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Abstract

We propose a novel one sample test for repeated measures designs and derive its limit
distribution for the situation where both the sample sizen as well as the dimensiond of the
observations go to infinity. This covers the high-dimensional case withd > n. The tests
are based on a quadratic form which involve new unbiased and dimension-stable estimators
of different traces of the underlying unrestricted covariance structure. It is shown that the
asymptotic distribution of the statistic may be standard normal, standardizedχ2-distributed,
or even of weightedχ2-form in some situations. To this end, we suggest an approximation
technique which is asymptotically valid in the first two cases and provides an accurate
approximation for the latter. We motivate and illustrate the application with a sleep lab data
set and also discuss the practical meaning ofd → ∞ in case of repeated measures designs.
It turns out that the limit behaviour depends on how the number of repeated measures is
increased which is crucial for application.
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1 Introduction

To motivate the methods derived in this paper, we present thesleep-laboratory trial reported
by Jordan et al. (2004) where the activity of prostaglandin-D-synthase (β–trace) was observed
on 10 young healthy men. The observations were taken at the time points 24h, 4h, 8h, 12h,
16h, and 20h for 3 consecutive nights and days. Thus, we have 18 repeated measures on 10
independent subjects. The data are displayed in Figure 1.

Figure 1: Prostaglandin-D-synthase (β-trace) levels in 10 healthy male subjects in a sleep-
laboratory experiment during three days under different sleep conditions.

The questions to be answered in this trial are (1) whether thetime profiles of the three
interventions are flat or (2) if not, whether they are different, and (3) if the time profiles are
different then it would be of interest to see whether the profile of the normal sleep differs from
that of the sleep deprivation or from that of the recovery sleep.

In this experiment, we have 10 independent observation vectorsXk = (Xk1, . . . , Xkd)
′ of

k = 1, . . . , n individuals withd = 18 repeated measures which are structured by two crossed
fixed factors A (intervention) and B (time points). Factor A has 3 levels (normal sleep / sleep
deprivation / recovery sleep) and factor B has 6 levels(24h, 4h, 8h, 12h, 16h, 20h). We do not
assume any particular structure of the covariance matrixV = Cov(Xk) since the results might
be biased in case of a misspecification of the unknown structure of V . Also, the patterns of
the covariances within the three interventions might be different because of potential circadian
rhythms which might be dependent on the interventions. Thus, the only reasonable option is to
admit an unstructuredd × d covariance matrixV . As we haved = 18 repeated measures and

2



n = 10 independent subjects, the high-dimensional cased > n invalidates the application of
classical multivariate methods, such as Hotelling’sT 2 or Wilk’s Λ, see Davis (2002).

For a fixed numberd of repeated measures many approximate procedures have beende-
veloped in the past to answer the questions listed above. These procedures are mainly based
on Box’s approximation (Box, 1954) and on different estimations of the so-called Boxǫ =
tr2(V )

/
[(d−1) tr(V 2)] (Geisser and Greenhouse, 1958; Greenhouse and Geisser, 1959; Huynh

and Feldt, 1976; Lecoutre, 1991; Werner, 2002, 2004; Ahmad,Werner, Brunner, 2008; Brunner,
2009; Brunner, Becker, and Werner, 2009; Chi et al., 2012).

These papers only discuss approximations which might become degenerate if the dimen-
sion d → ∞. In repeated measures designs, the dimension can become quite large if the
measurements are automatically recorded by some technicalequipment which measures the
observations within short time intervals. The accuracy of the approximations considered in the
above quoted papers has only been investigated by simulations for small, medium, and moder-
ate large sample sizes. The question of a limit distributionfor d → ∞ or for bothn, d → ∞
remained open until Bai and Saranadasa (1996) derived the limit distribution of a studentized
quadratic form in a multivariate model under certain assumptions, e.g., on the ratiod/n and
on the eigenvaluesλ1, . . . , λd of the covariance matrixV . In particular, they required that

τBS = λmax/
√∑d

i=1 λ
2
i → 0 asd → ∞, whereλmax denotes the largest eigenvalue. This

seminal paper triggered many subsequent papers relaxing the assumptions and generalizing the
ideas of Bai and Saranadasa to more general multivariate models (Srivastava, 2007 and 2009;
Srivastava and Du, 2008; Chen and Qin, 2010; Park and Ayyala,2013 and references cited
therein). In particular, Chen and Qin (2010) derived the asymptotic normality of a studentized
quadratic form under the assumption that the ratioτCQ = tr(V 4)/ tr2(V 2) → 0 for d → ∞
allowing thatn andd independently tend to∞. We note that0 ≤ τCQ ≤ 1, and that the above
mentioned papers only investigated the asymptotic distribution of a studentized quadratic form
if τCQ → 0. However, this condition will in general not be fulfilled if arandom subject effect
is present which is quite often the case in repeated measuresmodels. This will be discussed in
detail in Sections 3 and 4. Examples whereτCQ might converge to someκ ∈ (0, 1] are also
presented there. Thus, it is also our aim to investigate the limit distribution for the case where
τCQ does not converge to0. It is worth to mention that the conditionsτBS → 0 andτCQ → 0 as
well asτBS → 1 andτCQ → 1 are equivalent. This is shown in the Appendix.

It should be noted that Bai and Saranadasa (1996), Srivastava (2007), and Chen and Qin
(2010) derived procedures in a multivariate model where theobservations in the different com-
ponents may be measured on totally different measurement scales and thus, may not be com-
mensurate. This means that the result of the analysis could be altered simply by changing the
measurement scale in a single component,e.g., from [min] to [sec]. Thus it is reasonable to stu-
dentize each component by the observed standard deviation of the observations within this com-
ponent and then to work with the correlation matrix instead of the covariance matrix. This was
first observed by Srivastava and Du (2008). Also the recent paper by Park and Ayyala (2013)
improves the Chen-Qin Statistic in this regard. In models for repeated measures, however, the
observations are typically measured on the same scale and thus, they are commensurate. Hence,
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repeated measures models do not require a scaling of the observations. Scaling has the undesir-
able effect that in case of small or medium sample sizes, the variance of the statistic is inflated
by involving additionald estimated quantities. In repeated measures designs it is therefore rea-
sonable to consider statistics similar to those suggested by Bai and Saranadasa (1996) or by
Chen and Qin (2010). We note that our considered statistic given in (2.11) is invariant under the
same linear transformations of all components of the observation vectors.

