
PERMUTATION TESTS AND CONFIDENCE INTERVALS FOR
THE AREA UNDER THE ROC-CURVE

MARKUS PAULY, THOMAS ASENDORF, AND FRANK KONIETSCHKE

Abstract. We investigate rank-based studentized permutation methods for the
nonparametric Behrens-Fisher problem, i.e. inference methods for the area under
the ROC-curve (AUC). We hereby prove that the studentized permutation distri-
bution of the Brunner-Munzel rank statistic is asymptotically standard normal,
even under the alternative. This does not only imply consistency of the corre-
sponding permutation test, but also that confidence intervals for the underlying
treatment effects can be computed. The result further implies that the Neubert
and Brunner studentized permutation test can be inverted for the computation of
confidence intervals. In addition, we derive permutation-based range-preserving
confidence intervals. Extensive simulation studies show that the permutation
based confidence intervals appear to maintain the pre-assigned coverage prob-
ability quite accurately (even for rather small sample sizes). For a convenient
application of the proposed methods, a freely available software package for the
statistical software R has been developed. A real data example illustrates the
application.

1. Introduction

The aim of a diagnostic test is the investigation of the ability to distinguish be-
tween diseased and non-diseased subjects (ensured by a gold standard) of a certain
diagnostic modality. Hereby its accuracy can be quantified by various measures. In
case of binary end-points, e.g. pregnant or non-pregnant, the sensitivity and the
specificity are usually assessed. They are defined as the probabilities of the test
correctly identifying the diseased and non-diseased subjects, respectively. When
the end-points of the diagnostic test are measured on a metric or an ordinal scale,
a cut-off value k has to be chosen in order to compute sensitivity and specificity.
Each decision limit k may yield a different 2 × 2-table of dichotomized test results
versus the true disease status. Thus, sensitivity and specificity can be estimated
from each decision limit k. However, as k decreases, sensitivity increases while
specificity decreases, and vice versa. Thus, there is a trade-off between sensitivity
and specificity as the decision limit varies, see e.g. Kaufmann et al. (2005). A
summary measure of this discriminatory accuracy is the so-called receiver operating
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characteristic (ROC)-curve, which is a plot of the sensitivity versus 1− specificity
for varying thresholds k. The upper left corner of the graph represents perfect dis-
crimination, while the diagonal line represents a discrimination which is not better
than chance. Kaufmann et al. (2005) point out that the ROC curve of a diagnostic
test is invariant with respect to any monotone transformation of the test measure-
ment scale for both diseased and non-diseased subjects, while being independent of
the prevalence of disease in the sample. Therefore, the ROC-curve is an adequate
measure for comparing diagnostic tests on different scales. In particular, the area
under the ROC-curve (AUC) represents an accuracy measure, which is independent
from the chosen cut-off value, and which is invariant under any monotone transfor-
mation of the data. If the AUC is 1, then the diagnostic test will be referred to be
a perfect test, while an AUC of 1/2 represents a diagnostic test being as good as
chance. Figure 1 presents the corresponding ROC-curves for a perfect, imperfect
and an realistic diagnostic test. Therefore, no diagnostic accuracy can be expressed
as AUC = 1/2. Lange and Brunner (2012) have further shown that the analysis
of sensitivity, specificity and the AUC can be unified, i.e. sensitivity and specificity
are areas under certain ROC-curves. In diagnostic trials, particularly in imaging
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Figure 1. ROC-curves and their AUC’s: Perfect diagnose (left;
AUC=1), Imperfect diagnose (middle; AUC=1/2), Suitable diagnose
(right; AUC=0.8)

studies, ordered categorical data scores are usually used to assess the severity of a
disease. Therefore, parametric approaches in terms of mean based procedures are
inadequate for testing the null hypothesis

H0 : AUC = 1/2.

