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Abstract

Conditional tests like two-sample permutation tests establish valid �-
nite sample tests for large classes of nonparametric composite null hypothe-
ses. In particular, we discuss the quality of various conditional distribution
free tests in comparison to a (parametric) benchmark test. It is shown that
they are often asymptotically e�ective. This means that conditional tests
are asymptotically equivalent to benchmark tests and do not loose asymp-
totic power under contiguous alternatives. Moreover they turn out to be
asymptotically e�cient for various models. The results apply to permu-
tation tests, symmetry tests and tests based on U -statistics or maximum
likelihood estimators. A counterexample for the Bootstrap shows that the
principle is not always applicable for arbitrary resampling tests.
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1 Motivation and introduction

Conditional tests (tests with Neyman structure) are powerful classical tools of
statistics, see Lehmann and Romano (2005) for further references. By con-
struction they are valid tests with exact nominal level α. These tests have the
advantage that they are able to control the error probability of �rst kind at
each sample size for a wide class of nonparametric composite null hypotheses.
Since conditional tests are typically distribution free, they are very attractive
for practical purposes. For applications we refer to the recent monographs of

1This article has been devoloped while the second author was a fellow of the `Gründer-
stiftung for promotion of research of young academics' at the Heinrich-Heine Universität Düs-
seldorf.
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Edgington and Onghena (2007) and Good (2005).
Conditional tests are often part of more general two step testing procedures like
weighted bootstrap tests (including permutation tests), see Mason and Newton
(1992) and Janssen and Pauls (2003). Typically they are based upon an ex-
ternal conditional resampling step which can nowadays be done by high speed
computer machines.
In this paper we study the quality of conditional tests in comparison with ideal
benchmark tests. As motivation we will discuss the following well known exam-
ple which illustrates the methodology of our approach.

Example 1.1 (Nonparametric two sample test for the mean)
Consider independent real valued r.v. X1, . . . , Xn1 , Xn1+1, . . . , Xn with common
distribution

L(X1, . . . , Xn1 , Xn1+1, . . . , Xn) = Pn1 ⊗Qn2 , (1.1)

where P and Q are distributions on the real line and n2 := n−n1 holds. Suppose
that the means µ1 = E(X1) and µ2 = E(Xn) exist. The testing problem is given
by

H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2.

Classical unconditional tests reject the null-hypothesis H0 whenever

Tn,lin :=
√
n1n2

n

( 1
n1

n1∑

i=1

Xi − 1
n2

n∑

i=n1+1

Xi

)
> cn (1.2)

holds for some critical value cn. It is well known that a proper choice of the crit-
ical value cn depends on the model. This model is given by further information
about the underlying distributions P and Q. We will now discuss some typically
situations.

1. Suppose �rst that P = N(µ1, σ
2) and Q = N(µ2, σ

2) are normal with the
same unknown variance σ2 > 0. In this case the two-sample t-test with
critical value

cn,stud = V 1/2
n tn−2,1−α (1.3)

is most powerful and of exact level α.
Here Vn = 1

n−2(
∑n1

i=1(Xi− 1
n1

∑n1
j=1Xj)2+

∑n
i=n1+1(Xi− 1

n2

∑n
j=n1+1Xj)2

and tn−2,1−α denote the two-sample variance estimator and the (1 − α)-
quantile of the tn−2-distribution, respectively.
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2. If the normality assumption is not realistic we will turn to the following
nonparametric extension. We do not make any assumptions about the
shape of the distribution of P and the normality is substituted by the shift
family

Q = P ∗ εµ2−µ1 . (1.4)

Here ` ∗' denotes the convolution with the Dirac measure with mass at
µ2 − µ1. If P posses a �nite second moment with non trivial variance the
two-sample t-type-test given by (1.2) and (1.3)

ϕn,stud = 1
(V

1/2
n tn−2,1−α,∞)

(Tn,lin) (1.5)

(or any test with other consistent estimation cn,stud of the critical values)
will be asymptotically exact, i.e. EH0(ϕn,stud) → α holds as n→∞.

3. However, the test (1.5) may be liberal and not of exact level α at �nite
sample size. In this case it is well known that the two-sample prob-
lem can be made distribution free very easily. Under the null-hypothesis
of equal distributions L(X1) = L(X2) = . . . ,L(Xn) the order statistics
X1:n ≤ X2:n ≤ · · · ≤ Xn:n of X1, . . . , Xn are su�cient (and also bound-
edly complete whenever the model is rich enough). Conditioned under the
order statistics the test is now carried out as Pitman's permutation test

ϕ∗n,stud = 1(c∗n,stud,∞)(Tn,lin) + γ∗n1{c∗n,stud}(Tn,lin). (1.6)

Here c∗n,stud is the data dependent (1−α)-quantile of the permutation dis-
tribution of Tn,lin, see Example 3.1 below. The construction is given by

EH0(ϕ
∗
n,stud|X1:n, . . . , Xn:n) = α. (1.7)

Obviously, ϕ∗n,stud is of exact level α = EH0(ϕ
∗
n,stud) at any sample size.

