite peripheral cycles.
Finally, in Section 3.6 we show that following the approach presented in this
chapter Tutte’s result cannot be extended to arbitrarily infinite graphs.

3.2 Definitions and statement of the main result

A 1-way infinite path will be called a ray. A subray of a ray will be said to be
a tail of that ray. Two rays in a graph are defined to be equivalent if there is no
finite vertex set separating them. The resulting equivalence classes are called
the ends of the graph. For a graph G the union of G with its ends is denoted
by G.

In order to define the cycle space Diestel and Kühn [3] introduced a topology
on G. For a finite set S ⊆ V and an end ω there is exactly one component of
G− S that contains a tail for every ray in ω. This component will be denoted
by CG(S, ω) and we say ω belongs to CG(S, ω). The union of CG(S, ω) with all
the ends belonging to that component is CG(S, ω). Write EG(S, ω) for the set
of all edges between S and CG(S, ω) and let E̊′G(S, ω) be any union of half-edges
(x, y] ⊂ e, one for every e ∈ EG(S, ω), with x ∈ e̊ and y ∈ CG(S, ω). Then let
the topology on G be generated by the open sets of G viewed as a 1-complex
and the sets of the form

ĈG(S, ω) := CG(S, ω) ∪ E̊′G(S, ω).

Throughout the paper G will be assumed to be endowed with this topology. In
[3] it is shown that this topology is in a certain sense the best possible one on
locally finite graphs.

A homeomorphic image of the unit interval in G is called an arc in G. The
images of 0 and 1 are the endpoints of the arc.

Having established a topology we may define cycles. First, we call a home-
omorphic image C ′ of the unit circle in G a circle. The edge set C of C ′ is a
cycle. We will, however, be a bit sloppy in so far as we shall repeatedly talk
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about a vertex v ∈ C while meaning a vertex incident with one of the edges of
C. An important property of the chosen topology is that for every circle C ′ in
G, the corresponding cycle C ′ ∩G is dense in C ′. Hence, given a cycle we may
talk about its defining circle.

We now define infinite sums of edge sets. For this, let (Ai)i∈I be a family of
edge sets. The family is called thin if every edge that is contained in one of the
elements of the family lies in only finitely many of the Ai. The sum

∑
i∈I Ai

of such a thin family is defined to be the set of all edges that appear in exactly
an odd number of the elements of the family. Whenever we talk about sums we
will mean sums of thin families.

With this we may finally define the cycle space C(G) of a locally finite graph
G to be the set of sums of (thin families of) cycles. One of the main results of
[3, Cor. 11] is that the cycle space of a locally finite graph is closed under taking
(infinite) sums. It should be noted that C(G) is a vector space over Z2.

Having defined the cycle space we may now state our main result.

Theorem 3.1. Every element of the cycle space C(G) of a locally finite 3-
connected graph G is a sum of peripheral cycles.

A concept that will be essential in the proof is the following standard concept
of a bridge. Here, we have taken the definition from Bondy and Murty [1].

Definition 3.2. Let H be a subgraph of a graph G. We define an equivalence
relation on E(G)\E(H) by e ∼ f if there is a path P such that

(i) the first edge of P is e and the last is f .

(ii) P meets H at most at its ends.

A connected non-trivial subgraph B of G−E(H) whose edge set is closed under
this equivalence relation is called a bridge of H. The vertices of B on H are
called the vertices of attachment of B.

One sees easily that a bridge is either a chord of H or a subgraph of G
consisting of a component K of G − H with the edges E(K,H) added. Note,
that a cycle is peripheral if and only if it has at most one bridge.

We give a rough overview of the proof of Theorem 3.1. Let an element
of the cycle space Z ∈ C(G) with a bridge B be given. We will add suitable
peripheral cycles to Z such that the sum Z ′ ∈ C(G) has a bigger bridge B′ ) B.
Continuing in this manner, we want that eventually (after possibly countable
infinitely many steps) the inflated bridge B covers all of G. As this is only
possible if the resulting sum is the empty set, we have then found a generating
set of peripheral cycles for Z. Finding suitable peripheral cycles for the single
steps will mostly be the work of Lemma 3.10.

Directly using the definition of the cycle space it may be a bit awkward to
identify a given edge set as belonging to the cycle space. Fortunately, Diestel
and Kühn provided a more accessible characterization as well. For this, let
{V1, V2} be a partition of the vertex set of a graph G. Then the set of all edges
with one endvertex in V1 and the other in V2 is called a cut.

Theorem 3.3 (Diestel and Kühn [3]). In a locally finite graph G the fol-
lowing statements are equivalent for Z ⊆ E(G):
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(i) Z ∈ C(G)

(ii) |Z ∩ F | is even for every finite cut F of G.

As cycles are easier to handle than arbitrary elements of the cycle space it
turns out to be convenient that we can always decompose such an element into
constituent cycles.

Theorem 3.4 (Diestel and Kühn [4]). Every element of the cycle space of
a graph G is an edge-disjoint union of cycles in G.

Further, when dealing with sums or unions of a family F we will make use of
the shorthands

∑F respectively
⋃F to express the sum

∑
F∈F F respectively

the union
⋃
F∈F F .

A tree T with a distinguished vertex r ∈ T is called a rooted tree with root
r. For another vertex t ∈ T the predecessor on the path rT t is called the parent
of t. The vertices that have t as their parent are the children of t. A vertex
without children is a leaf.

For vertices v and w of a graph G we denote by dG(v, w) the minimal length
of a v-w-path. Similarily, for an edge e and a vertex v, dG(v, e) is the minimal
length of a path between v and one of the endvertices of e.

3.3 Overlap graphs

This section lays the groundwork for our main lemma, Lemma 3.10. A concept
that we will make extensive use of in the next section is that of a residual arc
of a bridge in a cycle. Let C be a cycle in a finite graph G and B a bridge of
C. Then the vertices of attachement subdivide C into edge-disjoint walks; these
are called the residual arcs of B in C (Tutte [7]).

In an infinite graph, however, the situation is slighty more complicated due
to the fact that vertices of attachment may accumulate. More precisely, let C be
a cycle in an infinite (connected) graphG with a bridge B. On the defining circle
C ′ of C may be a point x in which vertices of attachment of B accumulate. Such
an x is necessarily an end of G and we will see that it shares certain properties
with the vertices of attachment. Hence, we call such an x an end of attachment
of B.

Should B have exactly one vertex of attachment then the whole circle C ′ is
called the residual arc of B in C. Otherwise, a subarc L of C ′ is said to be a
residual arc of B in C if L does not contain any vertices of attachment of B in
its interior and is (inclusion-) maximal with that property.

It is easy to see that in the case of a finite graph the two definitions coincide.
Furthermore, the following lemma shows that the latter definition behaves in
fact in a similar way as its finite equivalent. To exclude the pathological case of
C ′ itself being a residual arc we restrict ourselves to 2-connected graphs.

Lemma 3.5. Let C be a cycle in a 2-connected graph G with a bridge B. Then
the following statements are true.

(i) The endpoints of a residual arc L of B in C are vertices of attachments
or ends of attachment of B.
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(ii) For a vertex v ∈ C but v /∈ B there is exactly one residual arc L of B in
C containing v.

(iii) For a vertex v ∈ C ∩B there are exactly two residual arcs of B in C with
v as an endpoint.

Proof. (i) Let x ∈ L be an endpoint of L and assume that x is not a vertex
of attachment of B. Take a neighbourhood U of x in C ′. There must be a
vertex of attachment of B in U\L, for otherwise L could be extended into U\L.
Since this is true for every neighbourhood we have identified x as an end of
attachment of B.