Brunner and Munzel (2000), Kaufmann et al. (2005) and Neubert and Brunner
(2007) propose rank methods for the analysis of diagnostic tests. In particular,
Neubert and Brunner (2007) propose a studentized permutation test in the Brunner-
Munzel rank statistic for H0 and have heuristically shown that their test is asymp-
totically valid under the null, i.e. keeps the type-I-error level for large sample sizes.
In this paper we give a rigorous proof of this result and also analyze the behaviour of
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their studentized permutation test under the alternative. To this end we prove that
the permutation distribution of the Brunner-Munzel rank statistic is asymptotically
standard normal for any underlying value of the AUC, i.e. not only under H0 but
also for AUC 6= 1/2. This is not only important for deducing the consistency of
their test but it has the additional advantage that this permutation technique can
also be applied for constructing adequate confidence intervals.

Note, that nonparametric ranking procedures are invariant under any monotone
transformation of the data and are preferred for making statistical inferences. In
diagnostics, however, p-value based approaches are not sufficient for the analysis of
diagnostic tests. We particularly favor confidence intervals since they allow both a
proof of hazard and a proof of safety, and we focus on the interpretation of an effect
size instead of a probability (p-value), according to the EMEA recommendation for
the evaluation of diagnostic agents:“... Ideally, the impact on diagnostic thinking
should be presented numerically; the rate of cases where diagnostic uncertainty with a
new agent has been decreased (as compared to pre-test diagnosis established by mean
of a conventional work including the comparator) should be analysed and reported
(percentage, and confidence intervals)...” (EMEA 2008, chapter 5.2.3, p. 13).
Brunner and Munzel (2000) propose asymptotic as well as approximate confidence
intervals for the AUC. Kaufmann et al. (2005) state that these confidence intervals
may not be range preserving, i.e., the lower / upper bounds may be smaller than
0/1, respectively. Range preserving confidence intervals are achieved by using the
delta method (Kaufmann et al., 2005). Simulation studies indicate, however, that
all of these procedures tend to be quite liberal or conservative when the true AUC
is large (e.g. AUC ≥ 0.7) and sample sizes are rather small. Small sample sizes,
however, occur frequently in practice, e.g. in cancer diagnostic trials. It is the aim of
the present paper to improve the existing procedures for small sample sizes. Hereby,
we propose an unified studentized permutation approach by investigating the condi-
tional studentized permutation distribution of Brunner and Munzel’s (2000) linear
rank statistic for the nonparametric Behrens-Fisher problem. Janssen (1997, 2005)
proposes studentized permutation tests for the parametric Behrens-Fisher problem,
whereas Fay and Proschan (2010) discuss test recommendations in both Behrens-
Fisher problems. Moreover, Janssen (1999), Pauly (2011b), Konietschke and Pauly
(2012, 2014), Omelka and Pauly (2012) as well as Pauly et al. (2014) support the
use of studentized permutation tests for other testing problems.
Permutation and randomization based procedures for comparing ROC curves or
for testing H0 : AUC = 1/2 were proposed by Venkatraman and Begg (1996),
Venkatraman (2000), Bandos et al. (2005, 2006), Neubert and Brunner (2007) as
well as Braun and Alonzo (2008). Recently, Jin and Lu (2009) have also applied a
permutation test based on the Mann-Whitney statistic estimate of the AUC to test
for non-inferiority. More details about permutation and randomization tests can be
found in the monographs of Basso et al. (2009), Good (2005) as well as Pesarin and
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Salmaso (2010).
Note that all of the above mentioned randomization tests for the ROC curve or
AUC are only reasoned by extensive simulation studies, heuristics and/or under
invariance properties (as exchangeability) of the data. In this paper we will extend
these results to non-exchangeable data. In particular, we prove that rank-based
tests and confidence intervals derived from studentized permutation statistics are
even asymptotically exact if the data is not exchangeable (e.g. heteroscedastic)
and retain the finite exactness property under exchangeability. These nice features
will then be demonstrated by simulation studies, where we will see that our new
approach is more accurate than its competitors. Finally we illustrate the procedures
using a real data set from a sonography ultra-sound imaging study.
The paper is organized as follows. In Section 2 we explain the underlying model and
introduce the AUC. The current state of the art for constructing tests and confidence
intervals for this quantity is picked up in Section 3, whereas our improved proposal
based on permutation is considered in Section 4. An extensive Simulation study
as well as the practical data example is presented in Sections 5 and 6. Finally all
proofs are given in the Appendix.

