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Abstract

We propose a novel one sample test for repeated measurgasiasid derive its limit
distribution for the situation where both the sample sizs well as the dimensiahof the
observations go to infinity. This covers the high-dimenalarase withd > n. The tests
are based on a quadratic form which involve new unbiased mmeigion-stable estimators
of different traces of the underlying unrestricted covaci structure. It is shown that the
asymptotic distribution of the statistic may be standancinao, standardizeg?-distributed,
or even of weighted 2-form in some situations. To this end, we suggest an appraticm
technique which is asymptotically valid in the first two cassnd provides an accurate
approximation for the latter. We motivate and illustrate &pplication with a sleep lab data
set and also discuss the practical meaning ef o in case of repeated measures designs.
It turns out that the limit behaviour depends on how the nunabeepeated measures is
increased which is crucial for application.

Keywords: Approximations; High-dimensional Data; Quadratic ForRepeated Measures.

* Heinrich-Heine University of Dusseldorf, Mathematicastitute, Germany
email: pauly@math.uni-duesseldorf.de

** University Medical Center Gottingen, Institute of Medi&atistics, Germany



1 Introduction

To motivate the methods derived in this paper, we presenslgep-laboratory trial reported
by Jordan et al. (2004) where the activity of prostaglaridisynthase f—trace) was observed
on 10 young healthy men. The observations were taken atrtreefbints 24h, 4h, 8h, 12h,
16h, and 20h for 3 consecutive nights and days. Thus, we havepkated measures on 10
independent subjects. The data are displayed in Figure 1.
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Figure 1: Prostaglandin-D-synthase-tface) levels in 10 healthy male subjects in a sleep-
laboratory experiment during three days under differezgsiconditions.

The questions to be answered in this trial are (1) whethetithe profiles of the three
interventions are flat or (2) if not, whether they are diffégreand (3) if the time profiles are
different then it would be of interest to see whether the fgaii the normal sleep differs from
that of the sleep deprivation or from that of the recoverggle

In this experiment, we have 10 independent observatiorox@& , = (Xy1, ..., Xzq)' Of
k = 1,...,nindividuals withd = 18 repeated measures which are structured by two crossed
fixed factors A (intervention) and B (time points). Factor &st3 levels (normal sleep / sleep
deprivation / recovery sleep) and factor B has 6 ley2s:, 4h, 8h, 12k, 16h, 20h). We do not
assume any particular structure of the covariance m¥drix Cov(X ) since the results might
be biased in case of a misspecification of the unknown strei@fiV'. Also, the patterns of
the covariances within the three interventions might beegght because of potential circadian
rhythms which might be dependent on the interventions. Ttmesonly reasonable option is to
admit an unstructured x d covariance matriy/. As we havel = 18 repeated measures and
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n = 10 independent subjects, the high-dimensional ease n invalidates the application of
classical multivariate methods, such as Hotellirigsor Wilk’s A, see Davis (2002).

For a fixed numbetrl of repeated measures many approximate procedures havelbeen
veloped in the past to answer the questions listed aboveseTpmcedures are mainly based
on Box’s approximation (Box, 1954) and on different estiimasg of the so-called Box =
tr?(V)/[(d—1) tr(V?)] (Geisser and Greenhouse, 1958; Greenhouse and GeissertHLgHh
and Feldt, 1976; Lecoutre, 1991; Werner, 2002, 2004; AhMé&alner, Brunner, 2008; Brunner,
2009; Brunner, Becker, and Werner, 2009; Chi et al., 2012).

These papers only discuss approximations which might beadegenerate if the dimen-
siond — oo. In repeated measures designs, the dimension can becomeelayge if the
measurements are automatically recorded by some techegcgbment which measures the
observations within short time intervals. The accuracyhefapproximations considered in the
above quoted papers has only been investigated by simsdioo small, medium, and moder-
ate large sample sizes. The question of a limit distributooni — oo or for bothn,d — oo
remained open until Bai and Saranadasa (1996) derivedrtiedistribution of a studentized
quadratic form in a multivariate model under certain assionp, e.g, on the ratiod/n and
on the eigenvalues,, ..., \; of the covariance matri®¥. In particular, they required that

(2

seminal paper triggered many subsequent papers relaxerasumptions and generalizing the
ideas of Bai and Saranadasa to more general multivariatels\¢8rivastava, 2007 and 2009;
Srivastava and Du, 2008; Chen and Qin, 2010; Park and Ayg&ia3 and references cited
therein). In particular, Chen and Qin (2010) derived thergsiptic normality of a studentized
quadratic form under the assumption that the ratig = tr(V*)/ tr?(V?) — 0 for d — oo
allowing thatn andd independently tend teo. We note that < 7o < 1, and that the above
mentioned papers only investigated the asymptotic digioh of a studentized quadratic form
if 7c¢ — 0. However, this condition will in general not be fulfilled ifrandom subject effect
is present which is quite often the case in repeated measweésls. This will be discussed in
detail in Sections 3 and 4. Examples whegg, might converge to some < (0, 1] are also
presented there. Thus, it is also our aim to investigateithi¢ distribution for the case where
T does not converge 1@ It is worth to mention that the conditiongs — 0 andrcg — 0 as
well asTgs — 1 androg — 1 are equivalent. This is shown in the Appendix.

It should be noted that Bai and Saranadasa (1996), Srieaé2807), and Chen and Qin
(2010) derived procedures in a multivariate model whereotygervations in the different com-
ponents may be measured on totally different measuremat#ssand thus, may not be com-
mensurate. This means that the result of the analysis causdtéred simply by changing the
measurement scale in a single componeugf, from [min] to [sec]. Thus it is reasonable to stu-
dentize each component by the observed standard devidtioa observations within this com-
ponent and then to work with the correlation matrix instebthe covariance matrix. This was
first observed by Srivastava and Du (2008). Also the recepemply Park and Ayyala (2013)
improves the Chen-Qin Statistic in this regard. In modetsépeated measures, however, the
observations are typically measured on the same scale asdtiey are commensurate. Hence,

TBS = )\max/\/Zle A2 — 0 asd — oo, Where )., denotes the largest eigenvalue. This
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repeated measures models do not require a scaling of thevabeas. Scaling has the undesir-
able effect that in case of small or medium sample sizes,dhance of the statistic is inflated
by involving additionall estimated quantities. In repeated measures designs éresftine rea-
sonable to consider statistics similar to those suggestdsiab and Saranadasa (1996) or by
Chen and Qin (2010). We note that our considered statistegn (2.11) is invariant under the
same linear transformations of all components of the olasienv vectors.