Another issue what has not been considered in the above mentioned papers is the quality of
the approximation by the standard normal distribution. In many practical situations in repeated
measures designs, the numberd of the dimension may be larger than the numbern of indepen-
dent vectorsXk but it may still not be large enough to provide an accurate approximation by
a fixed limit distribution . As this is an important issue in applications, we will also investigate
this problem in detail. In Section 3 we suggest to approximate the distribution of the studen-
tized quadratic form in (2.11) by a sequence of distributions which forn, d → ∞ converges to
the correct limit distribution irrespective whetherτCQ → 0 or τCQ → 1. In these asymptotic
considerations we do not make any particular assumptions onthe dependence betweenn andd.

To keep the presentation of the paper simple and not to overload it with lengthy derivations
we restrict our considerations to the case of the multivariate normal distribution. Basically, the
same results can be derived under weaker conditions. This isbriefly discussed at the end of
Section 7.

The main aims of this paper are

(1) the derivation of inference procedures for low- and high-dimensional one-sample repeated
measures designs,

(2) the derivation of an accurate approximation for these procedures in case of small and
medium sample sizes,

(3) the investigation of a statistic and the development of an approximation of its distribu-
tion which converges to the correct limit distribution irrespective whetherτCQ → 0 or
τCQ → 1, and finally,

(4) a detailed discussion of the practical meaning ofd → ∞.

Especially the last point is relevant in practice since the data set at hand must be regarded as
representative for an asymptotic model. Typically, this asymptotic model should not depend on
the way how the number of repeated measures is increased. It will turn out however, that this is
not the case (see Section 4). This issue has not been investigated in the literature so far.

Moreover, we consider unbiased estimators oftr(V 2) andtr(V 3) needed for variance esti-
mation (Werner, 2002) and to compute the degrees of freedomf of an approximation by a se-
quence of standardizedχ2

f -distributions (Ellenberger, 2011). These estimators areU-statistics
which are shown to be ratio-consistent uniformly in the dimensiond.
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The paper is organized as follows. The statistical model, the hypotheses and the test statistic
are introduced in Section 2 where also its limit behavior is discussed under different conditions.
In Section 3, a new finite sample approximation is suggested.The meaning of lettingd → ∞
in the context of repeated measures designs is discussed in Section 4. Section 5 investigates
the performance of the suggested approximation through simulation studies in different set-
tings and the sleep-laboratory trial from Figure 1 is analyzed in Section 6. Finally, the results
presented in this paper and in particular the conclusions inthe context of repeated measures de-
signs are discussed in Section 7. All proofs of the theoretical results are shifted to the Appendix
whereas some technical details as well as additional simulation results are sourced out to the
supplementary material of this paper (see Pauly, Ellenberger, and Brunner, 2013).

2 Statistical Model, Hypotheses and Statistics

We considern independentd-dimensional random vectors

Xk = (Xk1, . . . , Xkd)
′ ∼ N(µ,V ), k = 1, . . . , n, (2.1)

whereµ = E(X1) andV = Cov(X1) > 0. The componentsXks of the observation vector
Xk of subjectk refer to the treatmentss = 1, . . . , d of the repeated measures which may be
either time points or levels of a treatment which is allowed to have a factorial structure. In the
motivating example we have 3 levels of an intervention (normal sleep / sleep deprivation / recov-
ery sleep) which is crossed with the factor time involving 6 levels(24h, 4h, 8h, 12h, 16h, 20h).
Thus, we haved = 3× 6 = 18 repeated measures under different treatment combinations.

In many biological experiments it is reasonable to also include a random additive subject
effect. Then the vectorXk of the observations is decomposed as

Xk = (Xk1, . . . , Xkd)
′ = µ+ cSk1d + ǫk, k = 1, . . . , n, (2.2)

whereµ = (µ1, . . . , µd)
′ are the fixed effects of the repeated measures,Sk ∼ N(0, 1) denotes

a random subject effect, and the error termsǫk = (ǫ11, . . . , ǫkd)
′ ∼ N(0,A) are independent

of Sk. The variance of the random subject effect can be modeled by the constantc > 0 and
c = 0 refers to a model without a random subject effect. The covariance matrixA of ǫk can be
modeled in an appropriate way where different structures ofA may be considered as reasonable
depending on the experiment at hand. Such a structure may be the compound symmetry ofA,
i.e.,A = σ2Id+bJd, whereσ2 > 0 andb are appropriate unknown constants,Id denotes thed-
dimensional unit matrix andJd = 1d1

′
d denotes thed× d matrix of 1s. Also, an autoregressive

structure ofA = (aij)i,j=1,...,d may be assumed,i.e., aij = ρ|i−j| for 0 < ρ < 1. Furthermore, a
linearly decreasing symmetric Toeplitz structure ofA can be modeled byaij = 1 − |i − j|/d.
The most general form ofA is an unstructured covariance matrix where it is only assumed that
A = A′ and its elementsaij fulfill the Cauchy-Schwarz inequality. Particular models will be
discussed later in Sections 3 and 4.
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In the context of biostatistical experiments, usually the hypotheses of no time effect, of no
intervention effect, and of no interaction between time andintervention (parallelism or identity
of the time curves) are of primary interest. Such hypothesescan be formulated by using an
appropriate contrast matrixH and the most general formulation of a linear hypothesis about
the expectationµ is written asH0 : Hµ = 0. For convenience, we will work with the unique
projection matrixT = H ′(HH ′)−H where(·)− denotes some generalized inverse of a matrix.
We note thatH0 : Hµ = 0 ⇐⇒ H0 : Tµ = 0 and thatT = T ′ andT 2 = T . Typical
examples for testing hypotheses in factorial repeated measures designs are,e.g., T = Id or
T = P d = Id − 1

d
Jd which correspond to testing whether the time profiles are equal or flat,

respectively.

For testing the general linear hypothesisH0 : Tµ = 0, we consider the quadratic form

Qn = nX
′

·TX ·, (2.3)

whereX · denotes the mean of the observation vectorsXk, k = 1, . . . , n. The classical ap-
proaches of Geisser and Greenhouse (1958), Greenhouse and Geisser (1959) or Huynh and
Feldt (1976) depend on approximations of its scaled versionQn/ tr(Σ̂), whereΣ̂ is the empir-
ical covariance matrix. However, these approximations become degenerate ifd → ∞ which
may lead to inconsistent inference procedures. Hence, to study the asymptotic distribution of
Qn underH0 : Tµ = 0, for n, d → ∞ we consider the standardized version ofQn, namely

W̃n =
Qn − EH0

(Qn)√
VarH0

(Qn)
. (2.4)

By using well-known theorems on the moments of quadratic forms (see,e.g., Matthai and
Provost, 1992) it follows thatEH0

(Qn) = tr(Σ) andVarH0
(Qn) = 2 tr(Σ2), whereΣ =

TV T . The asymptotic distribution of̃Wn underH0 is established in the following theorem.

