
On claw-free t-perfect graphs

Henning Bruhn Maya Stein

Abstract

A graph is called t-perfect, if its stable set polytope is defined by non-

negativity, edge and odd-cycle inequalities. We characterise the class of

all claw-free t-perfect graphs by forbidden t-minors, and show that they

are 3-colourable. Moreover, we determine the chromatic number of claw-

free h-perfect graphs and give a polynomial-time algorithm to compute

an optimal colouring.

1 Introduction

Perfect graphs can be determined by the structure of their stable set polytope.
The stable set polytope, or SSP for short, is the convex hull of the characteristic
vectors of independent vertex sets, the stable sets. In the case of a perfect graph,
the SSP is fully described by non-negativity and clique inequalities. Vice versa,
if the SSP of some graph is given by these types of inequalities then the graph
is perfect.

In analogy to the relationship between perfect graphs and the SSP, Chvátal [8]
proposed to investigate a class of graphs now called t-perfect: the class of graphs
whose SSP is determined by non-negativity, edge and odd-cycle inequalities.
(For precise definitions see next section.) The class of t-perfect graphs includes
the series-parallel graphs (Boulala and Uhry [2]) and the almost bipartite graphs,
i.e. those graphs that become bipartite upon deletion of a single vertex (Fonlupt
and Uhry [14]). The latter result was extended by Shepherd [31], who deter-
mined which near-bipartite graphs are t-perfect. (A graph G is near-bipartite if
G−N(v) is bipartite for every vertex v.) Gerards and Shepherd [19] characterise
the graphs with all subgraphs t-perfect. Also, t-perfect graphs share some com-
putational properties with perfect graphs. For instance, the max-weight stable
set problem can be solved efficiently for t-perfect graphs, see Grötschel, Lovász
and Schrijver [21].

A prime example of a graph that is not t-perfect is the complete graph on
four vertices, the K4. Indeed, this graph will play an important role in what
follows.

In this paper, we prove two theorems for t-perfect graphs that are, in addi-
tion, claw-free. We show that these graphs can be 3-coloured and we characterise
them in terms of forbidden substructures.

Standard polyhedral methods assert that the fractional chromatic number of
a t-perfect graph is at most 3. Shepherd suggested that t-perfect graphs might
always be k-colourable for some fixed small k. As Laurent and Seymour found
a t-perfect graph with χ = 4 (see [30, p. 1207]), this number k has to be at
least 4.
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Conjecture 1. Every t-perfect graph is 4-colourable.

We prove that if the graphs are additionally claw-free then three colours
suffice.

Theorem 2. Every claw-free t-perfect graph is 3-colourable.

Moreover, such a 3-colouring can be computed in polynomial time (Corol-
lary 23).

We remark that compared to a result of Chudnovsky and Ovetsky [5] our
Theorem 2 yields an improvement of 1. Indeed, Chudnovsky and Ovetsky show
that the chromatic number of a quasi-line graph G is bounded by 3

2ω(G). As no
t-perfect graph can contain a clique of at least four vertices and, furthermore,
as a claw-free t-perfect graph is quasi-line, Chudnovsky and Ovetsky’s bound is
applicable and yields χ ≤ 4 for all claw-free t-perfect graphs.

The celebrated strong perfect graph theorem of Chudnovsky, Robertson,
Seymour and Thomas [7] characterises perfect graphs in terms of forbidden
induced subgraphs: a graph is perfect if and only if it does not contain odd holes
or anti-holes. We prove an analogous, although much more modest, result for
claw-free t-perfect graphs. While, in order to describe perfect graphs, induced
subgraphs are suitable as forbidden substructures, for t-perfect graphs a more
general type of substructure, called a t-minor, is appropriate. Briefly, a t-minor
is any graph obtained from the original graph by two kinds of operations, both
of which preserve t-perfection: vertex deletions and simultaneous contraction of
all the edges incident with a vertex whose neighbourhood forms an independent
set. With this notion our second result is as follows.

Theorem 3. A claw-free graph is t-perfect if and only if it does not contain
any of K4, W5, C2

7 and C2
10 as a t-minor.

Here, K4 denotes the complete graph on four vertices, W5 is the 5-wheel,
and for n ∈ N we denote by C2

n the square of the cycle Cn on n vertices, see
Figure 1. (The square of a graph is obtained by adding edges between any two
vertices of distance 2.)

C
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2
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Figure 1: The forbidden t-minors.

The graphs from Theorem 3 already appear implicitly in Galluccio and Sas-
sano [17]. They showed that every rank facet in a claw-free graph comes from a
combination of inequalities describing cliques, line graphs of 2-connected factor-
critical graphs, and circulant graphs Cω−1

αω+1. However, as a claw-free graph may
have non-rank facets we will not be able to make use of these results.

Ben Rebea’s conjecture describes the structure of the stable set polytope of
quasi-line graphs. As the conjecture has been solved (see Eisenbrand et al [13]
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and Chudnovsky and Seymour [6]), and as claw-free t-perfect graphs are quasi-
line, it seems conceivable to use Ben Rebea’s conjecture to prove Theorem 3.
We have not pursued this approach for three reasons. First, Theorem 3 does
not appear to be a direct consequence of the conjecture. Second, the solution of
the conjecture rests on Chudnovsky and Seymour’s characterisation of claw-free
graphs, which is far from trivial. Finally, our proof of Theorem 3 (with a little
extra effort) yields a 3-colouring of claw-free t-perfect graphs.

Let us give a brief outline of the paper. In the next section, we give a more
formal definition of t-perfect graphs and introduce some of their properties. In
Section 3 we determine which squares of cycles are t-perfect, and prove our main
tool for the proofs of both our main results. This tool, Lemma 9, says that every
claw-free t-perfect 3-connected graph is a line graph or one of three exceptional
graphs. We prove Theorem 3 in Section 4, and exhibit some open problems
from the same direction. In Section 5 we will prove Theorem 2 and develop an
algorithm to compute a 3-colouring for any claw-free t-perfect graph. These two
results will be extended to the larger class of claw-free h-perfect graphs in the
last section.

2 Definition of t-perfect graphs

All our graphs are finite and simple, so we do not allow parallel edges or loops.
For general graph-theoretic concepts and notation we refer the reader to Dies-
tel [10], for more on t-perfect and claw-free graphs to Schrijver [30, Chapters 68
and 69].