Another issue what has not been considered in the aboveanedtpapers is the quality of
the approximation by the standard normal distribution. Bmgnpractical situations in repeated
measures designs, the numbdef the dimension may be larger than the numberf indepen-
dent vectorsX, but it may still not be large enough to provide an accurate@pmation by
a fixed limit distribution . As this is an important issue inpfipations, we will also investigate
this problem in detail. In Section 3 we suggest to approxanhé distribution of the studen-
tized quadratic form in (2.11) by a sequence of distribwgiamich forn, d — oo converges to
the correct limit distribution irrespective whethef, — 0 or 7o — 1. In these asymptotic
considerations we do not make any particular assumptiotiseotependence betweerandd.

To keep the presentation of the paper simple and not to aeitavith lengthy derivations
we restrict our considerations to the case of the multiram@rmal distribution. Basically, the
same results can be derived under weaker conditions. ThiseBy discussed at the end of
Section 7.

The main aims of this paper are

(1) the derivation of inference procedures for low- and kilginensional one-sample repeated
measures designs,

(2) the derivation of an accurate approximation for thesee@dures in case of small and
medium sample sizes,

(3) the investigation of a statistic and the developmentropproximation of its distribu-
tion which converges to the correct limit distribution Bpective whethersg — 0 or
Tco — 1, and finally,

(4) adetailed discussion of the practical meaning e$ ~c.

Especially the last point is relevant in practice since tatadet at hand must be regarded as
representative for an asymptotic model. Typically, thignagtotic model should not depend on
the way how the number of repeated measures is increasetl.tlirw out however, that this is
not the case (see Section 4). This issue has not been iratestig the literature so far.

Moreover, we consider unbiased estimatorsr¢¥ ) andtr(V*) needed for variance esti-
mation (Werner, 2002) and to compute the degrees of freeflofran approximation by a se-
guence of standardize@-distributions (Ellenberger, 2011). These estimators atatistics
which are shown to be ratio-consistent uniformly in the disiend.
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The paper is organized as follows. The statistical modelhilpotheses and the test statistic
are introduced in Section 2 where also its limit behaviolssassed under different conditions.
In Section 3, a new finite sample approximation is suggesked. meaning of letting — oo
in the context of repeated measures designs is discussegtiimi®4. Section 5 investigates
the performance of the suggested approximation throughlation studies in different set-
tings and the sleep-laboratory trial from Figure 1 is anatlyin Section 6. Finally, the results
presented in this paper and in particular the conclusiottsarontext of repeated measures de-
signs are discussed in Section 7. All proofs of the theaaktesults are shifted to the Appendix
whereas some technical details as well as additional stronleesults are sourced out to the
supplementary material of this paper (see Pauly, Eller@veamnd Brunner, 2013).

2 Statistical Model, Hypotheses and Statistics

We consider independend-dimensional random vectors
Xk = (Xkl,...,Xkd)/NN(/J,,V),]{721,...,71, (21)

wherep = E(X ;) andV = Cov(X;) > 0. The componentX, of the observation vector
X, of subjectk refer to the treatments = 1,.. ., d of the repeated measures which may be
either time points or levels of a treatment which is allonedave a factorial structure. In the
motivating example we have 3 levels of an intervention (redrsteep / sleep deprivation / recov-
ery sleep) which is crossed with the factor time involving®dls(24h, 4h, 8h, 12h, 16k, 20h).
Thus, we have = 3 x 6 = 18 repeated measures under different treatment combinations

In many biological experiments it is reasonable to alsoudela random additive subject
effect. Then the vectaK ;. of the observations is decomposed as

Xk = (Xklu---7Xkd>/ = [L+CSk1d+€k, ]{Z:L...,n, (22)
wherep = (i1, ..., uq)" are the fixed effects of the repeated measusgsy N (0, 1) denotes
a random subject effect, and the error teps= (€11, ..., €xq) ~ N(0, A) are independent

of Sx. The variance of the random subject effect can be modeletddgdnstant > 0 and

¢ = 0 refers to a model without a random subject effect. The camag matrixA of €, can be
modeled in an appropriate way where different structure4 ofay be considered as reasonable
depending on the experiment at hand. Such a structure maelmimpound symmetry oA,

i.e, A = oc*I,+bJ,, whereo? > 0 andb are appropriate unknown constanks denotes the-
dimensional unit matrix and; = 1,1/, denotes th@ x d matrix of 1s. Also, an autoregressive
linearly decreasing symmetric Toeplitz structuredtan be modeled by;; = 1 — |i — j|/d.
The most general form odl is an unstructured covariance matrix where it is only asslimnat

A = A’ and its elements;; fulfill the Cauchy-Schwarz inequality. Particular modeli \we
discussed later in Sections 3 and 4.



In the context of biostatistical experiments, usually tigpdtheses of no time effect, of no
intervention effect, and of no interaction between time wervention (parallelism or identity
of the time curves) are of primary interest. Such hypothes@sbe formulated by using an
appropriate contrast matrikd and the most general formulation of a linear hypothesis fabou
the expectation is written asH, : Hu = 0. For convenience, we will work with the unique
projection matriXI" = H'(H H')~ H where(-)~ denotes some generalized inverse of a matrix.
We note thatH, : Hu = 0 <= H, : Tpu = 0 and thatT’ = T" andT? = T. Typical
examples for testing hypotheses in factorial repeated messlesigns ares.g, T' = I, or
T=P;,=1,— éJd which correspond to testing whether the time profiles arakeguflat,
respectively.