THEOREM 2.1 Let λs denote the eigenvalues ofΣ = TV T in decreasing order and let

λmax = maxs(λs) = λ1 as well asas = λs/
√∑d

r=1 λ
2
r. Then, underH0 : Tµ = 0, the

standardized quadratic form̃Wn in (2.4) has, asymptotically,

(a) a standard normal distribution if

τBS= a1 =→ 0 asn, d → ∞, (2.5)

(b) a standardized(χ2
1 − 1)/

√
2 distribution if

τBS= a1 → 1 asn, d → ∞, (2.6)

(c) a weightedχ2-distribution of the form
∑∞

s=1 bs(C
2
s − 1)/

√
2, whereC2

s are independent
χ2
1-distributed random variables if in addition

as → bs for all s asn, d → ∞, (2.7)

wherebs is a decreasing sequence in[0, 1] fulfilling
∑

s b
2
s = 1 andbs > 0.
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All proofs are given in the Appendix.

REMARKS 2.1
(a) Condition (2.5) has first been given by Bai and Saranandasa (1996). Later other conditions
have been given by Srivastava (2007, 2009) while Chen and Qin(2010) have given the condition

τCQ =
tr(Σ4)

tr2(Σ2)
→ 0 for d → ∞. (2.8)

It is shown in Lemma 8.1 in the Appendix that this condition (2.8) and the condition (2.5)
are equivalent. Similar to Chen and Qin (2010), Park and Ayyala (2013) or Paindaveine and
Verdebout (2013) we have not postulated any assumption on the rated/n.
(b) Recently, Park and Ayyala (2013) have given a similar condition for the corresponding
correlation matrix in a multivariate model. For repeated measures, however as discussed already
in the introduction, it suffices to work with the covariance matrixΣ.

To estimate the unknown two quantitiestr(Σ) andtr(Σ2) underH0 : Tµ = 0, we prefer
to directly estimate the traces instead of first estimating the total covariance matrix and then
computing the traces. Thus, we use theU-statisticsB0 andB2 investigated by Werner (2002)
and later considered in more detail by Brunner, Becker, and Werner (2009). The estimatorsB0

andB2 are based on the quadratic formsAk = X ′
kTXk, k = 1, . . . , n, and on the bilinear

formsAkℓ = X ′
kTXℓ, for k 6= ℓ and are given by

B0 =
1

n

n∑

k=1

Ak and B2 =
1

n(n− 1)

∑

k 6=ℓ

A2
kℓ. (2.9)

We note that underH0 : Tµ = 0, theU-statisticsB0 andB2 are unbiased estimators
of tr(Σ) and tr(Σ2), respectively. Moreover, they areL2-ratio-consistent uniformly in the
dimensiond in the following sense

VarH0

(
B0

tr(Σ)

)
≤ VarH0

(
B0√
tr(Σ2)

)
≤ 2

n
and VarH0

(
B2

tr(Σ2)

)
≤ 8

n− 1
. (2.10)

For a detailed derivation see,e.g., Brunner, Becker, and Werner (2009).

Finally, using the result in (2.10) and Slutsky’s Lemma we obtain the following theorem.

THEOREM 2.2 Under the hypothesisH0 : Tµ = 0, the statistic

Wn =
Qn − B0√

2B2

(2.11)

has the same limit distributions as̃Wn under the different conditions(a) − (c) given in Theo-
rem 2.1.
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The above results now motivate us to approximate the distribution ofWn not by one fixed
limit distribution but by a sequence of distributions whichprovide adequate approximations in
all three situation(a)− (c). In particular, we will present an adequate approximation technique
which covers the cases (a) and (b) in Theorem 2.2 and works also for a small number of samples
n and dimensionsd. For the case thatτBS → κ ∈ (0, 1) it provides a quite accurate three
moments approximation in the same sense as suggested by Zhang (2005).

3 An Approximation for Small Samples

To investigate the quality and speed of the approximation byanN(0, 1)- or by the standardized
(χ2

1 − 1)/
√
2 distribution, we demonstrate by a simple simulation that a large sample sizen as

well as a large dimensiond are required to obtain a satisfactory approximation. To this end, we
consider the simple design whereXk = (Xk1, . . . , Xkd)

′ ∼ N(µ,V )withV = Cov(X1) > 0.
We investigate the behavior ofWn under the hypothesisH0 : µ1 = · · · = µd, i.e. there is no
effect of the repeated measures (e.g., flat time profile) andH0 : µ = 0 (e.g., equal time profiles).
In matrix notation the former hypothesis can be written asH0 : Tµ = 0 whereT = Id− 1

d
Jd is

the so-called centering matrix whileT = Id is used for the latter hypothesis. Again,Id denotes
thed-dimensional unit matrix andJd = 1d1

′
d denotes thed× d matrix of 1s.

We consider the cases ofn = 10, 20, 50 for d = 3, 5, 10, 20, 30, 50, 100, 200, 300, 500, 1000
andXk = µ + cSk1d + ǫk, k = 1, . . . , n, as defined in (2.2). For the covariance matrix
A we select an autoregressive structureaij = ρ|i−j| for ρ = 0.6. The choice of the constant
c = 0 refers to a model without a random subject effect andc = 1 refers to a model involving
a random subject effect with variance1. Thus,V = A + cJd. Then forT = Id it follows
thatτBS → 0 for c = 0 while τBS → 1 for c = 1, both asd → ∞. (The derivation is given in
Example 1.1 in the supplementary material). The simulated type-I error rates in these settings
when compared with the two-sided95%-quantile of the standard normal (τBS → 0) and the
(χ2

1 − 1)/
√
2 distribution (τBS → 1) are displayed in Figure 2.

From Figure 2 it appears that at least in this particular casethe quality of the approximations
is quite bad for a small or even a medium number of sample sizesand dimensions. Therefore,
we intend to develop a better approximation which is also valid for a small sample sizen and
a small number of dimensionsd. The derivation of this different approximation is based on
the fact that under the hypothesisH0 : Tµ = 0, the quadratic formQn in (2.3) is equal to∑d

s=1 λsC
2
s , where the quantitiesC2

s ∼ χ2
1 are independent and theλs are the eigenvalues of

Σ = TV T . It is well known that the distribution of
∑d

s=1 λsC
2
s can be approximated by

a scaledχ2-distribution, e.g. by g · χ2
f such that the first two moments coincide (cf. Box,

1954, or Geisser and Greenhouse, 1958, and Greenhouse and Geisser, 1959). This leads to
approximating the distribution ofQn/ tr(Σ) by aχ2

f/f -distribution wheref = tr2(Σ)/ tr(Σ2)
is proportional to Box’sǫ. However, as already explained in Section 2,χ2

f/f converges to a
one-point distribution iff → ∞ asn, d → ∞. But this holds under condition (2.5), so that we
cannot use this approach.
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Figure 2: Simulated type-I error rates of the StatisticWn in 105 simulation runs when compared
with the asymptotic standard normal distribution (τBS → 0) and the asymptotic(χ2

1 − 1)/
√
2

distribution (τBS → 1) for different dimensions and sample sizesn = 10, 20, 50. The horizontal
grid lines denote the99% random interval forα = 5% (upper row) andα = 1% (lower row).