Let G = (V,E) be a graph. The stable set polytope SSP(G) ⊆ RV of G is
defined as the convex hull of the characteristic vectors of stable, i.e. independent,
subsets of V . We define a second polytope TSTAB(G) ⊆ RV for G, given by

x ≥ 0,

xu + xv ≤ 1 for every edge uv ∈ E, (1)

x(C) ≤ ⌊|C|/2⌋ for every induced odd cycle C in G.

These inequalities are respectively known as non-negativity, edge and odd-cycle
inequalities. Clearly, it holds that SSP(G) ⊆ TSTAB(G).

We say that the graph G is t-perfect if SSP(G) and TSTAB(G) coincide.
Equivalently, G is t-perfect if and only if TSTAB(G) is an integral polytope, i.e.
if all its vertices are integral vectors.

Neither the complete graph on four vertices K4 nor the 5-wheel W5 are t-
perfect. Indeed, for K4 the vector ( 1

3 , 1
3 , 1

3 , 1
3 ) lies in TSTAB but not in the SSP

of K4 as the sum over all entries is larger than α(K4) = 1. The vector that
assigns a value of 2

5 to each vertex on the rim and a value of 1
5 to the centre

shows that 5-wheel is t-imperfect. Again, the vector lies in TSTAB but the sum
of all entries is larger than α(W5) = 2.

The following fact is well-known:

bipartite graphs are t-perfect. (2)

In fact, the SSP of a bipartite graph is fully described by just non-negativity
and edge inequalities.
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It is easy to check that vertex deletion preserves t-perfection (edge deletion,
however, does not). A second operation that maintains t-perfection is described
in Gerards and Shepherd [19]:

for a vertex v for which N(v) is a stable set contract all edges
in E(v).

(∗)

We call this operation a t-contraction at v. Let us say that H is a t-minor of G if
it is obtained from G by repeated vertex-deletion and t-contraction. Then, if G
is t-perfect, so is H. We call a graph minimally t-imperfect if it is not t-perfect
but every proper t-minor of it is t-perfect. Obviously, in order to characterise
t-perfect graphs in terms of forbidden t-minors it suffices to find all minimally
t-imperfect graphs.

The following simple lemma ensures that we stay within the class of claw-
free graphs when taking t-minors. (For a proof, observe that a claw in a t-minor
can only arise from an induced subdivided claw in the original graph.)

Lemma 4. Every t-minor of a claw-free graph is claw-free.

3 Reduction to line graphs

In order to prove the back direction of Theorem 3, let us assume we are given a
claw-free t-imperfect graph G. Our task is then to find K4, W5, C2

7 or C2
10 as a

t-minor of G. In this section we show that the problem reduces to line graphs
if G is, in addition, 3-connected.

One case that we need to deal with is when G is the square of a cycle.
Recall that we denote by C2

n the square of a cycle of order n, that is C2
n is the

graph on the vertex set {v1, . . . , vn} so that vivj ∈ E(C2
n) if and only if |i − j|

mod n ∈ {1, 2}.
The only two squares of cycles that are t-perfect are the triangle C2

3 = C3

and C2
6 . This can be shown either directly or by making use of the results

of Dahl [9], who gave a complete description of the stable set polytope of C2
n.

Knowing which C2
n are t-perfect and which are not, however, is not enough for

our purpose. We will need to know that every t-imperfect C2
n contains one of

the four forbidden t-minors. This is the aim of the first two lemmas.

Lemma 5. Let n ≥ 5, and let n /∈ {6, 7, 10}. Then K4 is a t-minor of C2
n− v5.

Proof. Depending on n mod 4 we perform vertex-deletions and then t-contractions
as indicated in Figure 2 until the only vertices left are v1, . . . , v4. In particular,
we delete the grey vertices in the initial segment (marked by a dashed box).
Outside this segment we delete every other vertex until we reach the first vertex
v1 again. Finally, we contract the odd path between v4 and v1 to a single edge.

The length of the initial segment poses a constraint on the minimal size of
the graph. For n ≡ 0 (mod 4) the construction is possible for n ≥ 8, for n ≡ 1
we need n ≥ 5, for n ≡ 2 we need n ≥ 14, and n ≥ 11 is necessary for n ≡ 3. So
the only cases we have not dealt with are n = 6, 7, 10, which are precisely the
exceptions.

Lemma 6. C2
7 and C2

10 are minimally t-imperfect.
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Figure 2: K4-t-minors in C2
n depending on n mod 4.

Proof. For i ∈ {7, 10} define the vector x ∈ RV (C2

i
) by setting xv = 1/3 for

each v ∈ V (C2
i ). Then x clearly lies in TSTAB(C2

i ). However, x /∈ SSP(C2
i ) as

1T x = i/3 > ⌊ i
3⌋ = α(C2

i ). Thus, neither of C2
7 and C2

10 is t-perfect.
To see that C2

7 and C2
10 are minimally t-imperfect we only need to check that

for i = 7, 10 the graph C2
i − v1 is t-perfect. From [9, Theorem 4.3] it follows

that the stable set polytope of C2
i is described by1 the nonegativity constraints,

the triangle inequalities and the inequality x(V (C2
i )) ≤ i/3.

The stable set polytope of C2
i − v1 coincides with SSP(C2

i ) restricted to
xv1

= 0. But when xv1
= 0, the inequality x(V (C2

i )) ≤ i/3 is redundant as it is
implied by two resp. three triangle inequalites, namely the inequalities for the
triangles v2v3v4, v5v6v7 and, if i = 10, also v8v9v10. Hence TSTAB(C2

i − v1) ⊆
SSP(C2

i − v1), and thus the two polytopes coincide, as desired.

We need a result by Harary. Let us call a triangle T odd if there is a vertex
v outside T that is adjacent to an odd number of the vertices in T .

Theorem 7 (Harary [23, Theorem 8.4]). Let G be a claw-free graph. Then G
is a line graph (of a simple graph) if and only if every pair of odd triangles that
shares exactly one edge induces a K4.

We now prove the main lemma in our reduction to line graphs.

Lemma 8. Let G be a 3-connected claw-free graph with ∆(G) ≤ 4. If G does
not contain K4 as t-minor then one of the following statements holds true:

(i) G is a line graph;

(ii) G ∈ {C2
6 − v1v6, C

2
7 − v7, C

2
10 − v10, C

2
7 , C2

10}.