2. Statistical Model

We consider a diagnostic trial involving N independent subjects in total, which
may be partitioned into two groups containing n1 non-diseased subjects in group 1
and n2 diseased subjects in group 2, respectively, as classified by a gold-standard.
Let Xij denote the jth replicate in the ith group, i = 1, 2. Without loss of
generality we assume that lower values of the outcome are associated with non-
diseased subjects. To allow for continuous and discontinuous data in a unified
way, let Fi(x) = P (Xi1 < x) + 1/2P (Xi1 = x) denote the normalized version
of the distribution function, which is the average of the right continuous version
F+
i (x) = P (Xi1 ≤ x) and the left continuous version F−i (x) = P (Xi1 < x) of the

distribution function, respectively. In the context of nonparametric models, the
normalized version of the distribution function Fi(x) was first mentioned by Lévy
(1925). Later on, it was used by Ruymgaart (1980), Akritas, Arnold and Brunner
(1997), Munzel (1999), Gao et al. (2008), among others, to derive asymptotic results
for rank statistics including the case of ties in a unified way. We note that the Fi
may be arbitrary distributions, with the exception of the trivial case of one-point
distributions. The general model specifies only that

Xij ∼ Fi, i = 1, 2; j = 1, .., ni, (2.1)

and does not require that the distributions are related in any parametric way.
The distributions F1 and F2 can now be used for the definition of accuracy measures.
The sensitivity of the diagnostic test is defined by SE(k) = 1− F2(k), which is the
probability of correctly classifying a diseased subject at a certain threshold value
k. Similarly, the specificity of the diagnostic agent is defined by SP (k) = F1(k),
i.e. the probability of correctly classifying a non-diseased subject. Finally, the ROC
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curve is obtained as the plot of the sensitivity SE(k) = 1 − F2(k) on the vertical
axis versus 1−SP (k) = 1−F1(k) on the horizontal axis as the cut-off value k varies
from −∞ to ∞ (see Figure 1). Therefore, the area under the ROC-curve (AUC) is
given by

p = AUC =

∫ ∞
−∞

F1(k)dF2(k) = P (X11 < X21) +
1

2
P (X11 = X21), (2.2)

which is also known as the relative effect in the literature (see, e.g. Brunner and
Munzel 2000; Neubert and Brunner 2007). For the special case of ordinal data, p is
also known as ordinal effect size measure (Ryu 2009; Ryu and Agresti 2008). Note
that p is also estimated by the Mann-Whitney statistic. The intuitive interpretation
of the AUC is as follows: if the observations coming from F1(x), i.e. from the
non-diseased subjects, tend to be smaller than those coming from F2(x), i.e. from
the diseased subjects, then p > 1/2. This means that this probability measures a
separation of the two populations of diseased and non-diseased subjects: the larger
the deviation from 1/2 (which means no discrimination), the larger is the separation
of the two populations. Therefore the AUC is used as a summary index for the
accuracy of a diagnostic test, see, e.g., Kaufmann et al. (2005) for further details.