(ii) and (iii) Let x ∈ C ′ be a point on C ′ that is neither a vertex of attachment
of B nor an end of attachment. For any two vertices of attachment u,w denote
by Luw the subarc of C ′ with endpoints u and w that contains x (note that
there is exactly one). Let S be the set of all pairs of two (different) vertices of
attachment. Then, denote by L the component from

⋂

{u,w}∈S
Luw

that contains x. Note that L is an arc. Additionally, the endpoints of L are
because of construction vertices of attachment or ends of attachment, while the
interior of L is devoid of them. All this identifies L as a residual arc, and as any
other residual arc meeting x would have to meet L in its interior the maximality
of L guarantees L to be the unique residual arc of B in C containing x.

From this, (ii) follows immediately. For (iii) take a connected neighbourhood
U of v in C ′ that does not contain a vertex of attachment of B apart from v.
U\v consists of two components; in each of those we choose a point and apply
the construction above. In this way we obtain two residual arcs containing v—
if there were more, then two of them would overlap in their interior which is
impossible because of the maximality.

The following definitions are immediate generalizations of the corresponding
definitions found in Bondy and Murty [1] for finite graphs.

Definition 3.6. Let C ⊆ G be a cycle and C ′ ⊆ G its defining circle.

(i) We say a bridge B of C avoids another bridge B ′ of C if there is a residual
arc of B that contains all vertices of attachment of B ′. Otherwise, they
overlap.

(ii) Two bridges B and B′ of C are called skew if C ′ contains four vertices
v, v′, w, w′ in that cyclic order such that v, w are vertices of attachment of
B and v′, w′ vertices of attachment of B′.

Clearly, if two bridges B,B′ of a cycle C are skew they overlap. Further,
for a subgraph H of a graph G we define the overlap graph of H in G as the
graph on the bridges of H such that two bridges are adjacent if and only if they
overlap.

It is easy to see that in a 3-connected graph it is impossible for a bridge of
a cycle to avoid all other bridges (unless it is the only one). Thus, the overlap
graph of that cycle cannot have trivial components, but, it turns out, even more
is true: there is only a single component.
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Lemma 3.7. For every cycle C in a 3-connected graph G the overlap graph of
C in G is connected.

For the proof we recall the following standard concept. A linear ordering of
the points of an arc A that is induced by a homeomorphism σ : [0, 1] 7→ A is

said to be an orientation of A. If ~A is an arc with an orientation and a, b ∈ A
we denote by a ~A the oriented subarc containing all points c ∈ A with c ≥ a;
in a similar way we define ~Ab and a ~Ab. Further, we write å ~A for the oriented
subarc consisting of all points c ∈ A with c > a. Analogously, we define ~Åb and
å ~Åb.

Proof. Denote by C ′ the defining circle of C in G. Let K be a component of
the overlap graph of C in G.

(i) Firstly, we show that for every vertex on C there is a bridge in K meeting
that vertex. Suppose there is a vertex v ∈ C that is not a vertex of attachment
for any bridge in K. For a bridge B ∈ K denote by MB the residual arc of B
in C containing v (Lemma 3.5). Define M to be the component of

⋂
B∈KMB

containing v and set L := C ′\M̊ . Observe, that as M is an arc containing no
vertices of attachment of bridges of K in its interior, L is an arc covering every
vertex of attachment of every bridge in K. Further, because the endpoints of
each of the MB , B ∈ K, are vertices of attachment or ends of attachment (once
again, Lemma 3.5) the two endpoints x, y of L are each a vertex of attachment
of a bridge in K or an accumulation point of vertices of attachment of bridges
of K (though not necessarily an end of attachment). Note that for x or y to be
of the latter kind it has to be an end of G. (Below we will repeatedly consider
a graph H −{x, y} for a subgraph H of G. If x is in fact an end we will tacitly
assume that H − y is meant—the same holds for y.)

Observe that neither C− (L∩G) nor (L∩G)−{x, y} are empty: the former
graph contains at least the vertex v, and the latter cannot be empty because L
covers at least the three vertices of attachment of at least one bridge—unless K
consists of only a single chord. But in that case, x and y cannot be adjacent.
Now, as a consequence of the 3-connectivity of G there is a C-path P from
C − (L ∩ G) to (L ∩ G) − {x, y} in G − {x, y}. Clearly, the bridge B of C
containing P cannot be in K as L fails to cover all its vertices of attachment.

On the other hand, we claim that this bridge B is skew to a suitable bridge
in K. Indeed, let ~L be the arc L endowed with the orientation given by x < y
and let z be the endvertex of P on L. Let x′ be a vertex of attachment of a
bridge Bx′ ∈ K on x~Lz̊. Such an x′ exists because if we cannot choose x for x′

then x has to be an accumulation point of vertices of attachement of bridges in
K. Similarly, let y′ be a vertex of attachment of a bridge By′ ∈ K on z̊~Ly. Take
B′ to be the first bridge on a path from Bx′ to By′ in K to have a vertex of

attachment in z̊~Ly. We either have B′ = Bx′ or B′ must be skew to the previous
bridge on that path. In both cases, B′ has a vertex of attachment in x~Lz̊ and
another one in z̊~Ly and is thus skew to B—a contradiction. Consequently, the
bridges of K cover the whole cycle C with their vertices of attachment.

(ii) Finally, we show that K is the only component of the overlap graph.
Consider a bridge B. Should every vertex of C be a vertex of attachment of B
then every other bridge of C overlaps B (any other bridge B ′ has either three
vertices in common with B or it is a chord; but then we have |C| > 3). So,
let v ∈ C be a vertex not met by B. Denote by L the residual arc of B in C
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containing v. Let w be any vertex in C ′\L (such a vertex exists as B has at least
three vertices of attachment, or it is chord, in which case the two endpoints of L
cannot be adjacent vertices in C). We have seen that there is a bridge Bv ∈ K
that meets v and similarily Bw ∈ K containing w. In a similar way as in (i),
the first bridge on a path in K from Bv to Bw that meets C ′\L is skew to B.
Consequently, B is contained in K and, in turn, K the only component of the
overlap graph.

Before we state and then prove the main lemma, we point out a simple fact
for later use.

Lemma 3.8. Let C by a cycle in a locally finite graph G. Let B be a bridge of
C with an end of attachment ω. Then B contains a ray of ω.

For the proof we need a simple lemma which can be found in [3]:

Lemma 3.9. Let U be an infinite set of vertices in a connected locally finite
graph. Then there exists a ray R ⊆ G for which G contains an infinite set of
disjoint U -R paths.

Proof of Lemma 3.8. As ω is an end of attachment of B there is a ray R ⊆ C
in ω containing infinitely many vertices of attachments of B. Denote the set of
these vertices of attachment by U and apply Lemma 3.8 to the graph B and
the set U . We obtain a ray R′ in B that is equivalent to R.

3.4 Locally generating a cycle

This section is devoted to proving the following lemma, which will later be used
in the induction step for the proof of our main result.

Lemma 3.10. Let C be a cycle in the locally finite 3-connected graph G with
a bridge B and let v ∈ V be a vertex on C. Then there are peripheral cycles
D1, . . . , Dm that meet B at most in C satisfying

m∑

i=1

Di ∩ E(v) = C ∩E(v).

Apart from being used in the proof of Theorem 3.1, the lemma may serve
as an indicator that the theorem itself is not unreasonable. Indeed, at the very
least one should be able to find a peripheral cycle for any given edge—and this
is in fact the case according to the lemma.

Lemma 3.10 and its proof are inspired by a result of Tutte [7, (2.2)]. For
the remainder of this section G will be assumed to be 3-connected and locally
finite, and whenever we talk about a cycle we will mean a cycle in G.

Consider a cycle C with a bridge B and a vertex v ∈ C. Further, let a
second bridge B̃ overlapping B be given and let L be a residual arc of B̃ in C
that meets v. Denote by x and y the two endpoints of L (Figure 3.3). Now,
depending on the nature of x and y we distinguish different cases. Should both,
x and y, be vertices of attachment of B̃, let P be an x-y-path through B̃. If
one of x and y is a vertex of attachment, say x, and the other, here y, an end
of attachment, let P ⊆ B̃ be a ray of the end y starting in x (Lemma 3.8 of
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the previous section guarantees the existence of such a P ). Finally, if both x
and y are ends of attachment of B̃, let P ⊆ B̃ be a double ray ending in x
and in y (once again, Lemma 3.8). To check that we have covered all cases see
Lemma 3.5.