1Note that in our two cases Dahl’s 1-interval inequalities do not occur.
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Proof. We shall repeatedly make use of the following argument. Assume that
in the neighbourhood of a vertex u we find a path xyz, and assume that u has
a fourth neighbour v /∈ {x, y, z}. As K4 is not a subgraph of G we know that
xz /∈ E(G). Then, because G is claw-free, v has to be adjacent to x or to z or
to both.

First of all, we shall show that

P 2
6 is a subgraph of G. (3)

Recall that Pk denotes a path on k vertices, and that P 2
k denotes the square of

Pk, i.e. the graph obtained from Pk by adding an edge between any two vertices
of distance 2.

Indeed, as we may assume that G is not a line graph, there exist by Theo-
rem 7 two odd triangles that share exactly one edge, say u1u2u3 and u2u3u4.
As G is 3-connected, {u1, u4} does not separate G, and thus one of u2 and
u3 has a neighbour u5 /∈ {u1, u2, u3, u4}. By symmetry, we may assume that
u3u5 ∈ E(G) and by the argument outlined at the beginning of this proof, we
deduce from u1u2u4 ⊆ G[N(u3)] that u5 is adjacent to u1 or to u4 (or to both).
Symmetry, again, allows us to assume that u5 is adjacent to u4.

As K4 is not a subgraph of G, u1 and u5 each send exactly two edges
to the triangle u2u3u4. That triangle, however, is odd. Thus there exists a
vertex u6 /∈ {u1, . . . , u5} that is adjacent to an odd number of vertices of the
triangle. Since u3 has four neighbours already among the ui, it follows that u6

is either adjacent to u2 or to u4. First, assume that u6u4 ∈ E(G), and that
u6u2 /∈ E(G). The path u2u3u5 that is contained in the neighbourhood of u4

together with u6u2 /∈ E(G) ensures that u6 is adjacent to u5. On the other
hand, if u6u4 /∈ E(G), but u6u2 ∈ E(G), then we may argue in the same way
to obtain that u6 is adjacent to u1. In either case, this proves (3).

Next, we prove that

if k ≥ 6 so that P 2
k ⊆ G, then either P 2

k+1 ⊆ G as well, or
V (G) = V (Pk).

(4)

Assume that G has a vertex outside Pk = v1 . . . vk. Because G is 3-connected
and ∆(G) ≤ 4, one of v2 and vk−1, let us say the latter, has a neighbour vk+1 /∈
V (Pk); if not then v1 and vk would separate V (Pk) from the rest of the graph.
From the fact that the path vk−3vk−2vk is contained in the neighbourhood of
vk−1 we deduce that vk+1 is adjacent to vk−3 or to vk. However, vk−3 is already
adjacent to four vertices, namely to vk−5, vk−4, vk−2, vk−1 (recall that k ≥ 6).
Thus, ∆(G) ≤ 4 implies that vk+1 is in fact adjacent to vk. Thus P 2

k+1 ⊆ G
and we have proved (4).

Now, by repeated application of (4) we arrive at a path Pn = v1 . . . vn, for
some n = |V (G)| ≥ 6, whose square is a subgraph of G. Observe that in the
square of Pn every vertex has degree 4, except v2 and vn−1, which have degree 3,
and except v1 and vn, which have degree 2. Since ∆(G) ≤ 4, the square of Pn

and G may only differ in the presence or absence of the edges v1vn−1, v1vn,
v2vn−1 and v2vn in G. As G is 3-connected, each of v1 and vn is incident with
at least one of these edges.

First, assume that v1vn /∈ E(G), which immediately entails that v1vn−1 ∈
E(G) and v2vn ∈ E(G), and hence, as ∆(G) ≤ 4, that v2vn−1 /∈ E(G). Since
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v1v3v4 is a path in the neighbourhood of v2, the fourth neighbour vn of v2

must be adjacent to v4. This is only possible if n = 6, and we find that then
G = C2

6 − v1v6, which is as desired.
So, from now on, let us assume that

v1vn ∈ E(G). (5)

Next, suppose that v2vn−1 is an edge of G. Then n > 6 as otherwise
v2, v3, v4, v5 = vn−1 span a K4. On the other hand, we find the path vn−3vn−2vn

in the neighbourhood of vn−1, which implies that v2 is adjacent to vn−3 or to
vn. Since v2 already has four neighbours, namely v1, v3, v4 and vn−1, and since
n > 6 it follows that vn−3 = v4 and n = 7.

Consequently, G is isomorphic to C̃2
7 , which we define as the square of P7

plus the edges v1v7 and v2v6. However, Figure 3 A shows that C̃2
7 contains K4

as a t-minor, a contradiction. (Alternatively, we might have argued that C̃2
7 is

the line graph of the graph obtained from K4 by subdividing one edge.)
Thus,

v2vn−1 /∈ E(G). (6)

So, by (5) and (6), G is isomorphic to one of the following graphs: G = C2
n,

C2
n − v1vn−1, and C2

n − v1vn−1 − v2vn. Let us check these cases seperately.
First, assume G = C2

n. Since C2
6 = L(K4) and since by Lemma 5, for n ≥ 7

every C2
n except C2

7 and C2
10 contains K4 as a t-minor, we find that G = C2

7 or
G = C2

10, which are two of the allowed outcomes of Lemma 8.
Next, assume that G = C2

n − v1vn−1. Observe that (C2
n − v1vn−1) − v1 is

isomorphic to C2
n − v5. Hence, unless n ∈ {6, 7, 10}, Lemma 5 asserts that G

contains K4 as a t-minor. For n = 7 and n = 10, Figure 3 B and C indicate
K4-t-minors of G. So, n = 6, that is, G = C2

6 − v1v5 which is isomorphic to
C2

6 − v1v6, and thus one of the allowed outcomes of the lemma.

1
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Figure 3: K4 as a t-minor of C̃2
7 , C2

7 − v1v6, C2
10 − v1v9.

Finally, we treat the case when G = C2
n− v1vn−1− v2vn. Observe that then

G is isomorphic to C2
n+1 − vn+1, and thus we may employ Lemma 5 again to

deduce that n + 1 ∈ {6, 7, 10}. Of these cases, n + 1 = 6 is impossible as n ≥ 6
by (3). Therefore, either G = C2

7 −v7 or G = C2
10−v10, which is as desired.

We note the following consequence.