2.1. Point estimators and their limiting distribution. Rank estimators of the
AUC p defined in (2.2) are derived by replacing the unknown distribution functions
F1(x) and F2(x) by their empirical counterparts

F̂i(x) =
1

ni

ni∑
j=1

h(x−Xij), (2.3)

where h(x) = 0, 1
2
, 1 according as x < 0, x = 0, x > 0, respectively (Ruymgaart

1980). The unbiased estimator

p̂ =

∫
F̂1dF̂2 =

1

n1

(
R2· −

n2 + 1

2

)
(2.4)

can be easily computed with the ranks Rij of Xij among all N observations. Here,
Ri· = n−1i

∑ni

j=1Rij denotes the mean of the ranks in group i, i = 1, 2. Brunner

and Munzel (2000) show that the standardized statistic
√
N(p̂ − p)/σN follows,

asymptotically, as min(n1, n2)→∞, a standard normal distribution, where

σ2
N =

N

n1n2

(n1σ
2
2 + n2σ

2
1) (2.5)

with σ2
1 = V ar(F2(X11)) and σ2

2 = V ar(F1(X21)). Here and throughout the paper
we assume that σ2

N > 0 holds. The unknown variance can be estimated by

σ̂2
N =

N

n1n2

(n1σ̂
2
2 + n2σ̂

2
1), (2.6)
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where σ̂2
i = S2

i /(N − ni)2 and

S2
i =

1

ni − 1

ni∑
j=1

(
Rij −R(i)

ij −Ri· +
ni + 1

2

)2

. (2.7)

Here, R
(i)
ij denotes the rank of Xij among all ni observations in group i, i = 1, 2.

The asymptotic distribution of
√
N(p̂ − p) can now be used for the derivation of

confidence intervals for the AUC p. This will be explained in the next section.

3. Tests and confidence intervals for the AUC

3.1. Asymptotic procedures. Based on the asymptotic normality of
√
N(p̂− p)

it follows by Slutsky’s theorem that

Tid :=

√
N(p̂− p)
σ̂N

.∼. N(0, 1). (3.1)

Hence a two-sided asymptotical level α test for H0 is given by ϕ = 1{|Tid| ≥ z1−α/2},
where z1−α/2 denotes the (1−α/2)-quantile from the standard normal distribution.
Moreover, by using the pivotal method, asymptotic (1− α)-confidence intervals for
p are given by

CIid =
[
p̂± z1−α/2/

√
Nσ̂N

]
. (3.2)

However, simulation studies indicate that these tests and confidence intervals tend
to be very liberal, even with moderate sample sizes ni ≡ 20. Small sample approxi-
mations of the distribution of Tid are discussed below.

3.2. Small sample approximations. Motivated by the Satterthwaite-Welch t-
Test (Welch 1947), Brunner and Munzel (2000) propose to approximate the distri-
bution of Tid as given in (3.1) by a central tf̂ -distribution with

f̂ =

(
2∑
i=1

S2
i /(N − ni)

)2

2∑
i=1

(S2
i /(N − ni))

2
/(ni − 1)

(3.3)

degrees of freedom. Thus, approximate (1 − α)-confidence intervals for p are given
by

CIt =
[
p̂± t1−α/2,f̂/

√
Nσ̂N

]
, (3.4)

where t1−α/2,f̂ denotes the (1 − α/2)-quantile from the central tf̂ -distribution with

f̂ degrees of freedom as given in (3.3). Similarly, the Brunner and Munzel (2000)
test is obtained by substituting z1−α/2 in ϕ with t1−α/2,f̂ .

Moreover, we note that both the confidence intervals CIid and CIt defined in (3.2)
and (3.4) may not be range preserving. Kaufmann et al. (2005) therefore propose
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range preserving confidence intervals. They are calculated by using the so called
δ-method with a differentiable function g : (0, 1)→ (−∞,∞) by

Tg :=

√
N (g(p̂)− g(p))

g′(p̂)σ̂N

.∼. N(0, 1), (3.5)

where g′(x) denotes the first derivative of g(x) which is assumed to be non-zero
valued around p. In particular we will be using the logit and probit transformation,
which are defined as g(x) = logit(x) = log(x/(1 − x)) with g′(t) = 1/(x − x2)
and g(x) = probit(x) = Φ−1(x) with g′(t) = 1/ϕ(Φ−1(t)), where Φ denotes the
distribution function and ϕ the density of the standard normal distribution. The
inverse are given by logit−1(x) = exp(x)/(1 + exp(x)) and probit−1(x) = Φ(x).
Hence, range preserving (1− α)-confidence intervals are given by