Therefore, similar to Bai and Saranadasa (1996) or Chen and Qin (2010) a standardized
versionW̃n of Qn in (2.4) is used as a statistic. But unlike as in those papers we do not ap-
proximate this standardized statistic by a fixed limit distribution but consider a sequence of
standardizedχ2-distributions to develop a more accurate approximation ofthe distribution of
Wn underH0 : Tµ = 0. In particular, applying the representation theorem for quadratic forms
(which is also valid ifΣ is singular) we re-writẽWn as

W̃n =
Qn − tr(Σ)√

2 tr(Σ2)
=

Qn −
∑d

s=1 λs√
2
∑d

s=1 λ
2
s

=
d∑

s=1

as
C2

s − 1√
2

, (3.12)

whereas = λs/
√∑d

r=1 λ
2
r. Thus, we suggest to approximate the distribution ofW̃n by a
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sequence of standardizedχ2-distributions

Kf =
χ2
f − f
√
2f

. (3.13)

It is shown in Zhang (2005, Theorem 1) that even in case (a) of Theorem 2.1 this should be pre-
ferred compared to the normal approximation iff is selected such that the first three moments
of W̃n andKf coincide. This is achieved by choosing

fP = (τP )
−1 =

tr3(Σ2)

tr2(Σ3)
, (3.14)

see formula (5) in Zhang (2005). We call thisf = fP the Pearson approximation, see Pear-
son (1959), Imhof (1961) as well as Katayama, Kano, and Srivastava (2013). We note that
the conditionτP → 0 is equivalent to the condition given in (2.5) and to the condition τCQ =
tr(Σ4)/ tr2(Σ2) → 0 given by Chen and Qin (2010) and adapted to the one-sample repeated
measures design considered in this paper. Moreover, the equivalencesτBS → 1 ⇐⇒ τP → 1
⇐⇒ τCQ → 1 are also true, see Lemma 8.1 in the Appendix. From this it follows that theKf -
approximation is also asymptotically correct in case (b) ofTheorem 2.1. Moreover, in case (c)
of this theorem it provides a good small sample approximation as discussed in Zhang (2005),
see also Zhang and Liang (2014) for the case of a two moment approximation. For the latter
two moment approach one would obtainfB = τ−1

B = tr2(Σ)/ tr(Σ2). For our asymptotic con-
siderations, however, the conditions in (2.5) or (2.6) haveto be verified. Simple computations

show that1/fB ≤ λmax/
√∑d

s=1 λ
2
s such that (2.5) implies thatfB → ∞. On the other hand,

however,fB → ∞ does not imply (2.5) as can be seen by the simple counter example where
λmax =

√
d and all other eigenvaluesλs ≡ 1. Also the conditionτB → 1 is not equivalent to

condition (2.6). This is easily seen by lettingV = A + cJd, whereA has an autoregressive
structure andT = Id. In this caseτBS → 1 but τB → c2/(c+ 1)2 as shown in Example 1.1(b)
in the supplementary material to this paper, see Pauly, Ellenberger, and Brunner (2014). Thus,
we only consider the choicef = fP .

In order to apply the approximation suggested by Zhang (2005) a consistent estimator ofτP
is required. For the high-dimensional case considered in the present paper we prefer to directly
estimate the tracetr(Σ3) similar to the derivation ofB2 in Section 2. LetAkℓ be as given prior
to (2.9). Then,

B3 =
(n
3

)−1 ∑

k<ℓ<r

AkℓAℓrArk (3.15)

is an unbiased estimator oftr(Σ3). Moreover, it is shown in Theorem 8.2 in the Appendix that
B2

3/B
3
2 is a consistent estimator ofτP = 1/fP uniformly in the dimensiond. We note that it

is not reasonable to consider the ratio-consistency ofB3
2/B

2
3 for fP = 1/τP since1/τP → ∞

under condition (2.5). Thus we consider the inverseτP of fP since0 ≤ τP ≤ 1. We summarize
the foregoing considerations in the following theorem.

10



THEOREM 3.1 Under the hypothesisH0 : Tµ = 0, the sequence of standardizedχ2-distribu-
tionsKfP defined in (3.13) has, asymptotically,

(a) a standard normal distribution under condition (2.5),

(b) a standardized(χ2
1 − 1)/

√
2 distribution under condition (2.6).

The same statements remain true iffP is estimated by

f̂P = B3
2/B

2
3 (3.16)

whereB2 andB3 are given in (2.9) and (3.15), respectively.

REMARK 3.1 (a) The simulations shown in Section 5 demonstrate that thisapproximation tech-
nique performs quite well in all considered situations covering the cases(a) − (c) of Theo-
rem 2.1.
(b) Another approach would be to plug in consistent estimates of the unknown standardized
eigenvaluesas in (3.12)and to simulate from this distribution. In a high-dimensional setting,
however, the consistent estimation of the eigenvalues requires additional assumptions (see e.g.
Yata and Aosima, 2012). Since regarding the structure of thecovariance matrix we like to be
as general as possible we will not consider this approach. Moreover, in practice it is unclear
whether such conditions might hold. Also, bootstrap methods will not be used as they are ex-
tremely time consuming (see e.g. Zhang and Liang, 2014). Furthermore, it is unclear how to
bootstrap our statistic in such a way that all different limit distributions are covered.

4 Some Considerations on d → ∞
The classical assumption that the sample sizen → ∞ simply means that more observations
are sampled while maintaining the same conditions under which the observations are obtained.
This means that then observations in the experiment at hand are considered as representative
for a theoretical experiment with an infinite number of observations. The dimensiond, however,
is a fixed quantity of a particular experiment. Lettingd → ∞ may therefore be interpreted as
considering the experiment at hand as representative for anexperiment with an infinite number
of dimensions. In a repeated measures design, where the repeated measurements represent time
points, for example, the number of time points can be increased in several ways.

First, one may observe more time points by extending the observation time without changing
the distances between the time points of the measurements. For an autoregressive model with
A = (aij)i,j=1,...,d, whereaij = ρ|i−j| for ρ ∈ (0, 1), this means thatA becomes larger whend
is increased without changing the elements of the basicd × d matrix, i.e. for d′ > d only rows
and columns are added where the elements are still given byaij = ρ|i−j|. In this case,τCQ =
tr2(A2)/ tr(A4) → 0 or equivalently,τP → 0 andτBS → 0, so thatWn has, asymptotically, a
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standard normal distribution. This follows from Example 1.1(a) in the supplementary material
together with Theorem 2.11 and Lemma 8.1.