It is not in advance clear that the conditional permutation test has good (asymp-
totic) power. Our question of interest is now,

• whether there is any price in terms of lower power that we have to pay for
making a traditional test (like student's two-sample t-test ϕn,stud) distri-
bution free?
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To judge this question in general we will make a power comparison of traditional
tests ϕn and corresponding conditional tests ϕ∗n.
In the above Example 1.1 the answer is well known. Of course under normality
assumptions (part 1 in the above example) Pitman's permutation test ϕ∗n,stud

has not the power of the optimal t-test (1.5) at �nite sample size. Nevertheless,
as it is pointed out in Janssen (1997), Pitmann's permutation test is asymp-
totically as powerful as the two-sample t-type-test ϕn,stud. Only �nite second
moments are required. The reason for the asymptotic equivalence of ϕn and Pit-
mann's permutation test ϕ∗n can be explained very easily. In Janssen (1997) and
(2005) it is proved that their critical values cn,stud and c∗n,stud are asymptotically
equivalent, i.e.

|cn,stud − c∗n,stud| → 0 in probability (1.8)

holds under H0 as n→∞. The same holds true for a large class of tests based
on linear statistics.
The main aim of this paper is to extend these results to non-linear statistics
Tn instead of Tn,stud. Important examples are test statistics like two-sample
maximum likelihood estimators and certain U -statistics which are not linear
but admit an expansion with leading linear term. Notice that a detailed study
of conditional distributions is required in order to study the random conditional
quantiles c∗n,stud. The derivation of the asymptotics in (1.8) is by no means
simple although the non-conditional asymptotic of Tn,lin is well understood. In
general, the problem has to be dealt with care, see the negative result for the
Bootstrap (Example 2.3) and Example 3.7 below.

Motivated by the above example we can now describe our general setting. Typ-
ically a well motivated sequence of test statistics Tn and upper Tn-tests

1(cn,∞)(Tn) ≤ ϕn ≤ 1[cn,∞)(Tn) (1.9)

with critical values cn ∈ R are given a priori for a certain composite null hy-
pothesis P0,n. The critical values cn may be of asymptotic nature such that
EPn(ϕn) → α holds under the null hypothesis (for instance cn = V

1/2
n q1−α

given by a consistent variance extimation Vn and some quantile q1−α). The
test ϕn will be called benchmark test. For instance, in the above example our
benchmark test would be student's two-sample t-test. Throughout, let Sn be a
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su�cient statistic for the underlying null hypothesis P0,n. Then a conditional
Tn-test (like Pitman's permutation test (1.6))

1(c∗n,∞)(Tn) ≤ ϕ∗n ≤ 1[c∗n,∞)(Tn) (1.10)

of nominal level α can be established by the choice of conditional critical values
c∗n = c∗n(Sn) given by

E(ϕ∗n|Sn) = α under P0,n. (1.11)

The general question of interest is now whether we have to pay a price - say in
loss of power - for making the benchmark test ϕn distribution free by turning
to ϕ∗n. Of course, at least along parametric submodels, the conditional test
cannot reach the power of the benchmark at �nite sample size n. However,
we will see that a huge class of conditional tests reach the optimum power
(given by the asymptotic power of the benchmark under contiguous alternatives)
asymptotically. In this context the crucial property of conditional tests is their
e�ectiveness. We call the sequence ϕ∗n asymptotically e�ective (with respect to
the benchmark test ϕn) if

EPn(|ϕn − ϕ∗n|) → 0 (1.12)

holds for each sequence of members Pn of the null hypothesis P0,n as n→∞. In
section 2 certain conditions for asymptotic e�ectiveness of ϕ∗n are established.
Since permutation tests are the standard example for conditional tests, we will
deal with them in its general form in the following example.

Example 1.2 (Permutation tests)
Let P be a composite family of distributions on a measurable space (Ω,A) and
consider the null-hypothesis P0,n := {Pn : P ∈ P} given by product measures.
Let

Tn : Ωn → R, Tn = Tn(X1, . . . , Xn)

be a general test statistic which may depend on random variables Xi, which are
i.i.d. under the null with common distribution P ∈ P. The upper Tn-test can be
carried out as a permutation test ϕ∗n, given by (1.10), which may be chosen �nite
sample distribution free with EP n(ϕ∗n) = α for all P ∈ P. The critical values c∗n
are the data dependent (1− α)-quantiles of the permutation distribution

σ 7→ Tn = Tn(Xσ(1), . . . , Xσ(n)). (1.13)
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Here σ = (σ(1), . . . , σ(n)) is a random permutation of 1, . . . , n which is inde-
pendent of the data, see Example 3.1 (a) for the general form. For real valued
r.v. X1, . . . , Xn the construction of the critical values is identically to (1.7).

The conditional tests ϕ∗n (like permutation tests) have the advantage that they
are �nite sample distribution free and of exact nominal level α. Throughout,
we will study for general conditional tests

• the quality of the conditional test in the sense whether ϕ∗n is asymptotically
e�ective with respect to ϕn, i.e. (1.12) holds, or more generally we may
ask

• which power of ϕ∗n can be expected at all under (contiguous) alternatives.

The following chart summarizes and exempli�es the reasons for our approach. It
opposes the characteristics of parametric benchmark tests ϕn and the associated
conditional tests ϕ∗n.

null hypothesis P0,n parametric (e.g. normal) nonparametric
ϕn parametrical test most powerful test may fail:
(e.g. two-sample or EPn(ϕn) > α for
t-test) locally best test some Pn ∈ P0,n