It is easy to verify that in any case C ′ := E(L)∪E(P ) is a cycle that contains
v and that has a bridge B′ ⊇ B. We say (C ′, B′) is gained from (C,B) through
the extension step (B̃, L, v).

If B̃ contains v we know from Lemma 3.5 from the previous section that
there is a second residual arc L′ of B̃ in C meeting v. In that case we find a
path or ray, as the case may be, P ′ ⊆ B̃ from v to the other endpoint of L′ with
the same edge incident with v as on P (because of the equivalence relation).
Then C ′′ := E(L′)∪E(P ′′) is as well a cycle with a bridge B′′ so that (C ′′, B′′)
is gained from (C,B) by the extension step (B̃, L′, v). We call (C ′′, B′′) a twin
of (C ′, B′) with respect to (C,B). We see that the following holds

C ∩ E(v) = (C ′ + C ′′) ∩ E(v). (∗)

The proof of Lemma 3.10 follows roughly along similar lines as the proof of
Theorem 3.1: given a cycle C1 with a bridge B1 we try to inflate the bridge
B1. More precisely, we will construct a sequence (C1, B1), (C2, B2), . . . of cycle-
bridge pairs such that (Ci, Bi) is gained from its predecessor by an extension
step. Then, we have Bi ⊇ Bi−1 and our aim is to do the extension in such a
way that eventually Bi grows so big that it is the only bridge left. Clearly, the
corresponding cycle is then peripheral. Unfortunately, this sequential approach
may be insufficient. Rather, it is sometimes necessary to perform two alterna-
tive extension steps simultaneously. This parallel approach is captured in the
concept of an extension tree we shall now introduce.

Definition 3.11. Let C by a cycle with a bridge B and let v ∈ C be a vertex.
Let T be a finite rooted tree with root r and let there be mappings

CT : V (T ) 7→ {C ′ ∈ C(G) |C ′ is a cycle}
BT : V (T ) 7→ {B′ ⊆ G |B′ is a bridge of a cycle}

satisfyfing the following
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(i) for w ∈ V (T ) BT (w) is a bridge of the cycle CT (w)

(ii) CT (r) = C and BT (r) = B

(iii) let p ∈ V (T ) be the parent of w ∈ V (T ). Then there is a bridge B̃
overlapping BT (p) and a residual arc L of B̃ in CT (p) meeting v such
that (CT (w), BT (w)) is gained from (CT (p), BT (p)) by the extension step
(B̃, L, v).

(iv) let p ∈ V (T ) have a child u such that (CT (u), BT (u)) has a twin with
respect to (CT (p), BT (p)). Then p has exactly one other child; and that is
mapped on such a twin.

If all these conditions are satisfied we call T or, more formally, (T, r, CT , BT )
an extension tree with parameters (C,B, v).

Note that, firstly, (iii) and (iv) imply that a vertex in an extension tree has
at most two children. Secondly, deleting all descendants of a given vertex and
restricting the mappings to the remaining vertices will yield another extension
tree with the same parameters. And finally, the converse operation leads to an
extension tree too: let (T1, r, CT1 , BT1) be an extension tree with parameters
(C,B, v), l a leaf of T1 and (T2, l, CT2 , BT2) an extension tree with parameters
(CT1 (l), BT1(l), v). Then the tree T := T1 ∪ T2 with root r and with the from
both trees induced mappings is an extension tree with parameters (C,B, v).

Lemma 3.12. Let T be an extension with parameters (C,B, v). For every
vertex t ∈ V (T ) the cycle C(t) meets B at most in C.

Proof. Induction on the depth of t—note that if p is the parent of t we have
B(p) ⊆ B(t).

The next lemma is the reason why we have introduced extension trees at
all, instead of employing a sequential algorithm: the cycles associated with the
leaves sum to precisely the edges of C at v.

Lemma 3.13. Let T be an extension tree with parameters (C,B, v). Then the
following holds ∑

l leaf of T

C(l) ∩ E(v) = C ∩ E(v).

Proof. Induction on |T | and the equation (∗).

Consider a cycle C1 with a bridge B1, and let (C2, B2) be gained from
(C1, B1) by the extension step (B̃, L, v). In a finite graph it is trivial that the
edges C1\E(L) go into the bridge B2. Indeed, B1 has a vertex of attachment
in C1\E(L) since B1 and B̃ are overlapping (Figure 3.3). Now, as C1\E(L) is
clearly connected C1\E(L) ⊆ B2 follows immediately.

In an infinite graph, however, C1\E(L) does not have to be connected. In-
stead, it may be the disjoint union of rays and double rays. Nevertheless,
C1\E(L) ⊆ B2 holds in locally finite graphs as well. In fact, to every compo-
nent of C1\E(L) we find another component (provided there is more than one)
such that each sends a ray into the same end. Between these two rays there are,
by definition, infinitely many disjoint paths connecting them and we see in the
following lemma that not all of these may meet C2.
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Lemma 3.14. Let C1 be a cycle with a bridge B1 and v ∈ C1 a vertex. Let
(C2, B2) be gained from (C1, B1) by the extension step (B̃, L, v). Then we have

C1\E(L) ⊆ B2

and especially

E(C1 ∪ B1) ⊆ E(C2 ∪ B2).

Proof. Denote by C ′1 the C1 defining circle. Since B1 and B̃ are overlapping
B1 has a vertex of attachment b in C ′1\L. Let e be an edge of B1 incident with
b. For a given edge f ∈ C1\E(L) we shall find a path between e and f that is
internally disjoint to C2.

For this, let P be the path, ray or double ray between the two endpoints
of L that was used in the extension step to construct C2 (indeed P = C2\C1).
Further, there is an arc M in C ′1\L with b and one of the vertices of f , denoted
by w, as endpoints such that f ∩M consists just of the vertex w. This implies
L ∩M = ∅ (neither of b and w are in L).

Now, for every z ∈M we will construct an open neighbourhood of z that is
disjoint to C2 and whose intersection with G is (graph-theoretically) connected.
If z is a vertex or a point in the interior of an edge such a neighbourhood can
easily be found. So, let z be an end of G. First, we find a finite set of vertices
Sz such that the open set ĈG(Sz, z) (for the definition see Section 3.2) does not
intersect with P . For this, note that z can be separated by a finite vertex set S ′z
from the up to two ends in which P may send a ray (dependig on the nature of
the endpoints of L). Then, only finitely many vertices of P may meet ĈG(S′z , z).
Adding these to S′z we arrive at a finite set Sz such that ĈG(Sz , z) is disjoint
to P . Next, we find a finite vertex set Tz that accomplishes the same for L.
Let U be a neighbourhood of the preimage of z in the unit circle, such that U
is disjoint to the preimage of L. As M ∩ L is empty (and both, M and L, are
closed) this can clearly be done. But then, by continuity, there is a finite vertex
set Tz such that the preimage of ĈG(Tz, z) is contained in U . Hence, ĈG(Tz, z)
is disjoint to L. To conclude, the neighbourhood ĈG(Sz ∪ Tz, z) of z has the
desired properties: it is disjoint to C2 = E(L) ∪ E(P ) and its intersection with
G clearly connected.

As M is compact we find finitely many of these neighbourhoods covering
M . By piecing paths in these together we obtain a b-w-path Q not meeting C2.
After adding the edges e and f we have a path as required above.

For the second equation just note that B1 ⊆ B2 and E(L) ⊆ C2.

Recall that we want to inflate the bridge B so that eventually it is the
only one left. To achieve this, we have to ensure that B grows in a relatively
controlled way. In particular, we need to be able to perform the extension steps
in such a way that after finitely many steps our favourite bridge B̃ can be used
for the next step (if it is not already contained in the inflated bridge).