The experimenter, however, may argue that s/he is not interested in observing a longer time,
and that only the time between the first and the last observation is of practical relevance. In
this situation, the number of time pointsd could only be increased by decreasing the distances
between the time points. To describe this with an autoregressive structure, it is required that
the correlation between two successive time points increases with increasingd, whereas the
correlation between the first and the last time point remainsthe same. This may be modeled
by an autoregressive matrixA with aij = ρ|i−j|/(d−1). Note that in this setting the correlation
between the first and the last measurement is given bya1,d = ρ, which does not depend ond. In
this setting, however, it is shown in Example 1.2 in the supplementary material thatτB converges
to a constantg(ρ) which only depends onρ and is bounded away from0 and1 for each choice
of ρ ∈ (0, 1). SinceτB ≤ τP ≤ 1 by Cauchy-Schwarz inequality, this implies that neitherτP
norτCQ norτBS converge to0 as in the former case with increasing observation times but fixed
distances. For example, we haveg(0.6) ≈ 0.73 which corresponds to the simulations from
Table 2 in Section 5. Now, in view of Theorems 2.2, this means that the asymptotic distribution
of the test statistic depends on howd tends to∞, i.e., on how the number of time points is
increased.

A similar problem appears when adding an additive subject effect Sk as considered in
model (2.2). It is easily seen that a random subject effect may change the validity of the
assumptions thatτBS → 0 or τBS → 1 in (2.5) and (2.6) depending on the hypothesis ma-
trix T . For a multivariate hypothesis, for example, we use the hypothesis matrixT = Id and
thus,Σ = TV T = T (A + c2Jd)T = A + c2Jd. Now let A = σ2Id andc = 0. Then
τCQ = tr(Σ4)/ tr2(Σ2) = 1

d
→ 0 asd → ∞ and thus, (2.5) holds. Ifc = 1, however, then

τCQ = [d4 + O(d3)]/[d4 + O(d3)] → 1 asd → ∞ and thus, (2.6) holds. For a hypothesis
involving the repeated measures,e.g., T = P d it follows thatΣ = P dAP d both forc = 0 and
c = 1 sinceP dJd = 0. Then,τCQ = 1

d−1
→ 0 asd → ∞.

This means that the limits ofτCQ or τBS for d → ∞ depend on whether or not a random
subject effect is present as well as on the way how the number of time points is increased. But
all information we have in a practical experiment is the fixedsample at hand. Thus,τCQ or
τBS may converge to0, to 1, or to someκ ∈ (0, 1). In practice where the correct statistical
model is unknown we do not know to which limitsτCQ or τBS converge ford → ∞. Thus
it is not advisable to approximate the distribution ofWn by a fixed limit distribution such as
the standard normal or the standardized(χ2 − 1)/

√
2 distribution. In contrast, our approach

based on approximating the distribution ofWn by a sequence of standardizedχ2-distributions
given byKfP in (3.13) seems to be more appropriate since, by Theorem 3.1,it accounts for the
different asymptotic limit distributions ofWn asd → ∞.
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5 Simulations

In this section we present some simulation results for different structures of the covariance
matrixA = (aij)i,j=1,...,d where we report the results for

(1) an autoregressive structure: AR(ρ) for ρ = 0.6, i.e., aij = ρ|i−j|,

(2) an autoregressive structure where the correlation depends on the dimension: AR(d,ρ) for
ρ = 0.6, i.e., aij = ρ|i−j|/(d−1),

(3) a compound symmetry structure: CS,i.e., A = Id + Jd,

(4) a linearly decreasing (symmetric) Toeplitz structure TO, i.e., aij = 1− |i− j|/d.

We compare the type-I errors of theWn statistic in (2.11) when approximated with the
Kf -distribution based onf = fP and, if τBS → 0, also with its asymptotic standard normal
distribution as well with the Bai and Saranadasa (1996) statistic. The results for the latter
statistic are not shown here since the behaviour is similar to that for the statisticWn with a
fixed normal approximation. Moreover, a comparison with theinference procedure proposed in
Ahmad, Werner and Brunner (2008) is not appropriate since their statistic becomes degenerate
for τBS → 0.

5.1 Data Generation

The independent vectorsXk were generated asXk = µ + cSk1d + ǫ, whereǫk ∼ N(0,A)
andµ = 0. A random subject effectSk ∼ N(0, 1) independent ofǫk was included (c = 1) in
the model or not (c = 0). Thus, the covariance matrixV of Xk is given byV = A+ c2Jd.

We present simulations for two types of hypothesesH0 : Tµ = 0 distinguishing between
a multivariate question by lettingT = Id and a question about the equality of the repeated
measures by lettingT = P d = Id − 1

d
Jd. We note that the casesΣ = P dV P d = P dAP d for

c = 0 andc = 1 are identical sinceP dJd = 0.

To demonstrate the accuracy of the approximation by the(χ2
f−f)/

√
2f -distribution forf =

fP = 1/τP , we reconsider the example in Section 3 and letT = P d andV = A+Jd, whereA
has an autoregressive structure withρ = 0.6 as in (1). In Figure 3 we have added the simulated
type-I errors fromNsim = 105 simulation runs displayed as solid lines for the approximation by
the(χ2

fP
−fP )/

√
2fP -distribution compared with an approximation by theN(0, 1)-distribution

displayed as dotted lines (n = 10, 20, 50). We note that in this case,τBS → 0 andτP → 0 as
d → ∞ as already discussed in Section 3 sinceτBS → 0 ⇐⇒ τP → 0 ⇐⇒ τCQ → 0.

From Figure 3 it is obvious that the approximation by the sequence of the(χ2
fP
−fP )/

√
2fP -

distributions is quite accurate, even for smalld andn ≥ 20. Forn = 10 it is slightly liberal for
d ≤ 30 while the approximation by the standard normal distribution is considerably liberal for
all n andd ≤ 500.
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Figure 3: Simulated type-I error rates of the StatisticWn when compared with theKf -
approximation based onf = fP and the asymptotic standard normal distribution (τP → 0)
for different dimensions and sample sizesn = 10, 20, 50: similar as in Figure 2. The horizontal
grid lines denote the99% random interval forα = 5% (left) andα = 1% (right), respectively.

