Quadrangulations of the projective plane are t-perfect if and only if they are bipartite

Elke Fuchs and Laura Gellert

Abstract

We show that every non-bipartite quadrangulation of the projective plane contains an odd wheel as a t-minor and is thus t-imperfect.

1 Introduction

Perfect graphs received considerous attention in graph theory. The purely combinatorial definition — that a graph is perfect if and only if for each of its induced subgraphs, the chromatic number and the clique number coincide — can be replaced by a polyhedral one (Chvátal [6]): A graph G is perfect if and only if its stable set polytope $ SSP(G)$, ie the convex hull of stable sets of G, is completely described by non-negativity and clique inequalities.

Modification of the considered inequalities leads to generalisations of perfection. A graph G is t-perfect if $ SSP(G)$ equals the polyhedron $ TSTAB(G)$ which is defined via non-negativity-, edge- and odd-cycle inequalities.

As bipartite graphs are easily seen to be perfect, the above polyhedral conditions directly show that bipartite graphs are t-perfect as well. We show that non-bipartite quadrangulations of the projective plane are never t-perfect.

Corollary 1. A quadrangulation of the projective plane is t-perfect if and only if it is bipartite.

This directly follows from the fact that every non-bipartite quadrangulation of the projective plane has an odd wheel (see Figure 1) as a t-minor. Any graph obtained by a sequence of vertex deletions and t-contraction is a t-minor. A t-contraction, which is only allowed at a vertex with stable neighbourhood, contracts all the incident edges. See next section for a proper definition.

Theorem 2. A quadrangulation G of the projective plane contains an odd wheel W_{2k+1} for $k \geq 1$ as a t-minor if and only if G is not bipartite.

Figure 1: The odd wheels W_3, W_5 and W_7

A general treatment on t-perfect graphs may be found in Grötschel, Lovász and Schrijver [12, Ch. 9.1] as well as in Schrijver [14, Ch. 68]. Bruhn and
Benchetrit showed that plane triangulations are t-perfect if and only if they do not contain a certain subdivision of an odd wheel as an induced subgraph \[3\].

Boulala and Uhry \[4\] established the t-perfection of series-parallel graphs. Gerards \[9\] extended this to graphs that do not contain an odd-K_4 as a subgraph (an odd-K_4 is a subdivision of K_4 in which every triangle becomes an odd circuit). Gerards and Shepherd \[10\] characterised the graphs with all subgraphs t-perfect, while Barahona and Mahjoub \[2\] described the t-imperfect subdivisions of K_4. Bruhn and Fuchs \[5\] characterised P_5-free and near-bipartite graphs by forbidden t-minors.

Youngs \[15\] showed that all non-bipartite quadrangulations of the projective plane have chromatic number equal to 4. Esperet and Stehlík \[8\] gave bounds for edge- and face-width of non-bipartite quadrangulations.

2 t-perfection

All the graphs mentioned here are finite and simple; we follow the notation of Diestel \[7\].

Let $G = (V, E)$ be a graph. The **stable set polytope** $\text{SSP}(G) \subseteq \mathbb{R}^V$ of G is defined as the convex hull of the characteristic vectors of stable, ie independent, subsets of V. The characteristic vector of a subset S of the set V is the vector $\chi_S \in \{0, 1\}^V$ with $\chi_S(v) = 1$ if $v \in S$ and 0 otherwise. We define a second polytope $\text{TSTAB}(G) \subseteq \mathbb{R}^V$ for G, given by

\[
x \geq 0, \\
x_u + x_v \leq 1 \text{ for every edge } uv \in E, \\
\sum_{v \in V(C)} x_v \leq \left\lfloor \frac{|C|}{2} \right\rfloor \text{ for every induced odd cycle } C \text{ in } G.
\]

These inequalities are respectively known as non-negativity, edge and odd-cycle inequalities. Clearly, $\text{SSP}(G) \subseteq \text{TSTAB}(G)$.

The graph G is called **t-perfect** if $\text{SSP}(G)$ and $\text{TSTAB}(G)$ coincide. Equivalently, G is t-perfect if and only if $\text{TSTAB}(G)$ is an integral polytope, ie if all its vertices are integral vectors.

It is easy to verify that vertex deletion preserves t-perfection. Another operation that keeps t-perfection was found by Gerards and Shepherd \[10\]: whenever there is a vertex v, so that its neighbourhood is stable, we may contract all edges incident with v simultaneously. We will call this operation a t-contraction at v. Any graph that is obtained from G by a sequence of vertex deletions and t-contractions is a t-minor of G. Let us point out that any t-minor of a t-perfect graph is again t-perfect.