ϕ∗n conditional test distribution free
(e.g. Pitman's loss of power ? EPn(ϕ∗n) = α

permutation test) for all Pn ∈ P0,n

The �nite sample optimality of conditional tests was earlier discussed by Lehmann
and Stein (1949), Gebhard and Schmitz (1998) and Janssen and Völker (2007)
for instance. The large sample properties of resampling statistics and tests
(mainly permutation tests) with non-studentized test-statistics were studied by
Romano (1989) and (1990), Praestgaard (1995), Strasser and Weber (1999) as
well as by Janssen (1997) and (2005) for studentized versions. Earlier condi-
tional central limit theorems (CLT) were established by Hoe�ding (1952). The
asymptotics in the general weighted bootstrap case (including permutation pro-
cedures) have amongst others been explored by Mason and Newton (1992),
Praestgaard and Wellner (1993), Janssen and Pauls (2003) and Janssen (2005).
Prepivoted bootstrap tests were discussed by Beran (1988).
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The paper is organized as follows. In section 2 we study the asymptotic e�ec-
tiveness of conditional tests and will give necessary conditions for (1.12) to hold,
see our Lemmas 2.4 and 2.5. In this context it will be shown in Lemma 2.2 that
a perturbation of the test statistic preserves the convergence (1.12). However, a
counterexample for bootstrap tests shows that the principle is not adaptive for
all kind of resampling tests. Applications are given in section 3. There we will
see that the results hold for a wide class of conditional tests. For example, we
will proof the e�ectiveness of permutation tests based on U -statistics or max-
imum likelihood estimators. Another application is given for distribution free
symmetry tests. The paper closes with a �nal proof section 4.

2 The asymptotics of conditional tests

Permutation tests are special cases of more general conditional tests which can
be described as follows. Below let (Ωn,An,Pn) be a statistical experiment,
where Pn is a set of probability measures on (Ωn,An). Let P0,n ⊂ Pn be a
composite null-hypothesis of interest. Our testing problem is given by

P0,n versus Pn\P0,n. (2.1)

Throughout we will assume that

Sn : (Ωn,An) → (ΩSn ,ASn)

is a P0,n-su�cient statistic that takes its values in some measurable space
(ΩSn ,ASn). A test ψ : Ω → [0, 1] for (2.1) is called a conditional test (or a
test with Neyman structure) i� its conditional expectation E·(ψ|Sn) is constant
under P0,n, see Lehmann and Romano (2005) for further informations. Obvi-
ously, conditional tests given by su�cient σ-�elds Fn ⊂ An �t into the present
approach. In this case we may choose Sn to be the identity Sn = id : (Ωn,An) →
(Ωn,Fn). More generally as in section 1 let

Tn : (Ωn,An) → R

be a well motivated test statistic. The upper-Tn-test can be carried out as (Sn)-
conditional test ϕ∗n as follows. There exists a regular conditional distribution of
Tn given Sn = s that is independent from Pn ∈ P0,n, i.e.

P
Tn|Sn=s
· (·) = P Tn|Sn=s

n (·) for all Pn ∈ P0,n, (2.2)
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see Dudley (2002, Theorem 10.2.2.). For each α ∈ (0, 1) the conditional test

ϕ∗n,α = 1(c∗n(Sn),∞)(Tn) + γn(Sn)1{c∗n(Sn)}(Tn) (2.3)

is based on the ASn measurable quantile function c∗n of (2.2) at level (1 − α)

and 0 ≤ γ(Sn) ≤ 1 which is a solution of E·(ϕ∗n,α) = α given by
∫
ϕ∗n,αdP

Tn|Sn=s
· = α for s ∈ ΩSn , (2.4)

see Janssen und Völker (2007). Permutation tests (see Example 1.2) like Pit-
man's permutation test are a special case. There An = An is the product σ-�eld
on Ωn and Fn is de�ned to be the σ-�eld of coordinate-wise permutation invari-
ant sets of An.
First �x a sequence of distributions Pn ∈ P0,n. We will make one assumption
that follows Janssen and Pauls (2003, sect. 2.)

(A) Suppose that under the sequence Pn ∈ P0,n we have convergence

Pn(Tn ≤ x) −→ F (x) for all x ∈ R as n→∞, (2.5)

where F is a continuous distribution function that is strictly increasing on
its support.

For each level α ∈ (0, 1) let ϕn,α denote as in (1.9) a sequence of unconditional
benchmark tests (like the two-sample t-test for instance). We suppose that
they are of asymptotic nominal level α, i.e. EPn(ϕn,α) → α holds as n → ∞.
The next Lemma is crucial for the comparison and treatment of the conditional
counterpart ϕ∗n,α of ϕn,α under general nonparametric null-hypotheses, for a
proof see Janssen and Pauls (2003), Lemma 1.
Let x 7→ Pn(Tn ≤ x|Sn) denote the conditional distribution function of Tn given
Sn.

Lemma 2.1
If assumption (A) holds, the following statements are equivalent

sup
x∈R

∣∣Pn(Tn ≤ x|Sn)− F (x)
∣∣ Pn−→ 0, (2.6)

EPn(
∣∣ϕn,α − ϕ∗n,α

∣∣) → 0 for all α ∈ (0, 1) (2.7)

as n→∞. Here Pn−→ stands for convergence in Pn-probability as n→∞.
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The condition (2.6) has been veri�ed for various linear statistics Tn and their
studentized versions, see Janssen and Pauls (2003) or Janssen (2005). For in-
stance, it works for linear two-sample statistics in case of permutation tests.
Statistical consequences are sketched in section 3 below.
Various complicated test statistics T̃n can be expanded in a treatable (for in-
stance linear) part Tn and an asymptotically negligible part Rn, i.e. T̃n =

Tn +Rn. Assume that Rn : (Ωn,An) → (R,B) is a statistic which converges in
probability to 0, viz. Rn

Pn−→ 0 for some sequence Pn ∈ P0,n. Now it is often
the case that we know the conditional and unconditional asymptotic behavior
of Tn, i.e. (2.5) and (2.6) hold. It is now the question, whether the uncondi-
tional convergence in distribution of the more complicated test statistic T̃n can
be carried over to the conditional case. This is in general not the case - see
Examples 2.3 and 3.7 below - but holds under su�ciency of Sn.