The simulations for the other settings of covariance matrices and hypotheses showed a simi-
lar quality of the approximation. All results are displayedin Tables 3 - 4 for the approximations
by the sequence of the(χ2

fP
− fP )/

√
2fP -distributions. For brevity, we only show the results

for n = 20 and note that forn = 50 the approximation was equally accurate. For the ex-
tremely small sample size ofn = 10, the results are a bit less accurate, but still acceptable. The
simulated5% level ranged from0.0471 to 0.0590 while the1% level ranged from0.0041 to
0.0091. The detailed results are shown in the supplementary material, see Pauly, Ellenberger,
and Brunner (2013). A slight liberality of the test based onWn in (2.11) and the approxima-
tion by the(χ2

fP
− fP )/

√
2fP -distribution was corrected by multiplyingWn with

√
(n− 1)/n

which leads to the recommendation usingWn

√
(n− 1)/n as a statistic for testing the hypothe-

sisH0 : Tµ = 0 in a high-dimensional one-group repeated measures design and approximating
its distribution by the(χ2

fP
− fP )/

√
2fP -distribution. This is a similar correction as used for

theF -approximation in the case of a two moment matching, see Brunner, Becker and Werner
(2009) for a theoretical argument.

14



Table 1 Simulated type-I error rates for an autoregressive structure AR(ρ) for ρ = 0.6 where
A = (aij)i,j=1,...,d andaij = ρ|i−j|.

AR(0.6):Σ = T (A+ cJd)T , aij = ρ|i−j|

c = 0 andT = Id c = 1 andT = Id c = 0 andT = P d

d τP 5% 1% τP 5% 1% τP 5% 1%
3 0.759 0.0509 0.0092 0.946 0.0530 0.0104 0.648 0.0523 0.0094
5 0.594 0.0497 0.0093 0.916 0.0537 0.0099 0.489 0.0502 0.0093

10 0.359 0.0502 0.0098 0.870 0.0530 0.0104 0.338 0.0490 0.0093
20 0.193 0.0490 0.0095 0.876 0.0521 0.0098 0.199 0.0507 0.0095
30 0.131 0.0495 0.0094 0.890 0.0529 0.0102 0.137 0.0499 0.0097
50 0.080 0.0496 0.0092 0.916 0.0522 0.0099 0.083 0.0492 0.0097

100 0.041 0.0501 0.0096 0.949 0.0539 0.0100 0.041 0.0490 0.0097
500 0.008 0.0496 0.0095 0.988 0.0554 0.0105 0.008 0.0492 0.0089

1000 0.004 0.0498 0.0096 0.994 0.0523 0.0097 0.004 0.0483 0.0091

Table 2 Simulated type-I error rates for an autoregressive structure AR(d, ρ) for ρ = 0.6 where
the correlation depends on the dimension,i.e., A = (aij)i,j=1,...,d andaij = ρ|i−j|/(d−1).

AR(d, 0.6):Σ = T (A+ cJd)T , aij = ρ|i−j|/(d−1)

c = 0 andT = Id c = 1 andT = Id c = 0 andT = P d

d τP 5% 1% τP 5% 1% τP 5% 1%
3 0.920 0.0530 0.0094 0.982 0.0530 0.0099 0.710 0.0510 0.0068
5 0.949 0.0510 0.0095 0.989 0.0537 0.0101 0.691 0.0508 0.0182

10 0.962 0.0547 0.0101 0.992 0.0533 0.0102 0.731 0.0520 0.0085
20 0.966 0.0548 0.0106 0.993 0.0541 0.0099 0.749 0.0515 0.0186
30 0.968 0.0545 0.0102 0.993 0.0533 0.0102 0.753 0.0519 0.0182
50 0.968 0.0552 0.0102 0.993 0.0529 0.0096 0.755 0.0524 0.0184

100 0.969 0.0520 0.0100 0.993 0.0526 0.0104 0.756 0.0513 0.0082
500 0.970 0.0523 0.0095 0.993 0.0538 0.0103 0.757 0.0519 0.0102

1000 0.970 0.0544 0.0103 0.993 0.0531 0.0099 0.757 0.0509 0.0098

Tables 1-4 display the simulated type-I error rates (5% and1% levels) for different covari-
ance structures for the hypothesisH0 : Tµ = 0, whereT = Id for c = 0 or c = 1, and
T = P d for c = 0. For a sample size ofn = 20, the statisticWn

√
(n− 1)/n is compared

with the (χ2
fP

− fP )/
√
2fP -distribution inNsim = 105 simulation runs. The parameterfP is

estimated bŷfP = B3
2/B

2
3 whereB2 andB3 are given in (2.9) and (3.15), respectively.
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Table 3 Simulated type-I error rates for a compound symmetry structure CS,i.e.,A = Id+Jd.

CS:Σ = T 2 + cTJdT

c = 0 andT = Id c = 1 andT = Id c = 0 andT = P d

d τP 5% 1% τP 5% 1% τP 5% 1%
3 0.333 0.0495 0.0070 0.747 0.0557 0.0092 0.500 0.0505 0.0083
5 0.200 0.0494 0.0075 0.756 0.0561 0.0103 0.250 0.0496 0.0082

10 0.100 0.0479 0.0079 0.817 0.0573 0.0097 0.111 0.0492 0.0081
20 0.050 0.0495 0.0085 0.885 0.0562 0.0104 0.053 0.0483 0.0088
30 0.033 0.0490 0.0085 0.916 0.0580 0.0101 0.034 0.0489 0.0083
50 0.020 0.0493 0.0084 0.946 0.0571 0.0101 0.020 0.0484 0.0083

100 0.010 0.0486 0.0087 0.972 0.0580 0.0102 0.010 0.0487 0.0093
500 0.002 0.0485 0.0091 0.994 0.0538 0.0096 0.002 0.0497 0.0090

1000 0.001 0.0490 0.0092 0.997 0.0539 0.0105 0.001 0.0497 0.0089

Table 4 Simulated type-I error rates for a linearly decreasing (symmetric) Toeplitz structure
TO whereA = (aij)i,j=1,...,d andaij = 1− |i− j|/d.

TO:Σ = T (A+ cJd)T , aij = 1− |i− j|/d
c = 0 andT = Id c = 1 andT = Id c = 0 andT = P d

d τP 5% 1% τP 5% 1% τP 5% 1%
3 0.563 0.0509 0.0089 0.782 0.0513 0.0092 0.784 0.0519 0.0096
5 0.678 0.0517 0.0105 0.792 0.0515 0.0100 0.771 0.0520 0.0101

10 0.750 0.0521 0.0098 0.799 0.0523 0.0101 0.800 0.0534 0.0101
20 0.779 0.0521 0.0099 0.801 0.0518 0.0096 0.812 0.0513 0.0097
30 0.787 0.0520 0.0099 0.802 0.0529 0.0103 0.814 0.0525 0.0102
50 0.793 0.0527 0.0096 0.802 0.0518 0.0103 0.816 0.0522 0.0105

100 0.798 0.0522 0.0100 0.802 0.0507 0.0098 0.816 0.0514 0.0093
500 0.801 0.0514 0.0095 0.802 0.0536 0.0102 0.816 0.0513 0.0100

1000 0.802 0.0525 0.0093 0.802 0.0516 0.0097 0.816 0.0530 0.0106

Additional simulation results for theWn statistic under different alternatives have been car-
ried out in Ellenberger (2011) and are omitted for brevity. The main result is that the power
depends on the type of the alternative. For a one point alternative the power becomes larger
with decreasing dimensiond, whereas for a trend alternatives it becomes larger with increasing
dimensiond.