A **p-wheel** W_p is a graph consisting of a cycle (w_1, \ldots, w_p) and a vertex v adjacent to w_i for $i = 1, \ldots, p$ (see Figure 1). Odd wheels W_{2k+1} for $k \geq 1$ are t-imperfect. Indeed, the vector $(1/3, \ldots, 1/3)$ is contained in $\text{TSTAB}(W_{2k+1})$ but not in $\text{SSP}(W_{2k+1})$. Furthermore, every proper t-minor of an odd wheel is t-perfect.
3 Embeddings in the projective plane

We begin by recalling several useful definitions related to surface-embedded graphs. For further background on topological graph theory, we refer the reader to Gross and Tucker [11] or Mohar and Thomassen [13].

An embedding of a simple graph \(G \) in the projective plane is a continuous one-to-one function from \(G \) into the projective plane where \(G \) is assumed to have the natural topology as a 1-dimensional CW-complex. For our purpose, it is convenient to abuse the terminology by referring to the image of \(G \) as the embedded graph \(G \). The connected components of the complement of an embedded graph are called the faces of \(G \). An embedding is a cell embedding if each face is homeomorphic to an open disk. A cell embedding is a closed-cell embedding if each face is bounded by a cycle of \(G \).

The size of a face is the length of its bounding cycle. An embedding \(G \) is even if all faces are of even size. A quadrangulation is a cell embedding where all faces are of size 4. Note that a quadrangulation of a simple graph \(G \) is always a closed-cell embedding as \(G \) does not contain multiple edges.

A cycle \(C \) in the projective plane is contractible if \(C \) separates the projective plane into two sets \(S_C \) and \(S_C^c \) where \(S_C \) is homeomorphic to an open disk in \(\mathbb{R}^2 \). We call \(S_C \) the interior of \(C \).

A quadrangulation is nice, if the interior of every contractible 4-cycle contains no vertex.

Since the projective plane has Euler characteristic 1, every quadrangulation \(G \) satisfies
\[
\sum_{v \in V(G)} \deg(v) = 2|E(G)| = 4|V(G)| - 4. \tag{1}
\]

A cycle in a non-bipartite quadrangulation of the projective plane is contractible if and only if it has even length (see e.g. [1, Lemma 3.1]). One can easily generalise this result.

Lemma 3. A cycle in a non-bipartite even embedding in the projective plane is contractible if and only it has even length.

Note that therefore any two odd cycles have an odd number of crossings.

Proof of Lemma 3. Let \(G \) be an even embedding. Construct a quadrangulation \(G' \) from \(G \) as follows: We quadrangulate every face bounded by edges \(e_1, \ldots, e_k \) with \(k \geq 6 \) as follows: Let \(e_i = v_i v_{i+1} \) for \(i \in [k] \) and \(v_1 = v_{k+1} \). Note that \(v_i = v_j \) for some \(i \neq j \) is possible if \(G \) is not a closed-cell embedding. Add vertices \(u, w_1 = w_{k+1}, w_2, \ldots, w_k \) and connect \(w_i \) to \(v_i \) and \(w_{i+1} \) for \(i \in [k] \). Further, add the edge \(w_i u \) for every even \(i \in [k] \).

As all cycles of \(G \) are contained in the constructed quadrangulation, we are done by [1, Lemma 3.1]. \(\square \)

Let us continue with some useful operations.

Lemma 4. A graph obtained from an even embedding in the projective plane by a deletion of a vertex or an edge is again an even embedding.

Proof. Deletion of a vertex merges all adjacent even faces to a new even face and leaves all other faces untouched.
Deletion of an edge with two adjacent faces F_1, F_2 merges F_1 and F_2 into a new face of size $|F_1| + |F_2| - 2$. Deletion of an edge bounding a face F from two sides leads to a new face of size $|F| - 2$. In both cases, all other faces are left untouched. Therefore, even embeddability is preserved under the deletion of a vertex or an edge.

Lemma 5. A graph obtained from a non-bipartite nice quadrangulation G by a t-contraction is a non-bipartite quadrangulation.

Proof. A t-contraction preserves the parity of all cycles of length at least 5 and does not create new cycles. The operation leaves every 4-cycle untouched or transforms it into an edge. As the 4-cycles in a nice quadrangulation are precisely the cycles bounding faces (Lemma 3), the graph obtained from a t-contraction is again a quadrangulation.

Since no odd cycle gets destroyed, the graph remains non-bipartite.

After each t-contraction, we can delete all vertices in the interior of a 4-cycle to obtain a nice quadrangulation. This does not destroy non-bipartiteness.