Lemma 3.15. Let C be a cycle with bridge B and v ∈ C a vertex. For a bridge
B̃ there is an extension tree T with parameters (C,B, v) such that for every leaf
l of T we have

either B̃ ⊆ B(l) or B̃ is a bridge of C(l) overlapping B(l).
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Proof. The connectivity of the overlap graph of C in G (by Lemma 3.7) ensures
the existence of a shortest B-B̃-path P in the overlap graph. We do an induction
on the length of such a path.

So, if P is trivial we have B = B̃ and if ‖P‖ = 1, B and B̃ are overlapping.
In both cases we are done. So assume P has a length of at least two. Let
P = K1 . . .Kk with K1 = B and Kk = B̃. Note that k is at least three. We
define an extension tree T ′ with parameters (C,B, v) as follows. For the root
r we map CT ′(r) := C and BT ′(r) := B. Now, let L be the residual arc of
the bridge K2 in C that meets v and let (C1, B1) be gained from (C,B) by the
extension step (K2, L, v). We assign a vertex c1 to be a child of r and map
CT ′ (c1) := C1 and BT ′(c1) := B1. Should (C1, B1) have a twin (C2, B2) with
respect to r we let r have a second child c2 and define the mappings accordingly.
The resulting tree T ′ is then an extension tree.

Consider the child c1. The bridge K3 overlaps K2 and has therefore, by
definition (Definition 3.6), a vertex of attachment in C\E(L). Together with
C\E(L) ⊆ B1 (Lemma 3.14) this implies that the greatest index i ≤ k with
Ki ⊆ B1 is at least three. Any bridge Kj with a greater index j must necessarily
have all its vertices of attachement in L and is thus still a bridge of C1. Also, if
for j, j′ > i Kj and Kj′ are overlapping as bridges of C then they are overlapping
as bridges of C1 as well (this is decided on L). We arrive at a shorter path
B1Ki+1 . . .Kk in the overlap graph of C1. If that path is trivial, we have
B̃ ⊆ B1 and define T1 := ∅. Otherwise, B̃ = Kk is a bridge of C1 and there is
a shorter path from B1 to B̃ in the overlap graph of C1. Induction yields an
extension tree T1 with parameters (C1, B1, v) such that the associated bridge of
every leaf either contains B̃ or overlaps it. Now, if r has only one child the tree
T := T ′∪T1 with root r satisfies the assertion. Otherwise, we obtain in a similar
way an extension tree T2 with parameters (C2, B2, v) and T := T ′ ∪ T1 ∪ T2 is
the desired tree.

If we can find an extension tree for which the associated cycle C(l) of every
leaf l is peripheral we are done, as the Lemmas 3.12 and 3.13 demonstrate. We
introduce a measure of how far the leaves of an extension tree are from being
peripheral.

Let T be an extension tree with parameters (C,B, v) and let b ∈ B be a
fixed vertex. For a vertex t of T we define

d(b)(t) := sup{N ∈ Z | ∀e ∈ E(G), dG(b, e) ≤ N ⇒ e ∈ E(C(t) ∪ B(t))}

where we admit ∞. This definition ensures that every edge e with dG(b, e) ≤
d(b)(t) lies in E(C(t) ∪ B(t)). If d(b)(t) = ∞ then every edge is contained in
E(C(t) ∪ B(t)) and C(t) therefore peripheral. With that we define

d(b)(T ) := min{d(b)(l) | l is leaf of T}.

Thus, rewritting our statement above, if we can find an extension tree with
d(b)(T ) = ∞ we are done. Unfortunately, this will not always be possible.
Lemma 3.16, however, shows that we can achieve the next best thing, namely
finding a sequence of nested extension trees with strictly increasing d(b)(T ).
First, we make the notion of nested extension trees more precise.

To keep notation as simple as possible we will just write T ⊆ T ′ for two
extension trees T and T ′ while tacitly assuming that both trees are extension
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trees with the same parameters and the same root and that the mappings CT
and BT of T are induced by the corresponding mappings of T ′.

So let (Tn)n∈N be a family of extension trees with parameters (C,B, v) such
that Tn ⊆ Tn+1 for all n ∈ N. Then we call the family an extension family with
parameters (C,B, v).

Lemma 3.16. Let C be a cycle with a bridge B. Let v ∈ C and b ∈ B be
vertices. Assume there is no extension tree T with parameters (C,B, v) and
d(b)(T ) = ∞. Then there is an extension family (Tn)n∈N with parameters
(C,B, v) so that

d(b)(T1) < d(b)(T2) < . . .

Proof. We will inductively construct nested extension trees T1, . . . , Tn with
d(b)(T1) < . . . < d(b)(Tn). For T1 take any extension tree with parameters
(C,B, v). For n > 1 let T1, . . . , Tn−1 be already constructed.

Setting d := d(b)(Tn−1) + 1 (note that d(b)(Tn−1) <∞) we define

m(t) := |{e ∈ E(G)\E(C(t) ∪ B(t)) | dG(b, e) ≤ d}|

for a vertex t of an extension tree T . Further, define

m(T ) := max
l leaf of T

m(l).

Observe, that since G is locally finite, m(T ) is always finite (and is, in particular,
defined). We see that m(T ) = 0 implies d(b)(T ) ≥ d. Thus, our task is to find an
extension tree T with T ⊇ Tn−1 and m(T ) = 0. For this, it suffices to establish
the following claim.

For each leaf p of Tn−1 there is an extension tree Tp with root p
and parameters (C(p), B(p), v) such that m(Tp) < m(Tn−1).

(∗)

Indeed, the union T of all those Tp and Tn−1 is an extension tree (with param-
eters (C,B, v)) with T ⊇ Tn−1 and m(T ) < m(Tn−1). An induction argument
then allows us to find such a T with m(T ) = 0.

To establish the claim, consider an edge e /∈ E(C(p)∪B(p)) with dG(b, e) ≤ d
and denote by B̃ the bridge of C(p) containing e. In particular, e contributes
to m(p). With Lemma 3.15 we find an extension tree T ′ with parameters
(C(p), B(p), v) such that the associated bridge of every leaf of T ′ either con-
tains B̃ or overlaps it. Let l be a leaf of T ′.

Assume first that B̃ ⊆ BT ′(l). So, e is contained in BT ′(l) as well and we
have m(l) < m(p).

Now, assume B̃ and BT (l) to be overlapping. Let L be a residual arc of B̃
in CT (l) containing v and let (C ′, B′) be gained from (CT ′(l), BT ′(l)) by the
extension step (B̃, L, v). Assume further, that (C ′, B′) has no twin with respect
to l. Denote by T the extension tree obtained from T ′ by adding a child c to
l and mapping CT (c) := C ′ and BT (c) := B′. Observe, that e has a vertex
in common with CT (l), say the vertex w (every edge with lesser distance to
b is contained in CT (l) ∪ BT (l)). Should w be contained in CT (l)\E(L), we
have by Lemma 3.14 e ∈ BT (c), leading to m(c) < m(p). Thus, we have to
deal with the case that w is one of the two endpoints of L (being a vertex of
attachment, w cannot be contained in the interior of L). The w-B̃-edge f that
is used to construct CT (c) clearly has the same distance to b as e. Consequently,
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f contributes to md(p)—but not to m(c). Again, this leads to m(c) < m(p).
Should c have a twin with respect to l we extend T ′ in a similar way for that
twin.

Modifying T ′ in this way for each leaf l we arrive at an extension tree T
in which for every leaf l holds: m(l) < m(p) ≤ m(Tn−1). Hence, we have
m(T ) < m(Tn−1), thereby establishing (∗).