For testing the general linear hypothe&is: T'u = 0, we consider the quadratic form
Q, = nXTX., (2.3)

where X . denotes the mean of the observation vect¥is k = 1,...,n. The classical ap-
proaches of Geisser and Greenhouse (1958), Greenhousem&iﬂ@(l%Q) or Huynh and
Feldt (1976) depend on approximations of its scaled verQiphtr(X), whereX is the empir-
ical covariance matrix. However, these approximationobexdegenerate it — oo which
may lead to inconsistent inference procedures. Henceutty she asymptotic distribution of
@, underH, : T = 0, for n,d — oo we consider the standardized versiortf, namely
VaTHo (Qn)

By using well-known theorems on the moments of quadratim&(see,e.g, Matthai and
Provost, 1992) it follows that;;, (Q,) = tr(X) and Vary, (Q,) = 2tr(X?), whereX =

TVT. The asymptotic distribution diV,, underH, is established in the following theorem.

THEOREM 2.1 Let )\, denote the eigenvalues oE = T'VT in decreasing order and let
Amax = maxg(As) = A\ as well asa, = N,/ Z A2. Then, underd, : Tup = 0, the

r=1"'r"

standardized quadratic for@n in (2.4) has, asymptotically,
(a) a standard normal distribution if
TBs=a; =— 0 asn,d — oo, (2.5)
(b) a standardizedy? — 1)/+/2 distribution if
TBs=a; — 1 asn,d — oo, (2.6)

(c) a weightedy2-distribution of the formd_2°  b,(C? — 1)/+/2, whereC? are independent
x3-distributed random variables if in addition

a;, — b, forall s asn,d— oo, (2.7)

whereb, is a decreasing sequence(in 1] fulfilling > b2 = 1 andb, > 0.
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All proofs are given in the Appendix.

REMARKS 2.1
(a) Condition (2.5) has first been given by Bai and Saranan(le@96). Later other conditions
have been given by Srivastava (2007, 2009) while Chen an@Q1tD) have given the condition
tr(3?

TcQ = ﬁ — 0 ford — oo. (28)
It is shown in Lemma 8.1 in the Appendix that this condition8f2and the condition (2.5)
are equivalent. Similar to Chen and Qin (2010), Park and Ryy2013) or Paindaveine and
Verdebout (2013) we have not postulated any assumptioneorathd /n.
(b) Recently, Park and Ayyala (2013) have given a similardétion for the corresponding
correlation matrix in a multivariate model. For repeate@swges, however as discussed already
in the introduction, it suffices to work with the covariancatnix X..

To estimate the unknown two quantitieg>) andtr(X?) underH, : Tu = 0, we prefer
to directly estimate the traces instead of first estimatirggtotal covariance matrix and then
computing the traces. Thus, we use thestatisticsB, and B, investigated by Werner (2002)
and later considered in more detail by Brunner, Becker, aath@f (2009). The estimator
and B, are based on the quadratic fords = X, T X,k = 1,...,n, and on the bilinear
forms Ay, = X, T X, for k # ¢ and are given by

1 « 1
By, = = A d By = —— A2, 2.9
0 n; k an 2 ”(”—1);# ke (2.9)

We note that undefl, : Tu = 0, the U-statisticsB, and B, are unbiased estimators
of tr(X) andtr(X?), respectively. Moreover, they aig,-ratio-consistent uniformly in the
dimensiond in the following sense

By By 2 By 8
Vi —— | <V ——— | <= and Vi —— ] <——. (210
e <tr(§])) = ( tr(22)> n o <tr(§]2)) “n-—1 (2.10)

For a detailed derivation see.g, Brunner, Becker, and Werner (2009).
Finally, using the result in (2.10) and Slutsky’'s Lemma wéaabthe following theorem.

THEOREM 2.2 Under the hypothesi#, : T'u = 0, the statistic

— B
W, = @n —Bo (2.11)
2B,

has the same limit distributions a8, under the different condition@) — (¢) given in Theo-
rem 2.1.



The above results now motivate us to approximate the digtaib of 11/, not by one fixed
limit distribution but by a sequence of distributions whigtovide adequate approximations in
all three situatioria) — (¢). In particular, we will present an adequate approximatsmmhique
which covers the cases (a) and (b) in Theorem 2.2 and woridala small number of samples
n and dimensiong. For the case thatgs — « € (0,1) it provides a quite accurate three
moments approximation in the same sense as suggested by Ztb).

3 An Approximation for Small Samples

To investigate the quality and speed of the approximatioarby (0, 1)- or by the standardized
(x? — 1)/+/2 distribution, we demonstrate by a simple simulation thargé sample size as
well as a large dimensiahare required to obtain a satisfactory approximation. Te émd, we
consider the simple design whekg, = (Xj1, ..., Xra) ~ N(p, V) with V = Cov(X,) > 0.
We investigate the behavior &F, under the hypothesi&, : 1 = --- = g, i.€. there is no
effect of the repeated measuregy, flat time profile) andd, : u = 0 (e.g, equal time profiles).
In matrix notation the former hypothesis can be writteitigs T'u = 0 whereT = I,;,— éJd is
the so-called centering matrix whilé = I, is used for the latter hypothesis. Agaify,denotes
the d-dimensional unit matrix and; = 1,1/, denotes the x d matrix of 1s.

We consider the cases of= 10, 20, 50 for d = 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000
and X, = pu + cSply + €, k = 1,...,n, as defined in (2.2). For the covariance matrix
A we select an autoregressive structuge= pl‘=Jl for p = 0.6. The choice of the constant
¢ = 0 refers to a model without a random subject effect ard 1 refers to a model involving
a random subject effect with variante Thus,V = A + ¢J,4. Then forT = 1, it follows
thatrgs — 0 for ¢ = 0 while 735 — 1 for ¢ = 1, both asd — oo. (The derivation is given in
Example 1.1 in the supplementary material). The simulatpd-t error rates in these settings
when compared with the two-sidéd%-quantile of the standard normalgs — 0) and the
(x2 — 1)/v/2 distribution ¢ — 1) are displayed in Figure 2.