6 Analysis of the Data Example

Finally, we analyze the sleep lab example from Section 1 by means of the above presented
methods based on the test statisticWn. Figure 1 shows the Prostaglandin-D-synthase levels of
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n = 10 independent observations from healthy male subjects withd = 18 time points through
3 consecutive nights. Here we like to examine the following null hypotheses:

• H0(A): There is no factor effect A (intervention)

• H0(B): There is no factor effect B (time points)

• H0(AB): There is no interaction effect between intervention and time.

The results obtained by the statisticWn =
√
n− 1(Qn −B0)/

√
2nB2 based on an approxima-

tion by the suggested sequence of the standardizedχ2-distributionsKfP are shown in Table 5.

Table 5 Analysis of the sleep lab data from Figure 1: Shown are thep-values of theWn-test
based on the approximation by the sequenceKfP of standardizedχ2-distributions (Wn ∼ Kf ).

Hypothesis Wn df p-values
H0(A) 1.862 1.29 0.0572
H0(B) 3.420 5.00 0.0094
H0(AB) -0.706 10.00 0.7401

A highly significant time effect is detected while there is noevidence for an interaction. The
result for the intervention is borderline. It may be noted that in Ahmad, Werner and Brunner
(2008) the data for the female patients are analyzed, whereas here we analyze the data for the
male patients.

7 Conclusions and Discussion

We have considered a one-group high-dimensional repeated measures setting where a factorial
structure of the repeated measures is allowed. Assuming a multivariate normal distribution of
the repeated measures, procedures for testing the common linear hypotheses about the expec-
tations have been derived. We did not assume any particular structure of the covariance matrix
Σ = TV T since a misspecification may lead to biased results. If the numbern of the inde-
pendent observation vectors is larger than the dimensiond of these vectors then the classical
procedures of one-group profile analysis can be applied. If,however,d is larger thann then
these procedures are no longer valid. In this case, the quadratic formQn in (2.3) is used to
test a global hypothesisH0 : Tµ = 0 about the factors involved in this repeated measures
design. The scaled version of this quadratic formQn/ tr(Σ), as suggested by Box (1954) and
Geisser and Greenhouse (1958), cannot be used for asymptotic considerations since it becomes
degenerate ford → ∞. Therefore, the standardized versioñWn = (Qn − tr(Σ))/

√
2 tr(Σ2)

of Qn had been considered in the literature. Its asymptotic distribution forn, d → ∞ had been
derived by several authors under different assumptions on the eigenvalues of the covariance
matrix Σ. In practical data analysis, however, these assumptions are not always fulfilled and
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moreover, they are difficult to verify. Therefore, it was ouraim to study the behavior of̃Wn

(or of its studentized formWn) if these assumptions do not hold. It turned out thatWn can
have different asymptotic distributions depending on the eigenvalues ofΣ and it was discussed
that these distributions may differ according as a random subject effect is included or not and
on how the number of time points,i.e., on howd → ∞, is increased. Thus, the asymptotic
distribution ofWn cannot be approximated by one distribution (as a standard normal or a stan-
dardized(χ2

1 − 1)/
√
2-distribution) since this may lead to inaccurate results. Instead we have

suggested to approximate the asymptotic distribution by the sequenceKf = (χ2
f − f)/

√
2f

of standardizedχ2-distributions. The parameterf was chosen such that mean, variance and
skewness ofKf andW̃n coincide. The unknown parameterf is estimated byfP = B3

2/B
2
3 ,

whereB3 is aU-statistic for the parametertr(Σ3). For the derivation of the possible asymptotic
distributions, the ratio-consistency of the involved unbiased estimatorsB0, B2, andB3 for the
tracestr(Σ), tr(Σ2), andtr(Σ3), respectively, was utilized as a key property. This approach
leads to asymptotic valid testing procedures in case of asymptotically negligible (τBS → 0) or
crucial (τBS → 1) impact of the largest eigenvalue ofΣ

2. This is easily seen from the fact that
Kf → N(0, 1) weakly if τBS → 0 andKf → (χ2

1 − 1)/
√
2 weakly if τBS → 1. Moreover,

in the cases betweenτBS → 0 and τBS → 1 it provides a quite good approximation of the
unknown distribution ofWn.

In an extensive simulation study, presented in the paper andthe supplementary material, the
behavior of the suggested approximation technique was evaluated for varying combinations of
n andd as well as different covariance structures (covering the different limit distributions). It
was observed that the procedure is quite accurate, even for asmall size of the dimensiond and
the sample sizen.

Finally, we like to note that the asymptotic results derivedin the current paper are robust
to the imposed assumption on multivariate normality. In particular, based on additional results
from Ellenberger (2011) and Pauly (2009), it can be shown that similar asymptotics can be de-
rived in the context of the more general model considered by Bai and Saranadasa (1996). How-
ever, the corresponding proofs involve lengthy derivations and need further technical results
which are of its own interest and will therefore be deferred to a subsequent paper. Moreover, a
corresponding two sample case where also a potential interaction between the gender and the
cause of the time curve is of potential interest will be left to further investigations. In this case
also permutation techniques similar to those developed by Pesarin and Salmaso (2010, 2012) or
Pauly, Brunner and Konietschke (2015) will be left to futureresearch.
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8 Appendix

For the ease of convenience we partially suppress as above the dependencies ond or onn.

Proof of Theorem 2.1.We rewriteW̃n as

W̃n =
Qn − tr(Σ)√

2 tr(Σ2)
=

Qn −
∑d

s=1 λs√
2
∑d

s=1 λ
2
s

=
d∑

s=1

as
C2

s − 1√
2

,

with the arrayas = λs/
√∑d

r=1 λ
2
r and row-wise independent and identically distributed ran-

dom variables(C2
s − 1)/

√
2 with mean0 and variance1. Since the coefficientsas fulfill the

conditions

max
1≤s≤d

|as| −→ 0 and
d∑

s=1

a2s = 1,

the result (a) follows from Theorem1 in Hájek,Šidak, and Sen (1999, p. 184), see also Theo-
rem 1(a) in Zhang (2005).
For case (b) recall that the eigenvalues are assumed to be ordered,i.e. λ1 ≥ λ2 ≥ · · · ≥ λd.
Thus, the sequenceas is ordered as well. We now write

W̃n = a1
C2

s − 1√
2

+

d∑

s=2

as
C2

s − 1√
2

= a1
C2

s − 1√
2

+R.