Lemma 2.2
Suppose that assumption (A) holds. Then condition (2.6) is equivalent to

sup
x∈R

∣∣Pn(Tn +Rn ≤ x|Sn)− F (x)
∣∣ Pn−→ 0. (2.8)

The next example shows that Lemma 2.2 does in general not hold for the boot-
strap. In contrast to the permutation distribution the remainder Rn has non-
negligible in�uence on the bootstrap.

Example 2.3
Let X1, . . . , Xn be i.i.d. real-valued random variables with continuous distribu-
tion. Consider the associated Efron's boostrap variables X∗

1 , . . . , X
∗
n, i.e. they

are i.i.d. following the empirical measure Fn of (Xi)i≤n. Let (an)n be a sequence
with an → +∞ for n→∞. De�ne the set

An := {(x1, . . . , xn) ∈ Rn : there exist i 6= j with xi = xj}.

Then the statistic Rn = Rn(X1, . . . , Xn) := an ·1An(X1, . . . , Xn) is P -a.e. equal
to 0. However, given the data, the bootstrap version R∗n = Rn(X∗

1 , . . . , X
∗
n)

converges in probability to in�nity:

P (R∗n ≥ κ|X1, . . . , Xn) = P (∃i 6= j : X∗
i = X∗

j |X1, . . . , Xn)

= 1− 1
(
1− 1

n

)(
1− 2

n

) · · · 1
n
→ 1.
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One may have the impression that conditional tests are often asymptotically
e�ective. This is not the case as we will see in Example 3.7 below. The next
two Lemmas deal with necessary conditions for (2.6) and give insight in the
connection between conditional and unconditional convergence of moments.

Lemma 2.4
Suppose that assumption (A) and (2.6) hold, where T denotes a random variable
with distribution function F and expectation E(T ). Furthermore assume that
the �rst absolute moments exist and converge, i.e. EPn(|Tn|) → E(|T |) < ∞
for n → ∞. In this case we have convergence in probability of the conditional
expectations to the mean of T

E(Tn|Sn) Pn−→ E(T ). (2.9)

Lemma 2.5
Let E(Tn) = E(T ) = 0 hold and postulate that the variances exist and converge,
i.e. V ar(Tn) → V ar(T ) < ∞. Then the following assumption is necessary for
(2.6):

V ar(Tn − E(Tn|Sn)) → V ar(T ), (2.10)

viz.
∫
E(Tn|Sn)2dPn → 0 holds for n→∞.

3 Applications: E�ectiveness of conditional tests

In this section we show that di�erent conditional tests ϕ∗n are asymptotically
e�ective in the sense of De�nition 1.12 for various nonparametric classes of
hypotheses P0,n. In particular we show the e�ectiveness of di�erent permutation
tests, which are a special case of more general randomization tests.

Example 3.1
Let Gn = {gn : (Ωn,An) → (Ωn,An)} be a �nite group of transformations and
consider a null-hypothesis

P0,n of Gn-invariant distributions,

i.e. P gn
n = Pn for all Pn ∈ P0,n and gn ∈ Gn. Let Fn := {A ∈ An : gn(A) =

A for all gn ∈ Gn} be the σ-�eld of Gn-invariant sets and Sn = id : (Ωn,An) →
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(Ωn,Fn) be the identity which is su�cient for P0,n. The conditional (random-
ization) distribution P Tn|Sn=ω

· = P
Tn|Sn=ω
n is given by the distribution of

gn 7→ Tn(gn(ω)), gn ∈ Gn, (3.1)

on the orbits with respect to the uniform distribution on Gn. The conditional
tests ϕ∗n,α, see (2.3), are then called randomization tests. Special cases are

(a) Permutation tests. Here P0,n are (more general as in Ex. 1.2) ex-
changeable distributions on product spaces (Ωn,An) and Gn is the group
of all permutations of the coordinates of Ωn.

(b) Symmetry tests. In this case we contemplate (Ωn,An) = (Rn,Bn) and
the group Gn of re�ections (x1, . . . , xn) 7→ (ε1x1, . . . , εnxn) given by all vec-
tors (ε1, . . . , εn) ∈ {−1, 1}n. A special choice of Gn-invariant distributions
is then the null-hypothesis of 0-symmetric product measures

P0,n = {Pn : P is 0-symmetric on (R,B)}. (3.2)

Nonparametric testing problems are often speci�ed in terms of statistical func-
tionals. We therefore consider tests for a functional

κn : Pn → R. (3.3)

Suppose that the null-hypothesis

P0,n ⊂ {Pn ∈ Pn : κn(Pn) = 0} (3.4)

is tested versus {Pn ∈ Pn : κn(Pn) > 0} (or versus two-sided alternatives).
As in Example 3.1 let P0,n be Gn-invariant and we may condition under the
invariant σ-�eld Fn which is given by the statistic Sn, see (2.1)�.. Suppose
that the distributions of the model Pn are given by the vector (X1, . . . , Xn) of
random variables. Our test statistic is an estimator

θ̂n := θ̂n(X1, . . . , Xn) of our parameter κn (3.5)

and the unconditional test is of the form

ϕn = 1(cn,∞)(θ̂n). (3.6)
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Consider its conditional counterpart ϕ∗n, see (1.10). Let (Pn)n∈N, Pn ∈ P0,n,

denote a �xed sequence (with κn(Pn) = 0 by de�nition) such that
√
nθ̂n(X1, . . . , Xn) = Tn + oPn(1) (3.7)

holds, where oPn(1) is a random variable that converges in Pn-probability to 0

as n → ∞. In this case it is enough to know the limit behavior of Tn. This is
stated in the following corollary.