Application of t-contractions (and deletion of vertices in the interior of 4-cycles) gives a graph where each vertex is contained in a triangle. The following lemma is a direct consequence of this observation:

Lemma 6. Let G be a non-bipartite quadrangulation. Then there is a sequence of t-contractions and deletions of vertices in the interior of 4-cycles that transforms G into a non-bipartite nice quadrangulation where each vertex is contained in a triangle.

Lemma 7. Every nice quadrangulation has minimal degree 3.

Proof. Let G be a quadrangulation. By (1) and as G is 2-connected, G contains a vertex of degree 2 or 3.

Assume that vertex v has exactly two neighbours u, u'. Then, there are vertices s, t such that (u, v, u', s) and (u, v, u', t) are bounding a face (Figure 2). Consequently, (u, s, u', t) is a contractible 4-cycle which is not the boundary of a face and G is not a nice quadrangulation.

![Figure 2: A vertex of degree 2 in a quadrangulation](image)

Finally, we consider wheels in the projective plane. *Odd wheels*, ie p-wheels where $p \geq 3$ is odd, are evenly embeddable in the projective plane; see Figure 3 for an illustration.

Lemma 8. Even wheels W_{2k} for $k \geq 2$ do not have an even embedding in the projective plane.
Figure 3: An even embedding of W_5 and the only even embedding of $W_4 - w_3w_4$

Proof. We first consider the 4-wheel W_4. As all triangles of $W_4 - w_3w_4$ must be non-contractible by Lemma 3, the graph must be embedded as in Figure 3. Since the insertion of w_3w_4 will create an odd face, W_4 is not evenly embeddable.

Now assume that W_{2k} for $k \geq 3$ is evenly embedded. Deleting the edges vw_i for $i = 5, \ldots, 2k$ preserves the even embedding (Lemma 4). Replacing the induced odd path $w_4, w_5, \ldots, w_{2k}, w_1$ by the edge w_4w_1 (by t-contraction at the vertices $w_5, w_7, \ldots, w_{2k-1}$) yields an even embedding of W_4. This is not possible.

4 Proof of Theorem 2

This section is dedicated to the proof of Theorem 2 (and of Corollary 1). The theorem is based on the following lemma.

Lemma 9. Let G be a non-bipartite nice quadrangulation of the projective plane where each vertex of G is contained in a triangle. Then G contains an odd wheel as an (induced) subgraph.

Proof. By Lemma 7 there exists a vertex v of degree 3 in G. Let $\{x_1, x_2, x_3\}$ be its neighbourhood and let x_1x_2 and v form a triangle.

Recall that each two triangles intersect (see Lemma 3). As x_3 is contained in a triangle intersecting the triangle (v, x_1, x_2) and as v has no further neighbour, we can suppose without loss of generality that x_3 is adjacent to x_1. The graph induced by the two triangles (v, x_1, x_2) and (x_1, v, x_3) is not a quadrangulation. Further, addition of the edge x_2x_3 yields a K_4. Thus, the graph contains a further vertex and this vertex is contained in a further triangle T. Since the vertex v has degree 3, it is not contained in T. If further $x_1 \notin V(T)$, then the vertices x_2 and x_3 must be contained in T. But then $x_2x_3 \in E(G)$ and, as above, v, x_1, x_2 and x_3 form a K_4. Therefore, x_1 is contained in T and consequently in every triangle of G. Since every vertex is contained in a triangle, x_1 must be adjacent to all vertices of $G' = G - x_1$. As $|E(G)| = 2|V(G)| - 2$ by (1), the graph G' has $2|V(G)| - 2 - (|V(G)| - 1) = |V(G)| - 1 = |V(G')|$ many edges. Thus, G' contains an induced cycle C and G contains a wheel formed by C and x_1 as an induced subgraph. Since even wheels are not evenly embeddable (Lemma 8), the wheel is odd by Lemma 4.

Finally, from Lemma 9 and Lemma 6 our main result follows:
Proof of Theorem 2. As \(t \)-contraction preserves the parity of cycles, no bipartite graph has an odd wheel as a \(t \)-minor.

Let \(G \) be a non-bipartite quadrangulation. By Lemma 6, \(G \) has a non-bipartite nice quadrangulation \(G' \) where each vertex is contained in a triangle as a \(t \)-minor. By Lemma 9, \(G' \) contains an induced odd wheel. Therefore, \(G \) has an odd wheel as a \(t \)-minor.

Proof of Corollary 1. Let \(G \) be a quadrangulation of the projective plane. If \(G \) is bipartite, \(G \) is also \(t \)-perfect. Otherwise, \(G \) contains an odd wheel as a \(t \)-minor (Theorem 2). Since odd wheels are \(t \)-imperfect, \(G \) is \(t \)-imperfect as well.

References