Let (Tn)n∈N be an extension family with parameters (C,B, v). The union
T :=

⋃
n≥1 Tn is then an infinite rooted tree. We extend the mappings CTn

and BTn of the Tn to mappings CT and BT of T in the natural way. T will be
called an infinite extension tree with parameters (C,B, v). To distinguish clearly
between these infinite extension trees and the extension trees defined earlier (in
Definition 3.11) we shall speak of finite extension trees when the latter ones are
meant.

Fix a vertex b ∈ B. Since in an extension family the sequence d(b)(Tn) is
monotonically increasing (Lemma 3.14) the limit is well defined (if we admit
∞). We make use of that to define d(b)(T ) := limn7→∞ d(b)(Tn).

With this terminology Lemma 3.16 asserts that if we cannot find a finite
extension tree of which all the (associated cycles of the) leaves are peripheral,
then there is an infinite extension tree T with d(b)(T ) = ∞. Being infinite T
has rays starting in the root vertex. These rays play a similar role as the leaves,
and indeed we may extract a peripheral cycle from each of these rays.

Lemma 3.17. Let C be a cycle with a bridge B. Let v ∈ C and b ∈ B
be vertices. Let T be an infinite extension tree with parameters (C,B, v) and
d(b)(T ) =∞. Consider a ray c1c2 . . . in T starting in the root vertex of T . Then
the limit

D := lim
n7→∞

CT (cn),

where the limit is taken edge-wise, exists and D is the union of edge-disjoint
peripheral cycles that meet B at most in C.

Proof. Let (Tn) be the T defining extension family and let the family w.l.o.g. be
so that d(b)(T1) < d(b)(T2) < . . .. For convenience’s sake we set Cn := CT (cn)
and Bn := BT (cn) for n ∈ N. Further, we set Vi := {w ∈ V | dG(b, w) ≤ i} for
i ∈ N0. The proof consists of three parts.

(i) First, we show the existence of the limit. In fact, we show that

there is a M ∈ N and a sequence (Nm)m≥M of integers such that
Cn ∩G[Vm] = CNm ∩G[Vm], for all m ≥M and n ≥ Nm. (∗)

Clearly, if (∗) holds then the limit D exists and coincides with

D =
⋃

m≥M
CNm ∩G[Vm].

Choose M large enough such that v ∈ VM . Consider an integer m ≥M . If
m > M assume NM , . . . , Nm−1 to be already defined. With N ∈ N such that
m ≤ d(b)(TN ) we observe that

Cn+1 ∩G[Vm] ⊆ Cn ∩G[Vm] ⊆ CN ∩G[Vm]
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holds for any n ≥ N . Indeed, let (CN+1, BN+1) be gained by the extension
step (B̃, L, v). Since m ≤ d(TN ) every edge of G[Vm] lies in CN or BN . But
CN+1\CN lies in B̃ and, hence, may not meet G[Vm]. Inductively, we obtain
the equation above.

Cn ∩G[Vm], n ≥ N is finite, thus there is an n that minimizes that intersec-
tion. This is the desired Nm. We have established (∗).

(ii) Next, we show that D is the edge-disjoint union of cycles each meeting
B at most in C. For this, let F be a finite cut of G. Choose m large enough for
F ⊆ G[Vm]. We obtain

F ∩D = (F ∩G[Vm]) ∩D = F ∩ (D ∩G[Vm]) = F ∩ CNm

where the last equality is because of (∗). As the cycle CNm clearly is an element
of the cycle space Theorem 3.3 asserts that the cardinality of F ∩ CNm is even.
This, in turn, results in |F ∩ D| being even for every finite cut F . Employing
Theorem 3.3 once again (only now the other direction of the equivalence) we
see that D is an element of the cycle space. As an element of the cycle space D
is the edge-disjoint union of a set F of cycles (Theorem 3.4).

Since every CNm meets B at most in C (see Lemma 3.12) this holds for the
limit D as well. In particular, this is still true for the cycles in F (being subsets
of D).

(iii) Finally, we see that the cycles of F are indeed peripheral. For this, we
begin by claiming that D has exactly one bridge and this bridge meets every
vertex of G. Indeed, let e and f be edges not contained in D. Choose m large
enough so that at the same time e, f /∈ CNm holds and the distance of e and
f to b is at most d(TNm). Clearly, this choice of m implies e, f ∈ BNm . Thus,
there is a path P in BNm internally disjoint to CNm with first edge e and last
edge f . For every n ≥ m BNn is a superset of BNm . Thus P is still internally
disjoint to CNn , and hence to the limit D. We see that e and f are contained
in the same bridge of D—which is then the only bridge of D as e and f were
arbitrarily chosen. Now observe, that G has a minimal degree of at least three.
Consequently, every vertex is incident with an edge not contained in D (every
vertex of D has degree two in D) and therefore lies in the bridge of D, which
then meets every vertex.

To finish the proof consider a cycle D′ of F . Now, as a subset of D, D′ has
a bridge covering every vertex of G—so this is the only bridge of D′ which may
have vertices not meeting D′. But D′ cannot have chords either as these would
be chords of D as well, so D′ has exactly one bridge.

We have seen, that the desired peripheral cycles may be obtained from the
leaves and rays (starting in the root vertex) of a suitable extension tree. Now,
Lemma 3.10 requires the number of the peripheral cycles to be finite. Fortu-
nately, even an infinite extension tree has only finitely many leaves and rays.

Lemma 3.18. Let T∞ be an infinite extension tree. Then T∞ has only finitely
many leaves and only finitely many rays starting in its root vertex.

Proof. Let T∞ have the parameters (C,B, v). To establish the assertion it
suffices to show that there is a N ∈ N such that for any finite extension tree T
with parameters (C,B, v) the number of leaves is bounded by N . For a vertex t
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of T let k(t) be the number of edges of G incident with v that are not contained
in C(t) ∪B(t). We prove by induction on |T | that

∑

l leaf of T

2k(l) ≤ 2k(r),

where r denotes the root vertex of T . Note that every leaf is counted in the
sum, as 2k(l) ≥ 1, and that the righthand side is the same for all extension trees
with parameters (C,B, v).

Clearly, the inequality holds for |T | = 1. So assume |T | > 1. Then, we
find a vertex p of T that has children which are all leaves. Deleting all these
children leads to an extension tree T ′ with fewer vertices than T . If p has only a
single child c, we have k(c) ≤ k(p) by Lemma 3.14. Now, assume that p has two
children c and d. Let (C(c), B(c)) be gained from its parent by the extension
step (B̃, L, v). Consider the edge f ∈ C(c)\C(p) incident with v (such an edge
exists as B̃ meets v by Definition 3.11, (iv)). We see that f ∈ E(C(c) ∪ B(c))
but f /∈ E(C(p) ∪B(p)), leading to k(c) < k(p) (note Lemma 3.14). By similar
reasoning this holds for d as well, yielding 2k(c) + 2k(d) ≤ 2k(p). Summing over
all leaves of T we obtain

∑

l leaf of T

2k(l) ≤
∑

l leaf of T,
no child of p

2k(l) + 2k(p)

≤
∑

l′ leaf of T ′

2k(l′)

≤ 2k(r)

where the last inequality is because of the induction hypothesis.

We can now put the pieces together.

Proof of Lemma 3.10. Fix a vertex b ∈ B. If there is a finite extension tree
T with parameters (C,B, v) such that d(b)(T ) = ∞ then the associated cycles
of the leaves of T are by definition peripheral and by Lemma 3.13 add up to
precisely the two edges of C at v. In this case we are done.