Corollary 3.2
Suppose that the above conditions (3.4)- (3.7) hold and that Tn is asymptotically
normal, i.e. Pn(Tn ≤ x) −→ Φ(x

σ ) holds for all x ∈ R and σ2 > 0, where
Φ denotes the distrbution function of the standard normal distribution. If the
convergence

sup
x∈R

∣∣Pn(Tn ≤ x|Sn)− Φ(
x

σ
)
∣∣ Pn−→ 0 in Pn − probability (3.8)

holds, then the same (3.8) holds for√nθ̂n instead of Tn. Thus EPn(|ϕn − ϕ∗n|) →
0 follows and the sequence of tests ϕ∗n is asymptotically e�ective w.r.t. ϕn.

The statistic Tn is typically a linear statistic, see (3.9) below, which is much
easier to deal with and was treated in the literature for various cases.

Example 3.3 (Two-sample permutation tests)
Consider �rst a functional κ0 : P → R,P ⊂M1(Ω,A), that is of interest for a
one-sample problem. Suppose further that there exists an asymptotically optimal
estimator κ̂n := κ̂n(X1, . . . , Xn) given by independent variables X1, . . . , Xn with
common distribution P for P ∈ P such that the following expansion holds, see
(3.7),

√
n
(
κ̂n − κ0(P )

)
=

1√
n

n∑

i=1

g(Xi) + oPn(1). (3.9)

It is assumed that g is a measurable function (in�uence function or gradient)
that satis�es E(g(X1)) = 0 and V ar(g(X1)) = σ2 ∈ (0,∞). Such expansions
hold e.g. under mild conditions for maximum likelihood estimators in parametric
models, see e.g. van der Vaart (1999, Theorem 5.39.). As generalization of
(1.1) let Pn = {Pn1 ⊗ Qn2 : P,Q ∈ M1(R,B)} be the set of distributions of
the two-sample problem, where n = n1 +n2 holds. We are now interested in the



13

functional κn(Pn1 ⊗Qn2) := κ0(P )− κ0(Q) which can be estimated by

θ̂n := κ̂n1(X1, . . . , Xn1)− κ̂n2(Xn1+1, . . . , Xn), (3.10)

where Xi, i ≤ n, denotes the canonical projection. Assume that min(n1, n2) →
∞ holds. In this case we can expand the estimator under P0,n = {Pn : P ∈ P}
with the help of (3.9) in an asymptotically linear statistic as in (3.7)

(n1n2

n

)1/2
θ̂n =

n∑

i=1

cnig(Xi) + oP n(1) =: Tn + oP n(1). (3.11)

Here cni are the regression-coe�cients of the two-sample problem, i.e.

cn,i =
(n1n2

n

)1/2
·




1
n1
, for 1 ≤ i ≤ n1,

− 1
n2
, for n1 < i ≤ n.

(3.12)

It follows by the classical CLT and Slutzky's Lemma that

sup
x∈R

∣∣Pn
(√

n1n2

n
θ̂n ≤ x

)
− Φ(

x

σ
)
∣∣ −→ 0

holds. This gives an unconditional test ϕn = ϕn(θ̂n) of the form (3.6).
The calculation of �nite sample (or asymptotically) valid critical values for ϕn

may be a serious problem and ϕn may be viewed as a hypothetical benchmark
test. Consider now new observations Yi := g(Xi), 1 ≤ i ≤ n. Recall that the con-
ditional permutation distribution of a statistic ζn((Yi)i≤n), see (1.7) and (3.1),
is given by conditioning under the order statistics Y1:n ≤ · · · ≤ Yn:n of (Yi)i≤n.
The conditional CLT of Janssen (1997, Theorem 3.1.) for linear permutation
statistics proves the convergence

sup
x∈R

∣∣Pn
(
Tn ≤ x|Y1:n, . . . , Yn:n

)− Φ(
x

σ
)
∣∣ P−→ 0 in probability.

Thus the conditional permutation distributions P θ̂n|(Y1:n,...,Yn:n)
· of (3.1) are also

asymptotically normal, see Lemma 2.2 and Corollary 3.2. Hence the permuta-
tion tests ϕ∗n = ϕ∗n(θ̂n) for testing the functional κn in (3.4) are asymptotically
e�ective w.r.t. ϕn. This justi�es the choice of proper permutation critical values
in practice.

Below we prove the asymptotic e�ectiveness of further conditional tests ϕ∗n(θ̂n)

for other functionals, see (3.3) and (3.4), where now other su�cient statistics
may be required. The e�ectiveness of these tests is again a direct consequence
of Lemma 2.2.



14

Example 3.4 (Di�erence of two U -statistics test)
Let h : Rr → R, r ≤ min(n1, n2), be a symmetric kernel of a non-degenerated
U -statistic and denote by Xi : Ωn → R, (x1, . . . , xn) 7→ xi the canonical projec-
tions. We now set h1(x) := E(h(x,X2, . . . , Xr)) and let Pn be as in Example
3.3. Suppose that we have non-trivial �nite second moments of h(X1, . . . , Xr)

and h1(X1) with respect to P r and Qr and P and Q respectively. We consider
now the di�erence of two U -statistics

Un1,n2 =
1(
n1

r

)
∑

1≤i1<···<ir≤n1

h(Xi1 , . . . , Xir)−
1(
n2

r

)
∑

1≤j1<···<jr≤n2

h(Xn1+j1 , . . . , Xn1+jr).