Lemma 9. Let G be a 3-connected claw-free graph. If G does not contain any of
K4, W5, C2

7 or C2
10 as a t-minor then G is a line graph or G ∈ {C2

6 −v1v6, C
2
7 −

v1, C
2
10 − v1}.
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Proof. Suppose G has a vertex v of degree 5 or higher. If v has at least six
neighbours, then the subgraph of G induced by N(v) contains a triangle or
three independent vertices. Both cases are impossible, as the former leads to a
K4, and the latter to a claw. On the other hand, if |N(v)| = 5 then G[v∪N(v)]
is a 5-wheel, unless it contains a claw or a K4. Thus, we have ∆(G) ≤ 4 and
the lemma follows from Lemma 8.

4 Characterising claw-free t-perfect graphs

In the previous section we have seen that we may reduce our problem to line
graphs if we can additionally assume 3-connectivity. The task of the next few
lemmas is to show that minimally t-imperfect claw-free graphs are, in fact, 3-
connected.

The first of these lemmas is quite similar to Lemma 12 in Gerards and
Shepherd [19]. As that lemma, however, is assembled from results of various
authors, its proof is not easily verified. We therefore give a direct proof that
draws on only two fairly simple facts.

Lemma 10. Let G be a minimally t-imperfect graph, and assume u, v ∈ V (G) to
separate G. Then G−{u, v} has exactly two components, one of which together
with u and v induces a path in G. Moreover, uv /∈ E(G).

Proof. Let G = G1 ∪G2 so that {u, v} = V (G1) ∩ V (G2) and such that {u, v}
separates G1−{u, v} from G2−{u, v}. Suppose that neither of G1 and G2 is a
path. Let z be a non-integral vertex of TSTAB(G), denote by I the set of those
non-negativity, edge and odd-cycle inequalities that are satisfied with equality
by z. We define z1 resp. z2 to be the restriction of z to G1 resp. G2.

As in the proof of Theorem 1 in Gerards and Shepherd [19] we can deduce
that

0 < zw < 1 for all w ∈ V (G) (7)

and
every odd cycle whose inequality is in I fails to separate G. (8)

The last fact implies, in particular, that each odd cycle in I lies either completely
in G1 or in G2 (recall that neither of G1 and G2 is a path). Thus, we can
partition I in (I1, I2) so that Ik pertains only to Gk. Now, if there is a j ∈ {1, 2}
so that dim Ij = |V (Gj)| then zj is a vertex of TSTAB(Gj) =SSP(Gj). Since
zj is non-integral we obtain a contradiction.

Therefore, we have dim Ik = |V (Gk)| − 1 for k = 1, 2, which means that Ik

describes an edge of TSTAB(Gk). Denote the endvertices of this edge by sk and
tk, i.e. zk = λksk + (1− λk)tk for some 0 ≤ λk ≤ 1. As TSTAB(Gk) =SSP(Gk)
by assumption, it follows that sk is the characteristic vector of a stable set Sk

of Gk; the same holds for tk and a stable set Tk.
By (7), z1

u = z2
u > 0 and thus for each k = 1, 2 one of Sk and Tk needs to

contain u. By renaming if necessary we may assume that u ∈ S1 and u ∈ S2.
Then u /∈ Tk for k = 1, 2 as otherwise we obtain zk

u = λk + (1 − λk) = 1 in
contradiction to (7). This implies that

λ1 = z1
u = zu = z2

u = λ2. (9)
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If S1∩{v} = S2∩{v} then also T1∩{v} = T2∩{v} as (7) implies as above that
v ∈ Sk if and only if v /∈ Tk. In this case, S := S1 ∪ S2 and T := T1 ∪ T2 are
stable sets of G and we obtain z = λ1χS + (1− λ1)χT , contradicting the choice
of z as a non-integral vertex of TSTAB(G).

So, let us assume that S1 and S2 differ on {v}. Without loss of generality,
let v ∈ S1 but v /∈ S2. Then

S1 ∩ {u, v} = {u, v}, T1 ∩ {u, v} = ∅,

S2 ∩ {u, v} = {u} and T2 ∩ {u, v} = {v}.

So, λ1 = z1
v = z2

v = 1− λ2, and hence, by (9), λ1 = λ2 = 1/2. In particular, it
follows with (7) again that zw = 1/2 for all w ∈ V (G).

Now, since bipartite graphs are t-perfect by (2), G contains an odd cycle
of length 2k + 1, say. However, adding up z along the cycle yields k + 1/2,
contradicting the odd-cycle inequalities.

Next, let us prove that a minimally t-imperfect claw-free graph has minimum
degree at least three. We start with a lemma that is a variant of Theorem 2.5
in Barahona and Mahjoub [1], and can be proved in a very similar way.

Lemma 11 (Barahona and Mahjoub [1]). Let G be a graph, and let uvw be
a path in G so that deg(v) = 2 and uw /∈ E(G). Furthermore, let aT x ≤ α
be a facet-defining inequality of SSP(G) so that au = av = aw. Denote by G′

the graph obtained from G by contracting uv and vw, and let ṽ be the resulting
vertex, i.e. V (G′) \ V (G) = {ṽ}. If a′ ∈ RV (G′) is defined by a′

p = ap for

p ∈ V (G′ − ṽ) and a′
ṽ = av then a′T x ≤ α− av is a facet-defining inequality of

SSP(G′).

The following lemma serves to guarantee that au = av = aw as in Lemma 11.

Lemma 12. Let G be a graph and assume that for a ∈ RV (G), a > 0 the
inequality aT x ≤ α is facet-defining in SSP(G), and that it is not a multiple of
an edge inequality or of an odd-cycle inequality.

(i) If G contains a path uvw so that deg(v) = 2 then av ≤ aw.

(ii) If G contains a triangle wpq and a neighbour v /∈ {p, q} of w so that
deg(w) = 3 then av ≥ aw.

Assertion (i) appears in Mahjoub [25].

Proof. For both cases, observe that as the SSP is full-dimensional there exists
a set S of |V (G)| affinely independent stable sets that satisfy aT x ≤ α with
equality. Since a > 0 it follows that α 6= 0, which, in turn, implies that the
characteristic vectors of the stable sets in S are even linearly independent. In
particular, any inequality satisfied with equality by all S ∈ S is a multiple of
aT x ≤ α.