From Figure 2 it appears that at least in this particular tdaseguality of the approximations
is quite bad for a small or even a medium number of sample sizdslimensions. Therefore,
we intend to develop a better approximation which is alsavalr a small sample size and
a small number of dimensions The derivation of this different approximation is based on
the fact that under the hypothedi : Tu = 0, the quadratic forn@,, in (2.3) is equal to
5S¢ AC2, where the quantitie€’?> ~ x? are independent and the are the eigenvalues of
> = TVT. ltis well known that the distribution oEle A\sC? can be approximated by
a scaledy?-distribution, e.g. by ¢ - Xff such that the first two moments coincide (cf. Box,
1954, or Geisser and Greenhouse, 1958, and Greenhouse as@r5#959). This leads to
approximating the distribution @,/ tr(X) by a7}/ f-distribution wheref = tr*(X)/ tr(%?)
is proportional to Box’ss. However, as already explained in Sectiorp@/f converges to a
one-point distribution iff — oo asn,d — oo. But this holds under condition (2.5), so that we
cannot use this approach.
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Figure 2: Simulated type-I error rates of the Statisticin 10° simulation runs when compared
with the asymptotic standard normal distributiop{ — 0) and the asymptoti¢y? — 1)/v/2
distribution ¢z — 1) for different dimensions and sample sizes- 10, 20, 50. The horizontal
grid lines denote the9% random interval forv = 5% (upper row) andv = 1% (lower row).

Therefore, similar to Bai and Saranadasa (1996) or Chen amq2Q10) a standardized
versionW,, of @),, in (2.4) is used as a statistic. But unlike as in those paperslavnot ap-
proximate this standardized statistic by a fixed limit disttion but consider a sequence of
standardized?-distributions to develop a more accurate approximatiothefdistribution of
W, underH, : T = 0. In particular, applying the representation theorem fadyatic forms
(which is also valid if¥ is singular) we re-writéV,, as

o Qumu(®) _ Q- c-1

- =Y a2 (3.12)
V2(2?) S =2

wherea, = \y/ Zle A2, Thus, we suggest to approximate the distributioriiof by a
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sequence of standardizgd-distributions

X;—f
V2F

It is shown in Zhang (2005, Theorem 1) that even in case (apebifem 2.1 this should be pre-

ferred compared to the normal approximatiotf is selected such that the first three moments
of W,, andK; coincide. This is achieved by choosing

Ky =

(3.13)

tr3 (X2

fr=() = tmes 319
see formula (5) in Zhang (2005). We call this= fp the Pearson approximation, see Pear-
son (1959), Imhof (1961) as well as Katayama, Kano, and Sava (2013). We note that
the conditionr» — 0 is equivalent to the condition given in (2.5) and to the ctinditcq =
tr(X*)/ tr?(X?) — 0 given by Chen and Qin (2010) and adapted to the one-sampbategp
measures design considered in this paper. Moreover, theadgpcesrgs — 1 < 7p — 1
<= 10 — 1 are also true, see Lemma 8.1 in the Appendix. From this ibfedlthat thei ;-
approximation is also asymptotically correct in case (b)loéorem 2.1. Moreover, in case (c)
of this theorem it provides a good small sample approximeadi® discussed in Zhang (2005),
see also Zhang and Liang (2014) for the case of a two momembx@pmation. For the latter
two moment approach one would obtgin = 75! = tr?(2)/ tr(X?). For our asymptotic con-
siderations, however, the conditions in (2.5) or (2.6) haviee verified. Simple computations

show thatl / fp < Amax/w/Zle A2 such that (2.5) implies thgts — oo. On the other hand,
however,fz — oo does not imply (2.5) as can be seen by the simple counter dgaminere
Mnaz = Vd and all other eigenvaluels = 1. Also the conditionrz — 1 is not equivalent to
condition (2.6). This is easily seen by lettivg = A + c¢J,4, where A has an autoregressive
structure and’ = I,. In this casegs — 1 butTg — ¢*/(c + 1) as shown in Example 1.1(b)
in the supplementary material to this paper, see PaulynB#leger, and Brunner (2014). Thus,
we only consider the choicg= fp.

In order to apply the approximation suggested by Zhang (R@@5nsistent estimator of
is required. For the high-dimensional case consideredeiptbsent paper we prefer to directly
estimate the trac&(z?’) similar to the derivation of3, in Section 2. Let4,, be as given prior
to (2.9). Then,

Bo= (7)) 3 Awdnd (3.15)

k<t<r

is an unbiased estimator af($?). Moreover, it is shown in Theorem 8.2 in the Appendix that
B2/B3 is a consistent estimator e = 1/fp uniformly in the dimensiorl. We note that it

is not reasonable to consider the ratio-consistendgfB? for f» = 1/7p sincel/7p — oo
under condition (2.5). Thus we consider the inversef fp sinced < 7p < 1. We summarize
the foregoing considerations in the following theorem.
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THEOREM 3.1 Under the hypothesifl, : T = 0, the sequence of standardizettdistribu-
tions K s, defined in (3.13) has, asymptotically,

(a) a standard normal distribution under condition (2.5),

(b) a standardizedy? — 1)/+/2 distribution under condition (2.6).

The same statements remain trugifis estimated by
fr = B3/Bj (3.16)

whereB; and B; are given in (2.9) and (3.15), respectively.

REMARK 3.1 (a) The simulations shown in Section 5 demonstrate thaapipsoximation tech-
nique performs quite well in all considered situations emgthe cases$a) — (c) of Theo-
rem2.1.

(b) Another approach would be to plug in consistent estisafethe unknown standardized
eigenvalues. in (3.12) and to simulate from this distribution. In a high-dimensibsetting,
however, the consistent estimation of the eigenvaluesnesjadditional assumptions (see e.g.
Yata and Aosima, 2012). Since regarding the structure ottivariance matrix we like to be
as general as possible we will not consider this approachred@r, in practice it is unclear
whether such conditions might hold. Also, bootstrap meshedl not be used as they are ex-
tremely time consuming (see e.g. Zhang and Liang, 2014 )thétmore, it is unclear how to
bootstrap our statistic in such a way that all different tidistributions are covered.

4 Some Considerationson d — oo

The classical assumption that the sample size> oo simply means that more observations
are sampled while maintaining the same conditions undeciwihie observations are obtained.
This means that the observations in the experiment at hand are considered essegyiative
for a theoretical experiment with an infinite number of obaéipns. The dimensiod however,

is a fixed quantity of a particular experiment. Lettithg— oo may therefore be interpreted as
considering the experiment at hand as representative fexgeriment with an infinite number
of dimensions. In a repeated measures design, where theteepaeasurements represent time
points, for example, the number of time points can be ine@as several ways.