Our functional of interest is now

κn(Pn1 ⊗Qn2) = EP r(h)− EQr(h). (3.13)

Since the order statistic is su�cient and complete under the null-hypothesis
{P = Q} the functional κn can be estimated by the UMVU estimator Un1,n2. In
order to test P0,n = {Pn1 ⊗Qn2 : P = Q} we choose θ̂n = (n1n2

n )1/2Un1,n2. By
the projection method Hoe�ding has shown that Un1,n2 has a decomposition as a
weighted linear statistic as in (3.11), i.e.

(n1n2

n

)1/2
Un1,n2 = r ·

n∑

i=1

cn,ih1(Xi) + oP n(1)

holds under {P = Q} for the regression coe�cients (3.12), see e.g. Ser�ing
(1980, p. 188f.). Hence the two-sample Un1,n2-test for testing (3.13) can be
carried out as asymptotic e�ective permutation test ϕ∗n(θ̂n).

Example 3.5 (One-sample symmetry tests)
Let Pn = {Pn : P ∈ M1(R,B)} be the set of product-distributions and suppose
that P0,n = {Pn ∈ Pn : P is 0-symmetric with κ(Pn) = 0} is, as in (3.4),
a subset of the 0-symmetric product-distributions (3.2). In this case we have
Sn(x1, . . . , xn) = (|x1|, . . . , |xn|)) as a su�cient statistic.

(a) We now �x a sequence Pn ∈ P0,n and assume that θ̂n is an asymptotically
linear estimator, viz.

√
nθ̂n =

1√
n

n∑

i=1

h(Xi) + oP n(1) =: Tn + oP n(1) (3.14)

holds, where h is a skew symmetric function, i.e. h(−x) = −h(x), with
E(h(X1)) = 0 and 0 < σ2 := V ar(h(X1)) < ∞. Observe that θ̂n can
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be interpreted as an estimator for a skew symmetric parameter (or func-
tional). Under the above assumptions Janssen (1999, Theorem 4.2.) has
already shown that the linear part

Tn =
1√
n

n∑

i=1

sign(h(Xi))|h(Xi)| D= 1√
n

n∑

i=1

sign(Xi)|h(Xi)|

satis�es a conditional CLT

sup
x∈R

∣∣Pn
(
Tn ≤ x

∣∣|h(X1)|, . . . , |h(Xn)|)− Φ(
x

σ
)
∣∣ P−→ 0.

Hence our Corollary 3.2 shows that the same holds true for √nθ̂n

sup
x∈R

∣∣Pn
(√
nθ̂n ≤ x

∣∣|h(X1)|, . . . , |h(Xn)|)− Φ(
x

σ
)
∣∣ P−→ 0.

This reveals that the corresponding conditional symmetry tests ϕ∗n(θ̂n) with
test statistic θ̂n are asymptotically e�ective in the sense of (2.7).

(b) We now consider the median functional κ0, κ0(F ) := F−1(1/2), and the
empirical median κ̂n as its natural estimator. As above we are going to test
a nonparametric subclass of 0-symmetric product measures P0,n. We want
to detect deviation from the null in terms of the median. Suppose therefore
that X1, . . . , Xn are i.i.d. with common 0-symmetric distribution function
F , which is assumed to be continuously di�erentiable in a neighborhood of
0 with F ′(0) = f(0) > 0. In this case it can be shown that

√
nκ̂n =

1√
n

1
2f(0)

n∑

i=1

g̃ ◦ F (Xi) + oP n(1) (3.15)

holds true with g̃(u) = 1(1/2,1)(u) − 1(0,1/2)(u), see Bickel et.al. (1993,
p.303) as well as van der Vaart (1998, p.307f.).Thus (3.9) holds at the
origin κ0(F ) = 0. As result we obtain that the Sn-conditional median
symmetry test ϕ∗n(

√
nκ̂n) is asymptotically e�ective for testing P0,n.

Remark 3.6 (Two-sample median permutation test)
Let κ0 (κ̂n, respectively) be again as in Example 3.5(b) the median functional
(empirical median). In case of a two-sample problem the di�erence of the empir-
ical median θ̂n, de�ned by (3.10), serves as an estimator for the di�erence of the
median given by the functional (P,Q) 7→ κ0(P ) − κ0(Q). Under the regularity
assumptions similar to the symmetry case of Example 3.5(b) the expansion (3.9)
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holds. Thus Example 3.3 implies the asymptotic e�ectiveness of the two-sample
median permutation test ϕ∗n(θ̂n) for the null-hypothesis {P = Q}.

The next remarkable example shows that conditional tests are not always asymp-
totically e�ective.

Example 3.7
(a) Consider the exponential family dPϑ

dP0
= C(ϑ)eϑT , ϑ ∈ Θ ⊂ R with 0 ∈

◦
Θ,

EP0(T ) = 0 and V arP0(T ) = σ2 ∈ (0,∞). Let n = n1 + n2 and suppose that
n1/n→ p ∈ (0, 1) holds for min(n1, n2) →∞. We now contemplate for the path

ϑ 7→ Qn,ϑ := Pn1

ϑ/
√

n1
⊗ Pn2

0

the two-sample problem H = {ϑ = 0} versus K = {ϑ > 0}. In this case we get
the parametric score-test ϕn = ϕn(Tn) with test statistic

Tn :=
1√
n1

n1∑

i=1

(T (Xi)−EP n
0
(T (Xi)) =

1√
n1

n1∑

i=1

T (Xi),

where Xi, 1 ≤ i ≤ n, are the canonical projections. Under the null {θ = 0} the
distribution of Tn converges to a normal-N(0, σ2)-distribution, whereas