• g = logit:

CIlogit =

[
logit−1

(
logit(p̂)±

z1−α/2σ̂N

p̂(1− p̂)
√
N

)]
(3.6)

• g = probit:

CIprobit =

[
Φ

(
Φ−1(p̂)±

z1−α/2
√

2πσ̂N
exp{−1/2(Φ−1(p̂))2}

)]
. (3.7)

The coverage probabilities of both the confidence intervals CIt in (3.4) as well as
the range preserving confidence intervals CIg in (3.6) and (3.7), respectively, can
be improved by not using the critical values z1−α/2 or t1−α/2,f̂ , but by estimating
the critical values from the so-called studentized permutation distributions of Tid in
(3.1) and Tg in (3.5). This will be explained in the next section.

4. A studentized permutation approach

As already mentioned above Brunner and Munzel (2000) have suggested to approx-
imate the distribution of Tid by a student-t distribution with according degrees of
freedom. With that choice the accuracy of the corresponding confidence intervals
(as well as the exactness of the corresponding tests) increases with small sample
sizes, see Section 5 below. However, for unbalanced designs and small sample sizes
its accuracy is still not satisfactorily. Therefore we propose the usage of a data-
dependent studentized permutation method. Let us shortly recall the main idea,
where the case g = id corresponds to the test given in Neubert and Brunner (2007).
We pool the data of both groups, randomly permute it and calculate the empiri-
cal effect, say p̂τ , of the permuted data. Heuristically each permuted observations
should have the same effect p = 1/2 and the corresponding permuted test statistics,
say T τg , may be used to approximate the finite sample distribution of Tg and to con-
struct corresponding confidence intervals. Below we will characterize this procedure
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in detail and prove that it leads to asymptotic exact confidence intervals.
To describe our approach theoretically set

X = (X11, . . . , X1n1 , X21, . . . , X2n2) =: (Y1, . . . , YN)

for the pooled data and let τ be a random variable that is uniformly distributed on
the symmetric group SN , i.e. the set of all permutation of the numbers 1, . . . , N ,
being independent from the data X. For given X we then define the permuted
pooled sample as Xτ = (Yτ(1), . . . , Yτ(N)) and calculate

T τid =

√
N(p̂τ − 1

2
)

σ̂τN
, (4.1)

where p̂τ = p̂(Xτ ) and σ̂τN = σ̂N(Xτ ) are the estimated treatment effect and the
variance estimator (2.6) calculated from the permuted sample Xτ instead of the
original pooled sample X. In practice this means that we randomly permute the
pooled data and determine their (new) ranks to calculate the estimators p̂τ and σ̂τ

with the help of their rank expressions (2.4) - (2.7). Note, that the observed data is
permuted both between, as well as within the groups, making it possible that data
which was observed in the first group is permuted to be in the second group and
vice versa.
Our main result now states, that the conditional distribution of T τid given the data
X always (i.e. for any underlying AUC) approximates the null distribution of Tid.

Theorem 4.1. Let T τid as given in (4.1) and assume that n1/N → κ ∈ (0, 1). Then
we have convergence for arbitrary p

sup
x∈R
| P (T τid ≤ x | X)− PH0(Tid ≤ x) |→ 0 in probability, as N →∞. (4.2)

Moreover, the corresponding quantiles converges as well, i.e. if zτα denotes the α-
quantile of the conditional distribution of T τid we have

zτα → uα in probability as min(n1, n2)→∞
for all α ∈ (0, 1).

We note that this result proves that the Neubert and Brunner (2007) permutation
test ϕτ = 1{|Tid| ≥ zτ1−α/2} is i.) asymptotically exact under H0 and ii.) consistent,

i.e. it has asymptotic power of 1 for an arbitrary, but fixed AUC 6= 1/2.