First, one may observe more time points by extending thergaten time without changing
the distances between the time points of the measurememt@anFautoregressive model with
is increased without changing the elements of the basicl matrix,i.e. for d > d only rows
and columns are added where the elements are still given;by pli=7l. In this casescq =
tr2(A?)/tr(A*) — 0 or equivalentlyyr — 0 andrgs — 0, so thati¥,, has, asymptotically, a
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standard normal distribution. This follows from Examplé&(&) in the supplementary material
together with Theorem 2.11 and Lemma 8.1.

The experimenter, however, may argue that s/he is not stextén observing a longer time,
and that only the time between the first and the last observagi of practical relevance. In
this situation, the number of time poinfxould only be increased by decreasing the distances
between the time points. To describe this with an autorsgrestructure, it is required that
the correlation between two successive time points ineeasth increasingl, whereas the
correlation between the first and the last time point remtiessame. This may be modeled
by an autoregressive matrig with a;; = pl*~///?~1_ Note that in this setting the correlation
between the first and the last measurement is given hy= p, which does not depend ah In
this setting, however, it is shown in Example 1.2 in the sapp@ntary material thaf; converges
to a constany(p) which only depends op and is bounded away frothand1 for each choice
of p € (0,1). Sincerp < 7p < 1 by Cauchy-Schwarz inequality, this implies that neither
nor ¢ Nor g converge td as in the former case with increasing observation times ked fi
distances. For example, we hay@.6) ~ 0.73 which corresponds to the simulations from
Table 2 in Section 5. Now, in view of Theorems 2.2, this me&asthe asymptotic distribution
of the test statistic depends on haends tooo, i.e,, on how the number of time points is
increased.

A similar problem appears when adding an additive subjdeicef, as considered in
model (2.2). It is easily seen that a random subject effeqt ofenge the validity of the
assumptions thatgs — 0 or 73 — 1 in (2.5) and (2.6) depending on the hypothesis ma-
trix T'. For a multivariate hypothesis, for example, we use the thgsis matrixi” = I, and
thus,X = TVT = T(A + *Jy)T = A+ *J,;. NowletA = o?I; andc = 0. Then
Too = tr(E%)/tr*(¥?*) = L — 0asd — oo and thus, (2.5) holds. i = 1, however, then
T0g = [d* + O(d®)]/[d* + O(d®)] — 1 asd — oo and thus, (2.6) holds. For a hypothesis
involving the repeated measuresy, T' = P, it follows that¥ = P;A P, both forc = 0 and
¢ =1sinceP,J,; =0. Then,rcq = 725 — 0 asd — .

This means that the limits af. or 755 for d — oo depend on whether or not a random
subject effect is present as well as on the way how the nunfliBne points is increased. But
all information we have in a practical experiment is the fisanple at hand. Thusg or
Tps May converge td), to 1, or to somex € (0,1). In practice where the correct statistical
model is unknown we do not know to which limitg or 75 converge ford — oco. Thus
it is not advisable to approximate the distributionl®f, by a fixed limit distribution such as
the standard normal or the standardizgd — 1)/+/2 distribution. In contrast, our approach
based on approximating the distributionldf, by a sequence of standardizettdistributions
given by K, in (3.13) seems to be more appropriate since, by Theorenit adcounts for the
different asymptotic limit distributions df,, asd — oc.
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5 Simulations

In this section we present some simulation results for wifie structures of the covariance
matrix A = (a;;): j=1,...« Where we report the results for

(1) an autoregressive structure: AfRfor p = 0.6, i.e,, a;; = pl"~7l,

(2) an autoregressive structure where the correlationraspen the dimension: AR(g@) for
p=0.6,ie,a; = pli-/@1,

(3) acompound symmetry structure: G8,, A =1,+ J,

(4) alinearly decreasing (symmetric) Toeplitz structu@, Te., a;; = 1 — |i — j|/d.

We compare the type-l errors of th&,, statistic in (2.11) when approximated with the
K ;-distribution based orf = fp and, ifrgs — 0, also with its asymptotic standard normal
distribution as well with the Bai and Saranadasa (1996)ssiat The results for the latter
statistic are not shown here since the behaviour is simidhat for the statistidl/,, with a
fixed normal approximation. Moreover, a comparison withittierence procedure proposed in
Ahmad, Werner and Brunner (2008) is not appropriate sineie tatistic becomes degenerate
for rgg — 0.

5.1 Data Generation

The independent vectolX , were generated aX;, = p + ¢Sily + €, Wheree, ~ N(0, A)
andup = 0. A random subject effect, ~ N(0, 1) independent o€, was included{ = 1) in
the model or notd = 0). Thus, the covariance matriX of X is given byV = A + *J .

We present simulations for two types of hypothesgs. T'u = 0 distinguishing between
a multivariate question by lettind = I, and a question about the equality of the repeated
measures by lettind = P, = I, — éJd. We note that the casés= P,V P, = P,AP,for
¢ = 0andc = 1 are identical sincd;J,; = 0.

To demonstrate the accuracy of the approximation byxﬁe f)/+/2f-distribution forf =
fp = 1/7p, we reconsider the example in Section 3 andlet P, andV = A+ J,;, whereA
has an autoregressive structure with 0.6 as in (1). In Figure 3 we have added the simulated
type-I errors fromNg;,, = 10° simulation runs displayed as solid lines for the approxiamaby
the(x7, — fr)/+/2fp-distribution compared with an approximation by tNg0, 1)-distribution
displayed as dotted lines (= 10, 20, 50). We note that in this casegs — 0 and7p — 0 as
d — oo as already discussed in Section 3 singe — 0 <= 7p — 0 <= 70 — 0.

From Figure 3 it is obvious that the approximation by the see of théx;, — fr)/v/2fp-
distributions is quite accurate, even for sma#indn > 20. Forn = 10 it is slightly liberal for
d < 30 while the approximation by the standard normal distribuisoconsiderably liberal for
all n andd < 500.
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Figure 3: Simulated type-| error rates of the Statidti, when compared with the{;-
approximation based ofi = fp and the asymptotic standard normal distributiep (~ 0)
for different dimensions and sample sizes- 10, 20, 50: similar as in Figure 2. The horizontal
grid lines denote the9% random interval forr = 5% (left) anda = 1% (right), respectively.