V arP n
0

(
Tn − EP n

0
(Tn|X1:n, . . . , Xn:n)

)
=
n2

n
σ2 → (1− p)σ2

hold as n→∞. By Lemma 2.5 the permutation version ϕ∗n of ϕn is not asymp-
totically e�ective with respect to this score test ϕn.
(b) The reason for the negative result (a) can be explained as follows. Permu-
tation tests are designed for the composite null hypothesis of product measures
{Pn}. In this case the present test statistic Tn is not adequate. A proper choice
for the composite null would be the so called e�ective score function

T̃n := Tn −EP n
0
(Tn|X1:n, . . . , Xn:n) =

1√
n1

(n2

n

n1∑

i=1

T (Xi)− n1

n

n∑

i=n1+1

T (Xi)
)

showing up in semiparametric statistics, see Bickel et.al. (1993) or Janssen and
Völker (2007, Example 5.1.(a)).
To explain this, observe that Tn and T̃n lead to the same permutation tests ϕ∗n
(since Tn ≥ c∗n i� Tn−EP n

0
(Tn|X1:n, . . . , Xn:n) ≥ c∗n−EP n

0
(Tn|X1:n, . . . , Xn:n) =:

c̃∗n with new permutation critical values c̃∗n). It is easy to see that ϕ∗n is asymp-
totically e�ective with respect to ϕ̃n := 1(c̃n,∞)(T̃n). Observe that ϕ̃n is a score
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test for testing {θ = 0} within the family

ϑ 7→ Q̃n,ϑ := Pn1

n2ϑ/(n
√

n1) ⊗ Pn2

−n1ϑ/(n
√

n1),

which can be viewed as a least favorable parametrization of the family ϑ 7→ Qn,ϑ.
In the conditional world Tn and T̃n lead to the same test ϕ∗n. However, the
unconditional models and score tests are di�erent where the power of the score
test from (a) can never be reached by permutation tests.

4 Proofs

Throughout let T : (Ω0,A0, P0) → R denote a test statistic on a further proba-
bility space (Ω0,A0, P0) with distribution function F .
Notice that we can de�ne all random variables via projections on the product-
space

(Ω :=
∞∏

n=0

Ωn,A :=
∞⊗

n=0

An, P :=
∞⊗

n=0

Pn). (4.1)

Proof of Lemma 2.2. Concerning Slutzky's Lemma and Polya's Theorem the
assumptions imply supx∈R |Pn(Tn + Rn ≤ x) − F (x)| → 0 so that it is enough
to proof that (2.6) implicates (2.8) (otherwise consider Tn −Rn ).
Suppose now that (2.6) holds. For α ∈ (0, 1) denote by c(α) the (1−α)-quantile
of µ and de�ne the test ψn := 1(c(α),∞)(Tn + Rn), so that we get EP (ψn) →
α. Like in (2.2) - (2.4) we can now conclude that there exist Sn-measurable
functions cn, γn such that ψ∗n := 1(cn(α),∞)(Tn + Rn) + γn1{cn(α)}(Tn + Rn) is
an Sn-conditional test with

∫
ψ∗ndP

Tn+Rn|Sn=s
· = α for all s ∈ ΩSn . (4.2)

Due to the equivalence of (2.6) and (2.7) and it remains to show that

EP (|ψn − ψ∗n|) → 0 holds for all α ∈ (0, 1).

To verify this we need two more test functions. De�ne again via (2.2) - (2.4)
the function φ∗n := 1(bn(α),∞)(Tn) + τn1{bn(α)}(Tn) for measurable functions
bn, τn such that

∫
φ∗ndP

Tn|Sn=s
· = α holds for all s ∈ ΩSn and set φ̃∗n :=

1(bn(α),∞)(Tn +Rn) + τn1{bn(α)}(Tn +Rn).
Condition (2.6) now implies the convergence bn(α) P−→ c(α) for all P ∈ P0.
Since Slutzky's Lemma deducesEP (|φ∗n−φ̃∗n|) → 0 this shows thatEP (|1(c(α),∞)(Tn)−
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φ̃∗n|) → 0 counts by (2.7). In the same manner it can be shown thatEP (|1(c(α),∞)(Tn)−
ψn|) → 0 holds. Combining these we obtain EP (|ψn − φ̃∗n|) → 0. Hence the
proof is completed by showing EP (|ψ∗n − φ̃∗n|) → 0.
Because of Tn − |Rn| ≤ Tn + Rn ≤ Tn + |Rn| we consider foremost the case
that Rn ≥ 0 holds P -a.e.. Therefore we get the inequality bn(α) ≤ cn(α) and
so φ̃∗n ≥ ψ∗n. Thence we have with the help of equation (4.2)

EP (|ψ∗n − φ̃∗n|) = EP (φ̃∗n)− EP (ψ∗n)

= EP (φ̃∗n)−
∫
EP (ψ∗n|Sn) dP

= EP (φ̃∗n)

−
∫
dP

Tn+Rn|Sn=·
· ((cn(α),∞)) + γndP

Tn+Rn|Sn=·
· ({cn(α)}) dP

= EP (φ̃∗n)−
∫
αdP → 0.