So assume otherwise. By Lemma 3.16 there is an extension family (Tn) with
parameters (C,B, v) such that d(b)(T1) < d(b)(T2) < . . .. Hence, we obtain
an infinite extension tree T := ∪n≥1Tn with parameters (C,B, v) and with
d(b)(T ) = ∞. The number of leaves of T is because of Lemma 3.18 finite. We
denote those leaves by l1, . . . , lk and set D1 := C(l1), . . . , Dk := C(lk). These
Di are by definition peripheral and meet C at most in B. Lemma 3.18 also
ensures that there are only finitely many rays starting in the root vertex. Let
those rays be Rk+1, . . . , Rm. Applying Lemma 3.17 to such a ray Ri yields a
peripheral cycle Di meeting B at most in C with v ∈ Di (for i = k+ 1, . . . ,m).
In addition, as these Di are obtained from the limit of the ray there is vertex ti
on the ray Ri satisfying C(ti) ∩ E(v) = Di ∩ E(v). For an N ∈ N big enough
the tree TN contains each of l1, . . . , lk and of tk+1, . . . , tm. Thus, the tree T ′

obtained from TN by deleting every descendant of ti (for i = k + 1, . . . ,m) is
itself a finite extension tree. The set of leaves of T ′ is

{l1, . . . , lk, tk+1, . . . , tm}.
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As a consequence of Lemma 3.13 we obtain

C ∩E(v) =
∑

l leaf of T ′

C(l) ∩ E(v)

=

k∑

i=1

C(li) ∩ E(v) +

m∑

i=k+1

C(ti) ∩ E(v)

=

m∑

i=1

Di ∩ E(v),

where the last equality is by the reasoning above. Note that each of the Di is
peripheral and meets B at most in C.

3.5 Generating the cycle space

As mentioned Lemma 3.10 is to be used in the induction step for the proof of
Theorem 3.1. However, Lemma 3.10 is only applicable to cycles, but we are
dealing with arbitrary elements of the cycle space. In order to overcome this,
we strengthen Lemma 3.10 in the following lemma.

Lemma 3.19. Let G be locally finite and 3-connected. Let Z ∈ C(G) be an
element of the cycle space with a bridge B and let v ∈ B be a vertex. Then there
are peripheral cycles D1, . . . , Dm that meet B at most in Z and satisfy

(i) Z +
∑m

i=1 Di leaves a bridge B′ ⊇ B

(ii) E(v) ⊆ B′.

Proof. First note, that (i) holds for any cycles D1, . . . , Dm that meet B at most
in Z. In fact, consider egdes e, f ∈ E(B). By definition there is a path P ⊆ B
internally disjoint to Z whose first edge is e and whose last is f . P is also
internally disjoint to each of the Di. Hence, e and f are therefore equivalent
with respect to Z ∪ ⋃mi=1Di as well. Thus, Z +

∑m
i=1Di being a subset of

Z ∪⋃mi=1Di has a bridge B′ ⊇ B.
By Theorem 3.4 Z is the edge-disjoint union of cycles; denote by C1, . . . , Cn

those of these cycles that contain v. As a subset of Z each of these Ci leaves a
bridge Bi containing B. Therefore, applying Lemma 3.10 to Ci with bridge Bi
yields peripheral cycles Di1, . . . , Dimi meeting Bi ⊇ B at most in Ci ⊆ Z with

mi∑

j=1

Dij ∩ E(v) = Ci ∩ E(v)

(for i = 1, . . . , n). Summing up, we arrive at

n∑

i=1

mi∑

j=1

Dij ∩ E(v) =

n∑

i=1

Ci ∩ E(v) = Z ∩ E(v).

By the argument above, Z ′ := Z +
∑n

i=1

∑mi
j=1 Dij has a bridge B′ ⊇ B. Also,

the preceding equation implies v /∈ Z ′. Together with v ∈ B this leads to
E(v) ⊆ B′ as required.
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We are now ready to prove our main result. For technical reasons we shall
first assume that Z ∈ C(G) has a bridge. This bridge then is extended in
a controlled way, so that it eventually covers every edge of the graph. The
extension is done in steps, each using Lemma 3.19.

Theorem 3.1. Every element of the cycle space C(G) of a locally finite 3-
connected graph G is a sum of peripheral cycles.

Proof. We begin by proving the following statement.

Let Z ∈ C(G) be an element of the cycle space with a bridge B.
Then Z is the sum of a thin family D of peripheral cycles each
meeting B at most in Z.

(∗)

Fix a vertex b ∈ B and let {e1, e2, . . .} be an enumeration of the edge set of G
such that dG(b, ei) < dG(b, ej) implies i < j. We will obtain D as the union
of inductively constructed finite sets of peripheral cycles. More formally, for all
n ∈ N we inductively show the existence of finite sets Dn of peripheral cycles
and of bridges Bn of Zn := Z +

∑Dn satisfying

(i) Bn−1 ⊆ Bn
(ii) Dn−1 ⊆ Dn

(iii) every D ∈ Dn\Dn−1 meets Bn−1 at most in Zn−1

(iv) {e1, . . . , en} ⊆ E(Bn)

where D0 := ∅, B0 := B and Z0 := Z.
For n ∈ N let Dn−1 and Bn−1 be already constructed. We claim that en is

incident with a vertex v ∈ Bn−1. If dG(b, en) = 0 this is obvious, so let there
be an edge ei adjacent to en with strictly lesser distance to b. By the choice of
the enumeration we obtain i < n and in turn ei ⊆ Bn−1. Hence, the vertex v
incident with both edges, ei and en, is contained in Bn−1 as well.

By applying Lemma 3.19 to Zn−1 with bridge Bn−1 and vertex v we obtain
peripheral cycles D1, . . . , Dm meeting Bn−1 at most in Zn−1. Further, Zn−1 +∑m

i=1 Dm leaves a bridge B′ ⊇ Bn−1 such that E(v) ⊆ B′. Since en ∈ E(v) the
conditions (i)-(iv) are clearly satified by setting

Dn := Dn−1 ∪
m⋃

i=1

Di and Bn := B′.

We claim that D := ∪n≥1Dn satisfies the assertion of the claim (∗). To see
this, consider an edge en of G. First note that because of the conditions (iii,iv)
the edge en may only be used by the finitely many cycles in Dn and by none
other in D—proving D to be a thin family. Further from the condition (iv)
above we see that

en /∈ Z +
∑
Dn and hence en /∈ Z +

∑
D

by the preceding argument. Thus, (∗) is established.
Now, if an element Z of the cycle space leaves a bridge, (∗) guarantees that

Z is the sum of peripheral cycles. If, on the other hand, Z does not leave a
bridge let C be any cycle in G. Then, both C and Z+C have at least one bridge
and the statement (∗) may be applied to each of them. Clearly, the union of
the two generating sets of peripheral cycles is a generating set of Z.
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In the introductory example in Section 3.1 we were able to generate our given
cycle using only finite peripheral cycles. One might wonder whether in general
any cycle, or at least every finite one, is the sum of finite peripheral cycles.
This, however, is not true as figure 3.4 demonstrates. The edge e there is not

PSfrag replacements

e

Figure 3.4: There is no finite peripheral cycle containing the edge e

contained in any finite peripheral cycle. Consequently, any cycle containing e
may not be generated by finite peripheral cycles. On the other hand, it is easy
to see that e lies on exactly two infinite peripheral cycles. Note that the graph
shown is indeed 3-connected.

3.6 Two counterexamples for arbitrarily infinite
graphs

In this section we present two examples of graphs whose cycle space is not
generated by peripheral cycles. Clearly, these graphs cannot be locally finite.
Therefore, before we come to the examples, we have to adjust our definition of
the cycle space to accomodate the possibly non-locally finite situation. Once
again, we are following Diestel and Kühn who have studied the cycle space of
arbitrarily infinite graphs in [4].

The topology on arbitrarily infinite graphs will be the same as for locally
finite graphs and, naturally, a cycle will still be the homeomorphic image of the
unit circle. However, we have to change our definition of a thin family slightly.
Namely, a family (Ai)i∈I of edge sets is called thin if no vertex is incident to
infinitely many members of the family. Clearly, this definition is stronger but
coincides in the case of locally finite graphs with the one given previously. With
this, the cycle space is defined as before, as the set of sums of thin families of
cycles.

Now, one of the reasons why the cycle space may fail to be generated by
peripheral cycles is that we find an edge that is not contained in any peripheral
cycle. That this is clearly possible demonstrates our first example.