(i) Since aT x ≤ α is not a multiple of the edge inequality xu + xv ≤ 1 there
must exist an S0 ∈ S so that u /∈ S0 and v /∈ S0. As a > 0 this implies that
w ∈ S0. Clearly, S′

0 := S0\{w}∪{v} is a stable set and thus aT χS′

0
≤ α = aT χS0

.
Hence av ≤ aw.

(ii) Since aT x ≤ α is not a multiple of the triangle inequality xw+xp+xq ≤ 1
there must exist an S1 ∈ S so that {w, p, q} ∩ S1 = ∅. Then, as a > 0 and
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N(w) = {v, p, q}, we have that v ∈ S1 and that S′
1 := S1 \ {v} ∪ {w} is stable.

Again, we obtain aT χS′

1
≤ α = aT χS1

and therefore aw ≤ av.

Lemma 13. Let G be a minimally t-imperfect claw-free graph. Then G has
minimum degree ≥ 3.

Proof. It is easy to see that no vertex can have degree 1. Indeed, such a vertex
would lead to a violation as in (7). Also, it cannot happen that all vertices have
degree 2, as then G would be a cycle, and thus t-perfect. So suppose there is
a path P = w1 . . . wk with k ≥ 3 so that all internal vertices have degree 2 in
G but w1 and wk have degree > 2. Since G is claw-free and does not properly
contain a K4 we deduce that deg(w1) = deg(wk) = 3, and in fact there are
neighbours p1, q1 of w1 and pk, qk of wk so that w1p1q1 and wkpkqk are triangles
in G.

As G is t-imperfect there exists a facet-defining inequality aT x ≤ α of
SSP(G) with a ≥ 0 that is not a multiple of a non-negativity, edge or odd-cycle
inequality. Since G is minimally t-imperfect under vertex deletion it follows
furthermore that a > 0.

Now, applying (i) of Lemma 12 we get that aw2
= . . . = awk−1

≤ min{aw1
, awk

}.
Then, (ii) yields that aw1

= aw2
= . . . = awk

.
Denote by G′ the graph obtained from G by performing a t-contraction at

w2, and let w̃ be the resulting new vertex. Define a′
u = au for u ∈ V (G′−w̃) and

a′
w̃ = aw2

. Then, by Lemma 11, a′T x ≤ α − aw2
is facet-defining for SSP(G′).

However, as a′ > 0 and as G′ is t-perfect it follows that G′ consists of a single
vertex, a single edge or of a single odd cycle. Then G is such a graph, too, and
thus t-perfect, a contradiction.

The final step towards the proof of Theorem 3 consists in describing t-perfect
line graphs in terms of forbidden t-minors. Cao and Nemhauser [3], among
other results, already characterise t-perfect line graphs in terms of forbidden
subgraphs. Unfortunately, their characterisation appears erroneous. While we
therefore cannot make use of their theorem, we will pursue an approach that
is inspired by their work. In particular, we take advantage of Edmonds [11]
celebrated theorem on the matching polytope.

For a graph G, define the matching polytope M(G) ⊆ RE(G) to be the convex
hull of the characteristic vectors of matchings. Recall that a graph G is factor-
critical if G− v has a perfect matching for every vertex v.

Theorem 14 (Edmonds [11], Pulleyblank and Edmonds [27]). Let G be a graph
and x ∈ RE(G). Then x ∈M(G) if and only if

x ≥ 0 (10)
∑

e∈E(v)

xe ≤ 1 for each v ∈ V (G) (11)

∑

e∈E(F )

xe ≤ ⌊
|V (F )|

2
⌋ for each 2-connected factor-critical F ⊆ G. (12)

We say that G has a proper odd ear decomposition if there is a sequence
G0, G1, . . . , Gn so that G0 is an odd cycle, Gn = G and Gk is obtained from
Gk−1 for k = 1, . . . , n by adding an odd path between two (distinct) vertices of
Gk−1 whose interior vertices are disjoint from Gk−1.
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Theorem 15 (Lovász [24]). A graph is 2-connected and factor-critical if and
only if it has a proper odd ear-decomposition.

For the proof of the next two lemmas, we need the following auxiliary defini-
tion. Consider a Θ-graph G, i.e. a graph consisting of three non-crossing paths
with common endvertices. If exactly two of these paths have odd length, we
shall call G an ooe-Θ-graph. Note that G1 in the odd ear decomposition above
constitutes such an ooe-Θ-graph.

Lemma 16. The following statements are equivalent for a graph G:

(i) The line graph L(G) is t-perfect.

(ii) L(G) does not contain K4 as a t-minor.

(iii) ∆(G) ≤ 3 and no subgraph of G is an ooe-Θ-graph.

Proof. (i)→(ii) is clear. For (ii)→(iii) note that a vertex of degree at least 4 in
G leads to a K4-subgraph of L(G). Furthermore, an ooe-Θ-graph in G gives
rise to an induced subgraph of L(G) that yields a K4-t-minor.

In order to show (iii)→(i) let us assume that H := L(G) satisfies (iii). Since
M(G) = SSP(H), all we have to show is that TSTAB(H) is a subset of the
polytope described by (10), (11), and (12) from Theorem 14. That is, we have
to check that the inequalities from Theorem 14 are valid for TSTAB(H).

Condition (10) is clear, and for (11), pick a (non-isolated) vertex v of G. If
v has degree 2 then (11) follows from an edge inequality in H, and if d(v) = 3
then (11) follows from an odd-cycle inequality for a triangle.

For (12), suppose that G contains a 2-connected factor-critical subgraph F ,
which, by Theorem 15, has an odd ear-decomposition. If F is not an odd cycle
then F contains an ooe-Θ-graph, which we have excluded. Hence F is an odd
cycle, and (12) follows from some odd-cycle inequality in H. Thus, we have
shown that SSP(H) coincides with TSTAB(H), as desired.

We now restate and prove our main result.

Theorem 3. A claw-free graph is t-perfect if and only if it does not contain
any of K4, W5, C2

7 and C2
10 as a t-minor.

6
~

6
~

2

3

4

5

1

6

10

9

8

7

1

2

3

4

5

=

2

3

4

5

1

Figure 4: C2
6 − v1v6 is a t-minor of C2

10 − v9.