Here the first part is asymptotically standardized(χ2− 1)/
√
2-distributed by Slutsky’s Lemma.

Moreover, the second part is asymptotically negligible sinceE(R) = 0 and

Var(R) =
d∑

s=2

a2s = 1− a21 → 0.

Hence (b) follows from another application of Slutsky’s Lemma.
Finally, the prove of (c) follows in a similar way as in the proof of Theorem 3.1 in Jentsch and
Pauly (2012) or Pauly (2009) by applying a truncation argument. First note that for each fixed
r ≤ d we have convergence in distribution

W̃ (r)
n =

r∑

s=1

as
(C2

s − 1)√
2

d−→
r∑

s=1

bs
(C2

s − 1)√
2

= V
(r)
1

asn, d → ∞. Here the sequence of limit variables(V (r)
1 )r is a Cauchy sequence inL2 since

Var

( r2∑

s=r1

bs
(C2

s − 1)√
2

)
=

r2∑

s=r1

b2s ≤ ǫ
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for all ǫ > 0 and sufficiently larger1 ≤ r2. This implies thatV (r)
1 converges in distribution to

V
(∞)
1 asr → ∞. Moreover, since

Var(W̃n − W̃ (r)
n ) =

∞∑

s=r+1

a2s = 1−
r∑

s=1

a2s −→ 1−
r∑

s=1

b2s

asn, d → ∞ it follows that lim
r→∞

lim sup
n,d→∞

Var(W̃n − W̃ (r)
n ) = 0. The result for̃Wn follows then

from Theorem 4.2 in Billingsley (1968). 2

Proof of Theorem 2.2.Consider the statisticWn in (2.11). We have by (2.10) that

Wn =
Qn − B0√

2B2

=

(
Qn − tr(Σ)√

2 tr(Σ2)
− (B0 − tr(Σ))√

2 tr(Σ2)

)√
2 tr(Σ2)√
2B2

=

(
Qn − tr(Σ)√

2 tr(Σ2)
− (B0 − tr(Σ))√

2 tr(Σ2)

)
(1 + op(1))

=

(
Qn − tr(Σ)√

2 tr(Σ2)
+ op(1)

)
(1 + op(1))

=
Qn − tr(Σ)√

2 tr(Σ2)
+ op(1) = W̃n + op(1).

Hereop(1) denotes expressions that are asymptotically negligible inprobability. The result now
follows from Theorem 2.1 and Slutsky’s Lemma. 2

LEMMA 8.1 We have the following relationship between the different conditions on the covari-
ance matrices

0 ≤ τB ≤ τP ≤ τCQ ≤ τ 2BS≤ τBS≤ 1, (8.17)

and asd → ∞

τP −→ 0 ⇔ τCQ −→ 0 ⇔ τBS−→ 0, (8.18)

τP −→ 1 ⇔ τCQ −→ 1 ⇔ τBS−→ 1. (8.19)
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Proof. From Cauchy-Schwarz inequality it follows that
(∑d

s=1 λ
(a+b)
s

)2 ≤
∑d

s=1 λ
2a
s ·
∑d

s=1 λ
2b
s

for all a, b > 0. Hence the inequality (8.17) follows from

0 ≤ τB =
tr(Σ2)

tr2(Σ)
· tr

2(Σ3)

tr2(Σ3)

≤ tr(Σ2) · tr2(Σ3)

tr4(Σ2)
= τP

≤ tr(Σ2) · tr(Σ4)

tr3(Σ2)
= τCQ =

∑
s λ

4
s

tr2(Σ2)

≤ max2i (λi)
∑

s λ
2
s

tr2(Σ2)
= τ 2BS ≤ τBS ≤ 1.

Moreover, the equivalences in (8.18) and (8.19) ford → ∞ are derived by sandwiching

τ 6BS =
(maxi λi)

6

tr3(Σ2)
=

(maxi λ
3
i )

2

tr3(Σ2)
≤ (
∑

s λ
3
s)

2

tr3(Σ2)
= τP. 2

In order to prove Theorem 3.1 we first have to summarize some properties of the estimator
B3 given in (3.15) which is defined asB3 =

(
n
3

)−1∑
k<ℓ<r AkℓAℓrArk, whereAkℓ = X ′

kTXℓ.

THEOREM 8.2 UnderH0 : Tµ = 0 it holds that

(a) EH0
(B3) = tr(Σ3),

(b) VarH0
(B3/(tr(Σ

2))3/2) = O(n−1), and

(c) B2
3/B

3
2 is a consistent estimator ofτP = 1/fP uniformly in the dimensiond.

Proof. SinceB3 is a U-statistic with kernelh3(Xk,Xℓ,Xr) = AkℓAℓrArk, it is an unbiased
estimator ofE(AkℓAℓrArk) = tr(Σ3) for k < ℓ < r. Moreover, Theorem12.3 in van der Vaart
(1998) implies

Var(B3) =

(
n

3

)−1 3∑

c=0

(
3

c

)(
n− 3

3− c

)
ζc =

3∑

c=1

O(n−c)ζc , (8.20)

whereζ0 = 0 andζc is the covariance betweenh3 (Xk1,Xk2 ,Xk3) andh3 (Xℓ1 ,Xℓ2,Xℓ3) if
c > 0 indices coincide. HereO is the commonly used Landau symbol. It is shown in Lemma 1.1
in the supplementary material thatζi = O(tr3(Σ2)) holds for alli = 1, 2, 3. Hence the variance
formula follows from the inequalitytr2(Σ3)/ tr3(Σ2) ≤ 1. Then the consistency ofB2

3/B
3
2 is

a direct consequence of the ratio-consistency ofB2 which is known from Ahmad, Werner, and
Brunner (2008). 2
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Proof of Theorem 3.1.Note, that condition (2.5) impliesfP → ∞ by Lemma 8.1. Thus
part (a) is a direct consequence of the classical Central Limit Theorem. Moreover, again by
Lemma 8.1, the convergence (2.6) yieldsfP → 1 and part (b) follows from Lévy’s continuity
theorem since the characteristic function of aΓ(ν/2, 2)-distribution is continuous inν. Finally,
the second part is a consequence of the ratio consistency off̂P stated above in Theorem 8.2.

2

Supplement

In the supplement to the current paper (cf. Pauly, Ellenberger, and Brunner, 2013) we provide
additional technical results as well as supporting simulations for the investigated approximation.
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