The simulations for the other settings of covariance mesrand hypotheses showed a simi-
lar quality of the approximation. All results are displayedables 3 - 4 for the approximations
by the sequence of the 7, — fr)/\/2fp-distributions. For brevity, we only show the results
for n = 20 and note that fon = 50 the approximation was equally accurate. For the ex-
tremely small sample size aef= 10, the results are a bit less accurate, but still acceptalble. T
simulated5% level ranged fromD.0471 to 0.0590 while the 1% level ranged fron).0041 to
0.0091. The detailed results are shown in the supplementary ragtsge Pauly, Ellenberger,
and Brunner (2013). A slight liberality of the test basedi@p in (2.11) and the approxima-
tion by the(x7, — fr)/+/2fp-distribution was corrected by multiplying’, with /(n — 1)/n
which leads to the recommendation usiig./(n — 1) /n as a statistic for testing the hypothe-
SisH, : T = 0 in a high-dimensional one-group repeated measures desigggproximating
its distribution by the(x7, — fp)/+/2fp-distribution. This is a similar correction as used for
the [-approximation in the case of a two moment matching, seemayrBecker and Werner
(2009) for a theoretical argument.
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Table 1 Simulated type-I error rates for an autoregressive stracdR(p) for p = 0.6 where

.....

AR(0.6): X =T (A +cJ )T, a;; = pl*!
c=0andT =1, c=1landT =1, c=0andT = P,
d TP 5% 1% Tp 5% 1% Tp 5% 1%
3 || 0.759| 0.0509| 0.0092|| 0.946| 0.0530| 0.0104| 0.648| 0.0523| 0.0094
51 0.594| 0.0497| 0.0093|| 0.916| 0.0537| 0.0099| 0.489| 0.0502| 0.0093
10| 0.359| 0.0502| 0.0098|| 0.870| 0.0530| 0.0104|| 0.338| 0.0490| 0.0093
20| 0.193| 0.0490| 0.0095| 0.876| 0.0521| 0.0098|| 0.199| 0.0507| 0.0095
30| 0.131| 0.0495| 0.0094| 0.890| 0.0529| 0.0102|| 0.137| 0.0499| 0.0097
50| 0.080| 0.0496| 0.0092| 0.916| 0.0522| 0.0099|| 0.083| 0.0492| 0.0097
100 || 0.041| 0.0501| 0.0096| 0.949| 0.0539| 0.0100] 0.041| 0.0490| 0.0097
500 || 0.008| 0.0496| 0.0095| 0.988| 0.0554| 0.0105| 0.008| 0.0492| 0.0089
1000 0.004| 0.0498| 0.0096| 0.994| 0.0523| 0.0097|| 0.004| 0.0483| 0.0091

Table 2 Simulated type-I error rates for an autoregressive stra@i(d, p) for p = 0.6 where
),

aaaa

AR(d, 0.6):X =T (A + cJ )T, a; = p7V/@-D
c=0andT =1, c=1landT =1, c=0andT = P,
d = 5% 1% TP 5% 1% TP 5% 1%
3 || 0.920| 0.0530| 0.0094|| 0.982| 0.0530| 0.0099| 0.710| 0.0510| 0.0068
51 0.949| 0.0510| 0.0095|| 0.989| 0.0537| 0.0101| 0.691| 0.0508| 0.0182
10| 0.962| 0.0547| 0.0101|| 0.992| 0.0533| 0.0102|| 0.731| 0.0520| 0.0085
20| 0.966| 0.0548| 0.0106| 0.993| 0.0541| 0.0099|| 0.749| 0.0515| 0.0186
30| 0.968| 0.0545| 0.0102| 0.993| 0.0533| 0.0102|| 0.753| 0.0519| 0.0182
50| 0.968| 0.0552| 0.0102| 0.993| 0.0529| 0.0096| 0.755| 0.0524| 0.0184
100 || 0.969| 0.0520| 0.0100( 0.993| 0.0526| 0.0104| 0.756| 0.0513| 0.0082
500 || 0.970| 0.0523| 0.0095| 0.993| 0.0538| 0.0103| 0.757| 0.0519| 0.0102
1000 0.970| 0.0544| 0.0103| 0.993| 0.0531| 0.0099|| 0.757| 0.0509| 0.0098

Tables 1-4 display the simulated type-I error rat&s @nd 1% levels) for different covari-
ance structures for the hypothedis : T = 0, whereT = I, forc = 0 orc = 1, and
T = P, for c = 0. For a sample size of = 20, the statistidV,,\/(n — 1)/n is compared
with the (X}P — fp)/V/2fp-distribution in N, = 10° simulation runs. The parametép is

estimated b)fp = B3 /B2 whereB, and B are given in (2.9) and (3.15), respectively.
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Table 3 Simulated type-I error rates for a compound symmetry strec€Sj.e, A = I;+J,.

CS: Y =T°+¢TJ, T
c=0andT =1, c=1landT =1, c=0andT = Py,
d TP 5% 1% TP 5% 1% TP 5% 1%
3| 0.333| 0.0495| 0.0070| 0.747| 0.0557| 0.0092| 0.500| 0.0505| 0.0083
51 0.200| 0.0494| 0.0075| 0.756| 0.0561| 0.0103| 0.250| 0.0496| 0.0082
10| 0.100| 0.0479| 0.0079| 0.817| 0.0573| 0.0097| 0.111| 0.0492| 0.0081
20 || 0.050| 0.0495| 0.0085|| 0.885| 0.0562| 0.0104| 0.053| 0.0483| 0.0088
30 || 0.033]| 0.0490| 0.0085|| 0.916| 0.0580| 0.0101| 0.034| 0.0489| 0.0083
50 || 0.020| 0.0493| 0.0084| 0.946| 0.0571| 0.0101| 0.020| 0.0484| 0.0083
100 | 0.010| 0.0486| 0.0087| 0.972| 0.0580| 0.0102| 0.010| 0.0487| 0.0093
500 0.002| 0.0485| 0.0091| 0.994| 0.0538| 0.0096| 0.002| 0.0497| 0.0090
1000 0.001| 0.0490| 0.0092|| 0.997| 0.0539| 0.0105|| 0.001| 0.0497| 0.0089

Table4 Simulated type-I error rates for a linearly decreasing (syatnic) Toeplitz structure