Proof. As neither of K4,W5, C
2
7 and C2

10 is t-perfect (note Lemma 6), necessity
is obvious. To prove sufficiency, consider a claw-free and minimally t-imperfect
graph G. Lemmas 10 and 13 ensure that G is 3-connected, and by Lemma 9
G is either a line graph or G ∈ {C2

6 − v1v6, C
2
7 − v1, C

2
10 − v1}. If G is a line

graph then the theorem follows from Lemma 16. Since C2
7 − v1 and C2

10 − v1
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are t-perfect as C2
7 and C2

10 are minimally t-imperfect (Lemma 6), it remains to
consider the case when G = C2

6 − v1v6. However, this graph is a t-minor of the
t-perfect graph C2

10 − v9
∼= C2

10 − v1 as can be seen in Figure 4.

Let us conclude this section with three open problems. Since odd holes
and anti-holes in a graph can be detected in polynomial time, see Chudnovsky
et al [4], the strong perfect graph theorem implies that perfect graphs can be
recognised in polynomial time. A similar result for t-perfect graphs would be
desirable:

Question 17. Is there an algorithm with polynomial running time to test whether
a given (claw-free) graph is t-perfect?

A closer inspection of our proofs reveals that for such an algorithm it would
be enough to detect K4-t-minors in polynomial time. We note that Gerards [18]
describes an algorithm with polynomial running time that tests whether a graph
contains an odd-K4 subdivision as a subgraph. (An odd-K4 subdivision is a
subdivision of K4 in which each of the four triangles has become an odd cycle.)

In Theorem 3 we have determined all minimally t-imperfect graphs that
are claw-free. To find all minimally t-imperfect graphs, with or without claws,
seems a daunting task. Indeed, the class of these graphs already includes two
infinite families, namely the odd wheels and the even Möbius ladders, see Shep-
herd [31]. Nevertheless, the examples that we know suggest two properties that
all minimally t-imperfect graphs might share:

Question 18. Are all minimally t-imperfect graphs 3-connected?

In the light of Lemma 10, for an affirmative answer to this question, it would
suffice to prove that all minimally t-imperfect graphs have minimum degree 3.

Question 19. For a minimally t-imperfect graph G, does TSTAB(G) have pre-
cisely one non-integral vertex?

We note that this is false if G is only minimal subject to vertex deletion. An
example for this is the K4 with one edge replaced by a path of length 3.

5 Colouring t-perfect graphs

The last two sections of the paper are devoted to colouring problems. We start
with colouring claw-free t-perfect graphs in this section, and move to h-perfect
graphs in the following section.

Let G be a graph with an edge-colouring, and let v be a vertex of G so that
none of its incident edges are coloured with β. Then the α/β-path from v is
the unique maximal path starting in v whose edges alternate between colours α
and β.

Lemma 20. Let G be a graph with ∆(G) ≤ 3. If G does not contain any
ooe-Θ-graph then its chromatic index is at most 3.

Proof. Suppose the statement to be false, and let G be a counterexample with
smallest number of edges. Pick any edge e = uv, and suppose E(G − e) is
coloured with {1, 2, 3}. The edge e needs to be adjacent to edges of every colour

12



as otherwise we could colour e with the free colour. So, since ∆(G) ≤ 3 we may
assume that u is incident with precisely two edges f1 and f2 of colours 1 and
2, respectively, and that v is incident with an edge g3 of colour 3 but not with
any edge of colour 2. (There might be a third edge adjacent to v, which then
has colour 1.)

Next, denote by P the 2/3-path from u. If P does not contain v we can
swap the colours along P to obtain an edge-colouring of G−e such that no edge
incident with u or v is coloured with 2. Thus, assigning colour 2 to e yields an
edge-colouring of G with 3 colours, in contradiction to our assumption. Hence,
P contains v, and in fact ends there. Let us point out that C := P + e is an
odd cycle (possibly a triangle), as the first and the last edge of P have different
colours.

Consider the 1/3-path Q1 from u, and suppose that P and Q1 have a vertex
other than u in common. Denote by q1 the first vertex on Q1 after u that lies
on P . Since the edges of P are coloured with 2 and 3, the edge preceeding q1

on Q1 needs to have colour 1, which implies that uQ1q1 is an odd path. Now,
however, we have found three non-crossing paths linking u and q1: namely the
two paths joining u and q1 contained in C, and uQ1q1. As C is odd, exactly two
of these paths have odd length, and hence their union forms an ooe-Θ-graph,
which is impossible.

So, we may assume that Q1 − u is disjoint from P . This means that we can
swap colours along Q1 without changing the colours on P . We thus arrive at
an edge-colouring of G − e where f1 is coloured with 3, while all other edges
incident with u or v keep their old colours. Since we have assumed that v is not
incident with any edge of colour 2, we deduce that there exists an edge g1 with
endvertex v and colour 1; otherwise we could use 1 to colour e. Now we proceed
as in the previous paragraph. If the 1/2-path Q2 from v meets P only in v then
by swapping colours along Q2 we obtain a colouring of E(G − e) in which no
edge adjacent to e has colour 1, a contradiction. On the other hand, if there
is a vertex q2 6= v in Q2 ∩ P , which we may choose so that no interior vertex
of vQ2q2 lies in P , then C ∪ vQ2q2 contains three non-crossing paths linking
v and q2. Again, exactly two of these have odd length, and hence their union
constitutes an ooe-Θ-graph.

We note the following two consequences.

Lemma 21. A t-perfect line graph can be coloured with at most 3 colours.

Proof. This is a direct consequence of Lemmas 16 and 20.

Next, we observe that the proof of Lemma 20 can easily be turned into a
polynomial-time colouring algorithm for t-perfect line graphs. Indeed, given a
t-perfect line graph H we first use Roussopoulos’ [28] linear time algorithm to
compute a graph G with L(G) = H. Then we iteratively colour the edges of G
as outlined in Algorithm 1, where we use the notation of the proof of Lemma 20.

Lemma 22. A t-perfect line graph can be coloured with three colours in poly-
nomial time.

We now prove the first of our two main results, which we restate.

Theorem 2. Every claw-free t-perfect graph is 3-colourable.
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Algorithm 1 Edge colouring in ooe-Θ-free graphs

while there is an uncoloured edge e = uv:
call colour(e)

output edge-colouring of G.

subroutine colour(e):
if there is a colour c that is not used by the edges adjacent to e:

Use c for e and return.
Compute P .
If v /∈ V (P ):

Swap colours on P .
Use the free colour for e and return.