The case Rn ≤ 0 can be treated in an analogous manner.
If we now de�ne tests φ̃+

n and φ̃−n by substituting Rn in φ̃∗n by |Rn| and −|Rn|
respectively, and repeat the above steps for these tests we can conclude again
that EP (|ψn − φ̃

+(−)
n |) → 0 holds. Because of φ̃−n ≤ ψ∗n ≤ φ̃+

n this implies

EP (|ψn − ψ∗n|) ≤ EP (|ψn − φ̃+
n |) + EP (|ψn − φ̃−n |) → 0,

which completes the proof. ¤

Proof of Lemma 2.4. Recall �rst that there exists a version E(Tn|Sn) of the
conditional expectation EP (Tn|Sn) = EPn(Tn|Sn) which is independent of Pn ∈
P0,n, where P is de�ned on the product space, see 4.1. We may thus substitute
Pn by P during the proof.
Let us �rst assume that Tn ≥ 0 holds true for all n. Then by Marko�'s inequality
we have for all δ > 0

P (E(Tn|Sn) ≥ δ) ≤ δ−1 sup
n
E(Tn).

This shows that the sequence of probability measures (L(E(Tn|Sn)|P ))n is tight.
Here we have used the notation L(T |P ) = P T . Hence by Prohorov's Theorem
there exist a subsequence (nk)k and a random variable T0 so that we have dis-
tributional convergence E(Tnk

|Snk
) D−→ T0. If we now show that T0 = E(T )
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counts, than, due to the fact that the weak limit does not depend on the sub-
sequence and is constant, equation (2.9) will follow.
In order to get this equality, consider �rst that assumption (2.6) implies that
there exists another subsequence (nm)m ⊂ (nk)k such that the following holds
P -a.e. for every j > 0

E(Tnm |Snm) =
∫

[0,∞)
t dP Tnm |Snm=·(t) ≥

∫

[0,∞)
min(t, j)dP Tnm |Snm=·(t) =: Y j

m

→
∫

[0,∞)
min(t, j) dP T (t) =: Cj

for m → ∞. By the dominated convergence Theorem the right hand side Cj

tends to E(T ) for j →∞. Thus we have for every δ > 0 and all j ≥ j0(δ)

P (E(Tnm |Snm) ≥ E(T )− 2δ) ≥ P (Y j
m ≥ E(T )− 2δ)

≥ P ({Cj ≥ E(T )− δ} ∩ {∣∣Y j
m − Cj

∣∣ < δ})

→ 1 for m→∞

from which we can conclude P (T0 ≥ E(T )− 2δ) = 1. Due to the fact that this
holds for all δ > 0 we get

P (T0 ≥ E(T )) = 1. (4.3)

Fatou's Lemma and Skohorod's Theorem, see Dudley (2002, Theorem 11.7.2.),
now imply that T0 is constant a.e., namely

E(T ) = lim
m→∞E(Tnm) = lim

m→∞

∫
E(Tnm |Snm)dP

≥
∫

lim inf
m→∞ E(Tnm |Snm)dP = E(T0).

Together with (4.3) this means P T0 = εE(T ) and therefore (2.9).
For the general case write Tn = T+

n − T−n for T+
n := max(Tn, 0) and T−n :=

max(−Tn, 0) respectively. By the continuous mapping theorem we have again

sup
x∈R

∣∣P (T+(−) ≤ x)− P (T+(−)
n ≤ x|Sn))

∣∣ P−→ 0.

Since
E(|Tn|) = E(T+

n ) + E(T−n ) → E(T+) + E(T−) = E(|T |)



20

and lim infn→∞E(T+(−)
n ) ≥ E(T+(−)) hold, the second assumptionE(T+(−)

n ) →
E(T+(−)) holds too. Thus we can apply the �rst case for showing

E(T+(−)
n |Sn) P−→ E(T+(−)),

which completes the proof. ¤

Proof of Lemma 2.5. Denote by ‖ · ‖2 the L2(P ) norm. Because of

‖Tn‖2
2 = ‖Tn −E(Tn|Sn)‖2

2 + ‖E(Tn|Sn)‖2
2

we have to establish that ‖E(Tn|Sn)‖2
2 → 0 holds. Recall that the conditional

convergence (2.6) implies the unconditional convergence Tn
D→ T . Hence by

Skohorod's Theorem there exist random variables T̂n on another probability
space (Ω̂, Â, P̂ ) with L(Tn) = L(T̂n) and L(T ) = L(T̂0), such that T̂n converges
P̂ -a.e. to T̂0. Because of∫

T̂ 2
ndP̂ =

∫
T 2

ndP →
∫
T 2dP =

∫
T̂ 2dP̂ <∞ (4.4)

and 0 ≤ |T̂n| ≤ 1 + T̂ 2
n we get by Pratt's Lemma that∫

|Tn|dP =
∫
|T̂n|dP̂ →

∫
|T̂ |dP̂ =

∫
|T |dP

holds. Thus Lemma 2.4 deduces the convergence of the conditional expectations

E(Tn|Sn) P−→ E(T ) = 0.

Hence it remains to show that the sequence (E(Tn|Sn)2)n is uniformly inte-
grable. For this purpose we show foremost that (T 2

n)n is also uniformly inte-
grable.
By (4.4) we get that (T̂ 2

n)n converges in L1(P̂ ) to T̂ 2. Thus T̂ 2
n is uniformly in-

tegrable. As this property only depends on the law of T̂ 2
n , we can implicate that

(T 2
n)n is also uniformly integrable. Furthermore we have by Marko�'s inequality

that
1{E(T 2

n |Sn)≥an}
P−→ 0

holds for every sequence an that tends to ∞ for n→∞. Thus we conclude by
Jensen's inequality∫

1{E(Tn|Sn)2≥an}E(Tn|Sn)2dP ≤
∫
1{E(T 2

n |Sn)≥an}E(T 2
n |Sn)dP

=
∫
1{E(T 2

n |Sn)≥an}T
2
ndP → 0

which completes the proof. ¤
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