,,,,

TO: X =T(A+cJy)T, a;;=1—|i—j|/d
c=0andT =1, c=1landT =1, c=0andT = P,
d Tp 5% 1% Tp 5% 1% TP 5% 1%
3| 0.563| 0.0509| 0.0089|| 0.782| 0.0513| 0.0092| 0.784| 0.0519| 0.0096
51 0.678| 0.0517| 0.0105| 0.792| 0.0515| 0.0100|| 0.771| 0.0520| 0.0101
10 || 0.750| 0.0521| 0.0098| 0.799| 0.0523| 0.0101|| 0.800| 0.0534| 0.0101
20 0.779| 0.0521| 0.0099|| 0.801| 0.0518| 0.0096|| 0.812| 0.0513| 0.0097
30 0.787| 0.0520| 0.0099|| 0.802| 0.0529| 0.0103|| 0.814| 0.0525| 0.0102
50 0.793| 0.0527| 0.0096|| 0.802| 0.0518| 0.0103| 0.816| 0.0522| 0.0105
100 0.798| 0.0522| 0.0100| 0.802| 0.0507| 0.0098| 0.816| 0.0514| 0.0093
500 || 0.801| 0.0514| 0.0095| 0.802| 0.0536| 0.0102|| 0.816| 0.0513| 0.0100
1000 0.802| 0.0525| 0.0093|| 0.802| 0.0516| 0.0097| 0.816| 0.0530/| 0.0106

Additional simulation results for th8/,, statistic under different alternatives have been car-
ried out in Ellenberger (2011) and are omitted for brevitheTmain result is that the power
depends on the type of the alternative. For a one point altemnthe power becomes larger
with decreasing dimensiah) whereas for a trend alternatives it becomes larger witreasing
dimensiond.

6 Analysisof the Data Example

Finally, we analyze the sleep lab example from Section 1 bgnmsef the above presented
methods based on the test stati$tig. Figure 1 shows the Prostaglandin-D-synthase levels of
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n = 10 independent observations from healthy male subjects dvith18 time points through
3 consecutive nights. Here we like to examine the followinty hypotheses:

e Hy(A): There is no factor effect A (intervention)

e Hy(B): There is no factor effect B (time points)

e Hy(AB): There is no interaction effect between intervention anwbti

The results obtained by the statisti¢, = v/n — 1(Q,, — By)/v/2nB, based on an approxima-
tion by the suggested sequence of the standardizetistributionsk;, are shown in Table 5.

Table5 Analysis of the sleep lab data from Figure 1: Shown arepthralues of thelV/,,-test
based on the approximation by the sequefigg of standardized *-distributions {V,, ~ K}).

Hypothesis| W, df | p-values
Hy(A) 1.862| 1.29] 0.0572
Hy(B) 3.420| 5.00| 0.0094
Hy(AB) | -0.706| 10.00| 0.7401

A highly significant time effect is detected while there isawiddence for an interaction. The
result for the intervention is borderline. It may be notedttim Ahmad, Werner and Brunner
(2008) the data for the female patients are analyzed, whérexe we analyze the data for the
male patients.

7 Conclusionsand Discussion

We have considered a one-group high-dimensional repeategures setting where a factorial
structure of the repeated measures is allowed. Assumingtavaniate normal distribution of
the repeated measures, procedures for testing the comnear lhypotheses about the expec-
tations have been derived. We did not assume any partidulentgre of the covariance matrix
3 = TV T since a misspecification may lead to biased results. If tmebaun of the inde-
pendent observation vectors is larger than the dimensiohthese vectors then the classical
procedures of one-group profile analysis can be appliecholivever,d is larger tham then
these procedures are no longer valid. In this case, the gti@dorm ), in (2.3) is used to
test a global hypothesid, : Tu = 0 about the factors involved in this repeated measures
design. The scaled version of this quadratic fapyy tr(X), as suggested by Box (1954) and
Geisser and Greenhouse (1958), cannot be used for asyenmiosiderations since it becomes
degenerate foil — oco. Therefore, the standardized versio, = (Q,, — tr(X))//2 tr(2?)

of ,, had been considered in the literature. Its asymptoticidigion forn,d — oo had been
derived by several authors under different assumptionshereigenvalues of the covariance
matrix 3. In practical data analysis, however, these assumptienaaralways fulfilled and
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moreover, they are difficult to verify. Therefore, it was @im to study the behavior av,

(or of its studentized form¥,) if these assumptions do not hold. It turned out that can
have different asymptotic distributions depending on tlgemvalues o and it was discussed
that these distributions may differ according as a randojesti effect is included or not and
on how the number of time pointse., on howd — oo, is increased. Thus, the asymptotic
distribution of I, cannot be approximated by one distribution (as a standardal®r a stan-
dardized(x? — 1)/+/2-distribution) since this may lead to inaccurate resultstdad we have
suggested to approximate the asymptotic distribution leyséquence<; = (x} — f)/v2f

of standardized?-distributions. The parameter was chosen such that mean, variance and
skewness ofy; ande coincide. The unknown parametgris estimated byfp = B3 /B2,
whereBs is aU-statistic for the parameter(X?*). For the derivation of the possible asymptotic
distributions, the ratio-consistency of the involved wdad estimators,, By, and B; for the
tracestr(X), tr(X?), andtr(X?), respectively, was utilized as a key property. This apgioac
leads to asymptotic valid testing procedures in case of psytically negligible ¢zs — 0) or
crucial (s — 1) impact of the largest eigenvalue Bf. This is easily seen from the fact that
K; — N(0,1) weakly if 7z — 0 andK; — (x? — 1)/v/2 weakly if 755 — 1. Moreover,

in the cases betweerys — 0 and7gs — 1 it provides a quite good approximation of the
unknown distribution ofV,,.

In an extensive simulation study, presented in the papetrensupplementary material, the
behavior of the suggested approximation technique wasiated for varying combinations of
n andd as well as different covariance structures (covering tffergint limit distributions). It
was observed that the procedure is quite accurate, eversfoal size of the dimensiohand
the sample size.