Compute Q1 and swap colours on Q1.
Compute Q2 (which is possibly trivial) and swap colours on Q2.
Use the free colour for e and return.

For the proof we need a standard definition from the context of vertex-
coloured graphs. The Kempe-chain in colours c1, c2 at a vertex v is the inclusion-
maximal induced subgraph containing v that has vertices of colours c1 and c2

only. Recall that in a claw-free graph a Kempe-chain is always a path or a cycle.

Proof. Suppose otherwise, and let G be a counterexample with a minimum
number of vertices. Hence |V (G)| ≥ 4. As we may colour the blocks separately,
and then combine their colourings to a colouring of G, we may assume that G
is 2-connected.

First suppose that G is even 3-connected. Then, by Theorem 3, G does not
contain any of K4, W5, C2

7 or C2
10 as a t-minor. Thus it follows from Lemma 9

that either G is a line graph, or G ∈ {C2
6 − v1v6, C

2
7 − v7, C

2
10 − v10}. In the

former case Lemma 21 implies that G is 3-colourable, while in the latter case
the 3-colourability of G is easy to check. Thus in both cases we arrive at a
contradiction.

Therefore we may assume that G is not 3-connected. Then there are vertices
u, v which separate G. In other words, there are induced proper subgraphs L and
R of G so that V (L)∩V (R) = {u, v} and L∪R = G. As |V (L)| < |V (G)| there
is, by the choice of G, a 3-colouring cL of L. Permuting colours, if necessary,
we may assume that cL(u) = 1 and cL(v) ∈ {1, 2}.

Now in the graph L, consider the Kempe-chain K at v in colours 1, 2. If
u ∈ V (K), then clearly, K contains an induced u–v path. On the other hand,
if u /∈ V (K), then we can swap colours in K, thus obtaining a 3-colouring c′L of
L with cL(v) 6= c′L(v). To sum up, we found that one of the following holds:

a) L contains an induced u–v path P using only colours 1 and 2 in cL, or

b) L has 3-colourings ci for i = 1, 2 so that ci(u) = 1 and ci(v) = i.

In case a), denote by R̃ the graph that is obtained from R+P by performing
t-contractions at inner vertices of P until either P has become an edge or u and
v are identified. Clearly, R̃ is a proper t-minor of G, and hence, by minimality
of G, there is a 3-colouring cR̃ of R̃. The colouring cR̃ naturally induces a 3-

colouring cR of R. Observe that by construction of R̃, we have cR(u) = cR(v) if
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and only if cL(u) = cL(v). So, by swapping colours if necessary we can combine
cL and cR to a 3-colouring of G, which we assumed not to exist, a contradiction.

So we may assume that case b) above occurs. But then we may take any
colouring of R (which exists by induction) and, swapping colours if necessary,
combine it with the appropriate ci to a 3-colouring of G, again a contradiction.

With a slight modification, we can turn this proof into a colouring algorithm
of polynomial time:

Lemma 23. Every claw-free t-perfect graph on n vertices can be coloured with
three colours in polynomial time in n.

Algorithm 2 Colouring claw-free t-perfect graphs

output colour(G)

subroutine colour(G):
Compute the blocks of G, call 2conncolour(B) for each block B,
Swap colours in some blocks if necessary.
Return the obtained 3-colouring of G.

subroutine 2conncolour(G):
if G is 3-connected or |V (G)| < 4: return 3conncolour(G).
Pick L∪R = G with V (L)∩V (R) = {u, v} and R ( L so that R is minimal.
Set cL ← colour(L).
Compute cL(u), cL(v)-Kempe chain K in L containing v.
Set R′ ← R̃ (the graph obtained from R by identifying u and v).
if u ∈ V (K):

if the u–v subpath in K has odd length: Set R′ ← R + uv.
call 3conncolour(R′) to obtain a colouring cR of R. ➀
Permute colours in R so that cL(u) = cR(u) and cL(v) = cR(v).
Combine cL and cR to a colouring cG of G and return cG.

if the shortest u–v path in L has odd length: Set R′ ← R + uv.
call 3conncolour(R′) to obtain a colouring cR of R. ➁
Permute colours in R so that cL(u) = cR(u).
Change cL to c′L by swapping colours in K.
Combine cR with cL or with c′L to a colouring cG of G and return cG.

subroutine 3conncolour(G):
if G ∈ {C2

6 − v1v6, C
2
7 − v7, C

2
10 − v10}: return hardcoded 3-colouring.

return a colouring of G obtained with Lemma 22.

Proof. Let us check that Algorithm 2 is correct. For the subroutine 3conn-
colour to work we clearly need that it is always applied to a 3-connected graph
G, except when |V (G)| < 4. In the latter case, G is a line graph and so the
reduction to Lemma 22 is valid (though unnecessary).

For the calls ➀ and ➁ we have to see that R′ is 3-connected if |V (R′)| ≥ 4.
Indeed, by the minimal choice of R this follows immediately when R′ = R+uv.
For R′ = R̃, suppose that there are two vertices x, y that separate R̃. By the
minimality of R, one of x and y, say y, must be the vertex we obtained by
identifying u and v. Hence {u, v, x} separates R. Since G is claw-free, the
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neighbourhood of u outside L lies in at most one component of R − {u, v, x}.
Thus, also {v, x} separates R, contradicting the minimality of R.

That the obtained colourings cR and cL indeed combine to 3-colourings of
G follows from the arguments in the proof of Theorem 2.

Finally, to estimate the running time, note that subroutine 3conncolour
needs only polynomial time, by Lemma 22. Moreover, every instruction, except
the recursive call colour(L), can be performed in polynomial time. To determine
L and R, for instance, we could consider all of the vertex sets of cardinality at
most two. As |V (L)| < |V (G)| holds in every step, the recursion depth is
bounded by |V (G)|, which concludes the proof.

6 Colouring h-perfect graphs

Let us now turn to h-perfect graphs, to which our results on colourings carry
over. Sbihi and Uhry [29] introduced h-perfect graphs as a common generalisa-
tion of perfect and t-perfect graphs. For the definition of h-perfect graphs we
use the same inequalities as for t-perfect graphs, only that the edge inequalities
are replaced with clique inequalities. So, a graph is called h-perfect if the SSP
is determined by

x ≥ 0

x(K) ≤ 1 for every clique K

x(C) ≤ ⌊|V (C)|/2⌋ for every induced odd cycle C.