For this, let D be a double ray . . . r−1r0r1 . . . and s and t two vertices not
contained in D. Denote by G1 the graph that we obtain by joining every vertex
of D to s and to t and by joining s to t (see figure 3.5). Note that G1 is
3-connected.

Observe, that G1 has no infinite cycles. Indeed, assume C to be an infinite
cycle and C ′ its defining circle. For C to be infinite it has to contain a ray, say
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Figure 3.5: The edge st in the graph G1 is not contained in any peripheral cycle

rNrN+1 . . .. Now, if ω is the end containing that ray and S := {rN , s, t} then
ĈG1(S, ω) is an open neighbourhood of ω. Because rN /∈ ĈG1(S, ω) but rN ∈ C
we see that (C ′ ∩ ĈG1(S, ω))\{ω} consists of at least two components of C ′. So
with the observation

(C ′ ∩ ĈG1(S, ω))\{ω} = C ∩ ĈG1(S, ω)

we should expect at least two (graph-theoretical) components of C in that in-
tersection. Only, all vertices of ĈG1(S, ω) lie already on the ray rN+1rN+2 . . .,
which is clearly a connected subgraph of C—a contradiction.

Now suppose there is a peripheral cycle C that meets the edge st. Lacking
infinite cycles C has to be finite. Since C contains more vertices than s and t,
C meets the double ray D. On the other hand, there is an N ∈ N such that
C ∩D ⊆ r−N . . . rN as C is finite. But then rN+1 is separated from r−(N+1) by
C.

We conclude that no peripheral cycle meets the edge st. Therefore, any
cycle containing st (for instance the cycle str0s) cannot be the sum of peripheral
cycles.

PSfrag replacements

C

.... . .

Figure 3.6: In the graph G2 the cycle C cannot be generated by peripheral
cycles

In the second example, the graph G2 shown in figure 3.6, every edge is
contained in a peripheral cycle. Nevertheless, the cycle C shown there cannot
be the sum of peripheral cycles. Indeed, such a sum would have to include all
the peripheral triangles incident to at least one of the infinite stars of G2—which
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is clearly not allowed. It should be noted that this counterexamples depends on
the fact that there are edges that lie on only one peripheral cycle.
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Chapter 4

Finite graphs of arbitrary
connectivity

4.1 Introduction

Before we start we should mention that the results of this chapter are plain
obvious—if one knows Tutte’s original paper [7]. See the notes at the end of
Section 4.3.

In this chapter we generalize Tutte’s result to finite graphs of arbitrary con-
nectivity. In particular, all the graphs in this chapter are finite.

In a planar (2-connected) graph the cycle space is easily seen to be generated
by the face boundaries. For 3-connected planar graphs Tutte showed that these
can be characterized independently of the concrete drawing: the face boundaries
are precisely the peripheral cycles, which generate the cycle space. We take this
relationship between face boundaries and generators as a motivation and look for
an abstract characterization of the face boundaries. For a 3-connected graph
this can be accomplished only because every two drawings in a 3-connected
graph are equivalent, that is the sets of their face boundaries coincide. In a
2-connected graph, however, this is not necessarily the case and consequently
a characterization of the face boundaries is not possible. Instead, we find an
abstract condition that identifies those cycles in an arbitrary planar graph G
that occur as a face boundary in some drawing of G, and prove that the cycles
satisfying this condition generate the cycle space of G, even when G is not
planar.

4.2 Free cycles in planar graphs

Our first aim is to find an abstract condition such that for every cycle in a
planar graph satisfying this condition there is a suitable drawing in which that
cycle occurs as a face boundary. To state this condition we recall a standard
concept that naturally arises when dealing with cycles. Here, we have taken the
definition from Bondy and Murty [1].

Definition 4.1. Let H be a subgraph of a graph G. We define an equivalence
relation on E(G)\E(H) by e ∼ f if there is a path P such that

27



(i) the first edge of P is e and the last is f .

(ii) P meets H at most at its ends.

A connected non-trivial subgraph B of G−E(H) whose edge set is closed under
this equivalence relation is called a bridge of H. The vertices of B on H are
called the vertices of attachment of B.

One sees easily that a bridge is either a chord of H or a subgraph of G
consisting of a component K of G −H with the edges E(K,H) added. Note,
that a cycle is peripheral if and only if it has at most one bridge.

Further we say that two bridges B and B′ avoid one another if there is a
subpath P of C such that all vertices of attachment of B belong to P , but no
inner vertex of P is a vertex of attachment of B′. Otherwise they overlap.

Two bridges B,B′ are said to be skew if there are two (non-adjacent) vertices
of attachment u, v of B and two vertices of attachment u′, v′ of B′ such that u′

and v′ are in different components of C − {u, v}. In particular two overlapping
bridges are either skew or have three vertices of attachment in common.

With this we can state our condition.

Definition 4.2. An induced cycle C of G is called free if it has no two over-
lapping bridges.

In a plane graph we can distinguish between inner and outer bridges, that
is, between bridges that are contained in the interior of the cycle and those that
are not.

The following result from Bondy and Murty [1] allow us to quickly verify
our claim that any free cycle occurs in a suitable drawing.

Lemma 4.3 (Bondy and Murty [1]). Let B be an inner bridge in a plane
graph G avoiding all outer bridges. Then there is a drawing of G such that B
is an outer bridge but the position of all other bridges remains unchanged.

As a result, an easy induction argument immediately shows that a drawing
can be modified so that any given free cycle is indeed a face boundary. On the
other hand it is straightforward to see that in every (2-connected) plane graph
the face boundaries are also free cycles. Since the face boundaries of a planar
graph generate the cycle space we have the following observation which is the
planar case—and the motivation—of the main result of this chapter.

Proposition 4.4. The free cycles of a planar graph generate its cycle space.

4.3 Free cycles in non-planar graphs

Now we extend this result to non-planar graphs. The first step will be to show
that in a 3-connected graph the induced free cycles are precisely the peripheral
cycles. Then, Tutte’s theorem will allow us to restrict our attention to graphs
that are separable by two vertices. Additionally, we see that in the case of a
3-connected graph our generators of the cycle space coincide with Tutte’s.

Lemma 4.5. Let G be 3-connected. Then the induced free cycles are exactly
the peripheral cycles of G.
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Proof. Consider an induced cycle C ⊆ G. Now, if C is peripheral it has only a
single bridge and is therefore free.

Conversely, let C be free. First note that the vertices of attachment of every
bridge B cover the whole cycle. Suppose not. Let Q ⊆ C be a path with
minimal length covering all vertices of attachment of B; then Q fails to cover all
of C. Thus, the two end vertices a and b of Q separate C into the components
åQ̊b and C − Q. Both these sets are non-empty: the former because B has
at least three vertices of attachment and the latter because of our assumption.
Because G is 3-connected there is a path P between åQ̊b and C −Q. Observe
that P does not lie in B as it meets C − Q. By the minimality of Q, a and b
are vertices of attachment of B, hence P is contained in a bridge that is skew
to B. Contradiction.

Finally, suppose there is a second bridgeB′ of C. BothB and B′ are attached
to the whole cycle and have therefore at least three neighbours in common.
Consequently, the two bridges overlap—contradiction. So C is peripheral.

The proof of the main theorem will rest on the following two lemmas as they
provide the necessary means for an induction. For this induction to work we will
split G into two subgraphs G1 ∪ G2 = G such that G1 ∩G2 consists of exactly
two vertices x, y. Preferably we would like those two vertices to be adjacent,
because then every induced cycle of G lies either in G1 or in G2. Lemma 4.6
ensures that in that case every free cycle in the smaller graphs G1 or G2 is one
in G too.