Finally, we like to note that the asymptotic results derivedhe current paper are robust
to the imposed assumption on multivariate normality. Irtipatar, based on additional results
from Ellenberger (2011) and Pauly (2009), it can be shownhdimailar asymptotics can be de-
rived in the context of the more general model considereddiyaBd Saranadasa (1996). How-
ever, the corresponding proofs involve lengthy derivagiand need further technical results
which are of its own interest and will therefore be defer@d subsequent paper. Moreover, a
corresponding two sample case where also a potential atienabetween the gender and the
cause of the time curve is of potential interest will be leffurther investigations. In this case
also permutation techniques similar to those developedsgih and Salmaso (2010, 2012) or
Pauly, Brunner and Konietschke (2015) will be left to futueeearch.
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8 Appendix

For the ease of convenience we partially suppress as abedegendencies ahor onn.

Proof of Theorem 2.1We rewriteWn as

— — _\y 2 _
W Qn — tr(X) _ Q@ D oee1 As _ Z%CS 1’
2tr(X?) 250 A2 P V2

with the arraya, = \,/1/>.°_, A2 and row-wise independent and identically distributed ran-

dom variablegC? — 1)/+/2 with mean0 and variance. Since the coefficients, fulfill the
conditions

max |as| — 0 and Zai =1,
1<s<d

the result (a) follows from Theoremin Hajek, Sidak, and Sen (1999, p. 184), see also Theo-
rem 1(a) in Zhang (2005).
For case (b) recall that the eigenvalues are assumed to beedtde. \; > Ay > --- > A,
Thus, the sequence is ordered as well. We now write
— c2-1 &K ocr-t c?—1
s + Z as s s

W, = —

Here the first part is asymptotically standardizgd — 1) /+/2-distributed by Slutsky’s Lemma.
Moreover, the second part is asymptotically negligiblesif(R) = 0 and

+ R.

d
Var(R) = Za?z 1—al —0.

Hence (b) follows from another application of Slutsky’s Lraa

Finally, the prove of (c) follows in a similar way as in the pf@f Theorem 3.1 in Jentsch and
Pauly (2012) or Pauly (2009) by applying a truncation argoimEirst note that for each fixed
r < d we have convergence in distribution

T

— 2 1) 2 1)
WTgr) — Z ag (C Z b C ‘/1(7")
s=1 \/_

asn, d — oo. Here the sequence of limit varlabl(s\él(’")) is a Cauchy sequence i since

Var(Zb ) ZbZ

s=r1 S=T1
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for all e > 0 and sufficiently large; < ry. This implies thatVl(’") converges in distribution to
V> asr — co. Moreover, since

VT, - T = Y = 1- Y — 1= 8
s=r+1 s=1 s=1
asn,d — o it follows that lim limsup Var(W, — W) = 0. The result fod¥, follows then
T—=0 pn d—oco
from Theorem 4.2 in Billingsley (1968). O

Proof of Theorem 2.2Consider the statistid/,, in (2.11). We have by (2.10) that

W, = @n — Bo _ Qn —tx(X) (B —tr(%)) 2tr(X?)
! 2D, 2 t(27) 2 tr(27) 55,
_ (Qn (D) _ (B tr(?))) o)
2tr(X°) 2tr(X7)
_ (@ tr(®) .
Qn — tr(X) __

Hereo, (1) denotes expressions that are asymptotically negligigpeabability. The result now
follows from Theorem 2.1 and Slutsky’s Lemma. a

LEMMA 8.1 We have the following relationship between the differentt@ns on the covari-
ance matrices

0<78 <7 <Tcq<Ths< s < 1, (8.17)
and asd — oo

Tp—>0<:>TCQ—>O<:>7'Bs—>O, (818)

Tp—>1<:>TCQ—>1<:>7'Bs—> 1. (819)
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Proof. From Cauchy-Schwarz inequality it follows thah~?_, A{**?)* < S A2 577 A2
for all a,b > 0. Hence the inequality (8.17) follows from

< —
= T wi() ®
() (s Y
< 2 =7cQ 2
tr3 (%) tr? (%)
maxi(Ai) D AL
wi(sr) eSSl

Moreover, the equivalences in (8.18) and (8.19)der oo are derived by sandwiching

6 (max; A)°  (max; A3 (32, A3
TBs = TN T a2 S a2y TP H
tr?(327) tr?(327) tr? (32°)

In order to prove Theorem 3.1 we first have to summarize sommgepties of the estimator
Bs given in (3.15) which is defined &3; = (g‘)f1 > cver AreAe Ary, WhereAy, = X T X .

THEOREM 8.2 Under H, : T = 0 it holds that

(@) Em,(Bs) = tr(X7),
(b) Vary,(Bs/(tr(X%))%?) = O(n™!), and

(c) B2/B3 is a consistent estimator ef = 1/ f» uniformly in the dimensiori.

Proof. Since B; is a U-statistic with kerneh; (X, X, X,) = AreAn-Ank, itis an unbiased
estimator ofF (A Ay An) = tr(E?) for k < ¢ < r. Moreover, Theorem2.3 in van der Vaart
(1998) implies

Var(Bs) = (g) B c; (i) (Z - z’) ¢ = 23: O(n )G, (8.20)

c=1

where(, = 0 and(,. is the covariance betweén (X,, X,, Xi,) andhs (X, Xo,, Xo,) if

¢ > 0indices coincide. Her® is the commonly used Landau symbol. Itis showninLemma 1.1
in the supplementary material that= O(tr®(X?)) holds for alli = 1, 2, 3. Hence the variance
formula follows from the inequalityr?(?)/ tr*(X?) < 1. Then the consistency @32/ Bj is

a direct consequence of the ratio-consistencotvhich is known from Ahmad, Werner, and
Brunner (2008). O
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Proof of Theorem 3.1Note, that condition (2.5) impliegp — oo by Lemma 8.1. Thus
part (a) is a direct consequence of the classical Centrait dineorem. Moreover, again by
Lemma 8.1, the convergence (2.6) yielfis — 1 and part (b) follows from Lévy’s continuity
theorem since the characteristic function df(&/2, 2)-distribution is continuous imr. Finally,

the second part is a consequence of the ratio consisteryﬁysﬂhted above in Theorem 8.2.
O

Supplement

In the supplement to the current paper (cf. Pauly, Ellerdremnd Brunner, 2013) we provide
additional technical results as well as supporting sinnutatfor the investigated approximation.
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