Let us denote the fractional chromatic number by χ∗. More formally, if S
denotes the set of all stable sets:

χ∗(G) = min1T y, y ∈ RS

subject to y ≥ 0 and
∑

S∈S, v∈S

yS ≥ 1 for all v ∈ V. (13)

Define the polytope

P = {x ∈ RV : x(S) ≤ 1 for each stable set S, x ≥ 0}.

Observe that maxx∈P 1T x is the dual program of (13), so that we get χ∗(G) =
maxx∈P 1T x. Moreover, it is not hard to check that the anti-blocking polytope of
P coincides with SSP(G). As G is h-perfect, Theorem 2.1 in Fulkerson [16] (see
also [15]) yields therefore that every vertex 6= 0 of P is either the characteristic
vector χK of a clique K of G or the vertex is of the form 2

|C|−1χC for an odd

cycle C.
In particular, for an h-perfect graph G we obtain

χ∗(G) = ω(G) if ω(G) ≥ 3. (14)

For claw-free graphs, we know more:

Theorem 24 (Sebő [26]). Let G be a claw-free h-perfect graph. Then

(i) χ(G) = ⌈χ∗(G)⌉; and

16



(ii) χ(G) = ω(G) if ω(G) ≥ 3.

The proof of this result uses our Theorem 2. All other arguments of the proof,
however, have been developed by Sebő in order to show that Conjecture 1 on
the 4-colourability of t-perfect graphs is implied by the following conjecture.

Conjecture 25 (Sebő [26]). Every triangle-free t-perfect graph is 3-colourable.

We can adapt this reduction to the claw-free case. As Sebő’s argument has
not been published we present it here.

Lemma 26 (Sebő [26]). Let G be a claw-free graph with ω(G) ≥ 3. Then there
exists a stable set that intersects every clique of size ω(G).

Proof. Since ω(G) ≥ 3 > 1T ( 2
|C|−1χC) for every odd cycle C of length ≥ 5, we

see that maxx∈P 1T x = ω(G) is attained in every clique of size ω(G). Consider
an optimal solution y of (13) and a clique K of size ω(G). Then

ω(G) = 1T χK ≤
∑

S

yS χT
SχK =

∑

S

yS |S ∩K| ≤
∑

S

yS = ω(G).

Thus, each stable set S with yS > 0 must meet each such clique K.

Proof of Theorem 24. Assume first that ω(G) ≥ 3. We find with Lemma 26
stable sets S1, . . . , Sk where k = ω(G) − 3 such that G′ := G − S1 − . . . − Sk

has no clique of size 4. Thus, G′ is t-perfect and therefore, by Theorem 2, 3-
colourable. Hence G is (k + 3)-colourable. This proves assertion (ii), and (i),
too, for ω(G) ≥ 3 as ω(G) is a lower bound for χ∗(G).

Finally, assume ω(G) < 3, that is, G is triangle-free. Then, since G is claw-
free, it has maximum degree 2. So G is either a path or a hole for both of
which (i) clearly holds.

In the remainder of this section we demonstrate that a colouring as in The-
orem 24 can be computed in polynomial time. Again we take inspiration from
perfect graphs. Perfect graphs can be coloured in polynomial time, and we
use as much of that proof as possible. It rests on two facts: in perfect graphs
Max-Weight Stable Set is polynomial-solvable and, as a consequence of this
and the weak perfect graph theorem, cliques of maximal size can be computed
efficiently, too.

Max-Weight Stable Set. Given a graph G and a weight w : V (G) → Z+

compute a stable set S with maximal weight w(S).

Fortunately, Max-Weight Stable Set can be solved in polynomial time
in h-perfect graphs, too.

Theorem 27 (Grötschel, Lovász and Schrijver [21]). For h-perfect graphs Max-

Weight Stable Set can be solved in polynomial time.

The next result will help us in computing the clique number of a claw-free
h-perfect graph.

Theorem 28 (Grötschel, Lovász and Schrijver [20]). For any collection G of
graphs holds: There is a polynomial-time algorithm to find a fractional weighted
colouring number for any graph in G if and only if there is a polynomial-time
algorithm that solves Max-Weight Stable Set for any graph in G and any
integer weight function.
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Lemma 29. For an h-perfect graph G it is possible to compute ω(G), and then
also a clique of size ω(G), in polynomial time.

Proof. First, check whether G contains a triangle. If not, then it is easy to
determine ω(G). So assume that ω(G) ≥ 3, and observe that as a direct con-
sequence of Theorems 27 and 28 we can calculate χ∗(G) in polynomial time.
Since χ∗(G) and ω(G) coincide, by (14), we have determined ω(G).

Now, a standard argument (see for instance [30, Corollary 67.2b]) allows us
to find a clique of size ω(G): Pick a vertex v and use the algorithm above to
check whether ω(G) > ω(G− v). If no, replace G by G− v and repeat. If yes,
pick the next vertex until ω(G) > ω(G− v) for all vertices v, in which case the
remaining graph forms a clique of size ω(G).

Theorem 30.2 For h-perfect claw-free graphs an optimal colouring can be com-
puted in polynomial time.

Proof. In view of Theorem 23 and the proof of Theorem 24 we only need to
show that a stable set that intersects every clique of maximal size can be found
in polynomial time—provided that ω(G) ≥ 3. To do so, we follow arguments
given by Grötschel, Lovász and Schrijver [22] for an analogous result for perfect
graphs; see also [30, Corollary 67.2c].

Algorithm 3 Computing the desired stable set

Use Lemma 29 to compute a clique K of G with maximal size.
Set t← 0 and ω ← |K|.
while ω = |K|:

Set Kt+1 ← K and t← t + 1.
Use the algorithm of Theorem 27 to compute a stable set S of G
with maximal weight with respect to the weight w := χK1

+ . . . χKt
.

Use Lemma 29 to compute a clique K of G− S with maximal size.
output S.

We use Algorithm 3 to compute the desired stable set. Obviously, if the
number of iterations is bounded by a polynomial in |V (G)| then the theorem
follows. We note that by Lemma 26 any S as computed in the algorithm in-
tersects each of K1, . . . ,Kt. This means that χS is contained in Lt := {x ∈
RV : x(Ki) = 1 for i = 1, . . . , t}. However, the dimension of Lt drops with
every t since the χKi

are linearly independent. Thus, the number of iterations
is bounded by |V (G)|.
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