However, x and y cannot be expected to be neighbours (as the example of
a simple cycle shows) and indeed there may be an induced cycle in G which
lies neither in G1 nor in G2. In particular the intersection of this cycle and Gi
yields an x-y-path, not a cycle, and therefore is not even a member of the cycle
space of Gi (i = 1, 2). To mend this we simply add the edge xy to those paths
and get proper cycles in G1 + xy and G2 + xy. Now how do the free cycles of
those modified graphs relate to the ones in G? Lemma 4.6 asserts that the only
reason why a free cycle C1, in G1 + xy say, may fail to be one in G, is that it
is not even a proper cycle of G, i.e. C1 contains the edge xy. Fortunately, that
can be repaired provided we find a free cycle C2 in G2 +xy that shares the same
deficiency, i.e. xy ∈ C2. In that case Lemma 4.7 shows that at least the sum
C1 + C2 is free in G.

Lemma 4.6. Let the 2-connected graph G be the union of two graphs G1 and
G2 such that G1 ∩ G2 consists of two (adjacent or non-adjacent) vertices x, y
and |Gi| ≥ 3 for i = 1, 2. Define Hi := Gi + xy for i = 1, 2 and let C be a free
cycle in H1 that is still a cycle in G. Then C is also free in G.

Proof. We begin by taking a look at how the bridges of C in G correspond to
those in H1. Consider a bridge B of C in G.

First assume, B ⊆ G1. Now, if B meets x then we must have x ∈ C, as
otherwise G2 ⊆ B (note that G is 2-connected). The same holds for y. Hence,
B is also a bridge in H1.

Now assume, B ⊆ G2. If xy is an edge of C, B cannot prevent C from being
free and we may disregard this bridge. If, on the other hand, xy /∈ C the chord
xy is a bridge in H1 with the same vertices of attachment as B.

Finally assume, that neither B ⊆ G1 nor B ⊆ G2. We claim that B′ :=
B ∩H1 +xy is a bridge in H1. Let e be an edge of B ∩G1. First, let f 6= xy be
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an edge in B∩G2. Then there is a path from e to f internally avoiding C. This
path meets the separator {x, y}, and immediately we get e ∼ xy in H1. Now,
let f be any edge of B ∩H1. From e ∼ f in G we obtain a path P ⊆ G from
e to f that meets C at most at its ends. This path either lies in H1 or can be
shortened to a path in H1 by replacing its subpath xPy by xy. Thus, we have
e ∼ f in H1 as well. To show that B′ is closed under ∼, let f be any edge of
E(H1)\E(C) with e ∼ f . Hence, there is a path in H1 from e to f internally
avoiding C. This path is already a path in G or it makes use of the edge xy.
In the latter case we obtain a path in G by replacing xy by an x-y-path in G2

(note that G2 ⊆ B as G is 2-connected). Consequently, f is already an edge of
B and therefore of B′. Thus, B′ is a bridge in H1.

In all those cases (except in the one we may disregard) there is a corre-
sponding bridge with a set of vertices of attachment that contains the original
set. Now suppose there are two overlapping bridges in G. But then the corre-
sponding bridges in H1 exhibit the same property contradicting that C is free
in H1.

Lemma 4.7. Let G be the union of two graphs G1 and G2 such that G1 ∩ G2

consists of two non-adjacent vertices x, y. Define Hi := Gi + xy and let Ci be
a free cycle of Hi containing xy for i = 1, 2. Then C := C1 +C2 is a free cycle
in G.

Proof. Let B be a bridge of C in G. As x, y ∈ C, B must lie completely in
either G1 or G2, say in G1. Thus, B is clearly a bridge of C1 in H1 (note that
x, y ∈ C1).

Now suppose that C is not free in G. So C has two overlapping bridges B
and B′. In particular the separator {x, y} forces B and B′ to be both contained
in the same Gi, say G1. Consequently, B and B′ are each a bridge of C1,
contradicting that C1 is free in H1.

We now prove the main result of this chapter: in any graph (planar or not),
the free cycles generate the cycle space. It is even enough to take only induced
free cycles.

Theorem 4.8. The induced free cycles of a graph generate its cycle space.

Proof. We prove the assertion by induction on |G|. For |G| = 1, . . . , 4 it is
obviously true.

First note that we can assume that G is 2-connected since the cycle space of
G is the direct sum of the cycle spaces of the blocks ofG. If G is even 3-connected
then, by Tutte’s theorem, the cycle space is generated by the peripheral cycles,
which are, in turn, induced free cycles (Lemma 4.5). So we may assume that
there are two vertices x, y separating G into two smaller graphs G1 and G2,
that is G = G1 ∪ G2 and G1 ∩ G2 = {x, y}. It suffices to show that the free
induced cycles generate every induced cycle as these generate the cycle space.
So consider an induced cycle C. If xy ∈ G then C lies either in G1 or in G2 and
is by induction the sum of induced free cycles of G1 or of G2. Those free cycles
are also free in G (Lemma 4.6) and we are done.

So assume that xy /∈ G. Define Hi := Gi + xy for i = 1, 2. First let C be
completely contained in G1 or G2, say in G1. By induction there are induced
free cycles D1, . . . , Dm in H1 whose sum is C. Let w.l.o.g. D1, . . . , Dk be those
of the cycles that contain the edge xy. Note that since xy /∈ C, k is even. The
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other cycles Dk+1, . . . , Dm do not contain xy and are therefore already free in
G (Lemma 4.6). Now let E be an induced free cycle in H2 with xy ∈ E . Such
an E exists as there is a cycle in H2 that contains the edge xy, and hence,
by induction, there is a generating set of induced free cycles. One of those
must contain xy. Lemma 4.7 ensures that the induced cycles D̃j := Dj + E
(j = 1, . . . , k) are free. Because k is even E vanishes in the sum

D̃1 + . . .+ D̃k = D1 + . . .+Dk

All in all we obtain the sum of induced free cycles

D̃1 + . . .+ D̃k +Dk+1 + . . .+Dm = C.

Finally, let C be the union of x-y-paths P1 ⊆ G1 and P2 ⊆ G2. For i = 1, 2
define Ci := Pi+xy. Those Ci are cycles in Hi and therefore by induction gener-
ated by induced free cycles of the Hi: C1 by D1, . . . , Dm and C2 by E1, . . . , En,
say. Let w.l.o.g. D1, . . . , Dk and E1, . . . , El be those of the cycles that contain
xy where l ≤ k.

The other cycles Dk+1, . . . , Dm and El+1, . . . , En are already free in G,
as above. Further, from Lemma 4.7 it follows that the sums F1 := D1 +
E1, . . . , Fl := Dl +El are also free cycles in G.

So it remains to deal with the cycles Dl+1, . . . , Dk. For this, first note that
E1 does indeed contain xy (i.e. that l ≥ 1) as xy ∈ C2. From, once again,
Lemma 4.7 it follows that the induced cycles D̃j := Dj +E1 for j = l+ 1, . . . , k
are free in G. Now observe that k and l have to be odd in order to ensure that
the edge xy lies in the sums

C1 = D1 + . . .+Dk +Dk+1 + . . .+Dm and

C2 = E1 + . . .+El +El+1 + . . .+En

Hence the number k − l of the D̃j is even and as a result we obtain C as the
sum

C = F1 + . . .+ Fl + D̃l+1 + . . .+ D̃k +Dk+1 + . . .+Dm +El+1 + . . .+En

where all the summands are induced free cycles in G. So the induction is
proved.

The results of this chapter are almost immediate consequences of Tutte’s
paper. In fact, Tutte uses a lemma similar to Lemma 4.5 to show that a non-
peripheral cycle has two overlapping bridges. Then, it is shown that cycles with
two overlapping bridges are not needed to generate the cycle space.

Unfortunately, at the time of the writing of this chapter I knew only the
proof of Thomassen for Theorem 1.1 (see [2]) which pursues a totally different
approach. In particluar, Thomassen manages to avoid introducing bridges at
all. So this chapter may be seen as an idle exercise to prove Theorem 4.8 with
only Thomassen’s proof available.
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