The above theorem also states that the limiting distribution of T τid is standard nor-
mal and does not depend on the distribution of the data. In particular, it is achieved
for any underlying treatment effect p. Moreover, another application of the delta-
method for a differentiable function g as above proves that the conditional distribu-
tion of

T τg =

√
N(g(p̂τ )− g(1

2
))

g′(p̂τ )σ̂τN
, (4.3)

is asymptotically standard normal, i.e. (4.2) holds with T τid replaced by T τg .
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Hence we can use the data-dependent (1 − α/2) quantile zτ1−α/2 of the conditional
permutation distribution of T τg given the data X to calculate confidence intervals.
The theorem then guarantees that these permutation based confidence intervals are
asymptotically of level α.
The numerical algorithm for the computation of the permutation based confidence
intervals as well as the p-value for H0 : p = 1/2 is as follows:

(1) Given the data X, compute p̂, σ̂N and Tg as in (3.5).
(2) For a sufficiently large number of random permutations nperm (e.g. nperm =

10, 000), permute the data randomly, compute T τg given in (4.3) for each
permutation and save these values in A1, . . . , Anperm .

(3) Estimate zτ1−α/2 and zτα/2 by the empirical (1−α/2)- and (α/2)-quantile from
A1, . . . , Anperm .

Finally, the permutation based confidence intervals are given by

CIτg =

[
g−1

(
g(p̂)−

zτ1−α/2√
N

g′(p̂)σ̂N

)
; g−1

(
g(p̂)−

zτα/2√
N
g′(p̂)σ̂N

)]
, (4.4)

where g ∈ {id, logit, probit}. Estimate the two-sided p-value by

p-value = min{2p1, 2− 2p1}, where p1 =
1

nperm

nperm∑
`=1

1{Tg ≤ A`}.

5. Simulation Results

Neubert and Brunner (2007) have already investigated in extensive simulations that
the studentized permutation test ϕτ controls the pre-assigned type-I-error level α
accurately under the null, even for very small sample sizes and variuos underlying
distributions. Therefore we restrict the following simulation study to investigate the
small sample properties of the permutation based confidence intervals for the AUC.
We compare the confidence intervals CIid, CIlogit as well as CIprobit given in (3.2),
(3.6) and (3.7), respectively, by using the standard normal quantiles z1−α/2, t−
quantiles t1−α/2,f̂ or the permutation based quantiles zτ1−α/2 as given in (4.4). Thus,

9 different computation methods will be compared. The simulations vary in:

• The sample size of the diseased group of subjects (n1 = 5, 10, 20, 50)
• The sample size of the non-diseased group of subjects (n2 = 5, 10, 20, 50)
• The area under the curve (AUC = 0.50, 0.60, 0.70, 0.80)
• The distribution of the data (normal, logarithmic normal, exponential, uni-

form)

Due to the abundance of simulation results, we will merely present selected results
for sample size settings (n1, n2) = (5, 5), (5, 10), (10, 10), (10, 20). All further results
are given in the supplementary material. All simulations were run using R (R
Development Core Team, 2010) with nsim = 10, 000 simulation runs and nperm =
10, 000 random permutations. For an clear arrangement of the simulation results, we
compare the asymptotic and approximate confidence intervals with the permutation
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based confidence intervals with and without using a transformation function in the
next subsections.

5.1. Simulation results for untransformed confidence intervals. First we
consider the confidence intervals based on g = id. We investigate the behavior of the
confidence intervals CIid as given in (3.2), CIt given in (3.4) and of the permutation
based confidence intervals CIPermid as given in (4.4) with regard to maintaning the
pre-assigned coverage probability (95%) for varying true AUC’s, sample sizes and
data distributions. The simulation results are displayed in Figure 2. It can be readily
seen that the standard confidence intervals CIid and CIt tend to be highly liberal
when sample sizes are rather small (ni ≤ 10). On the contrary, the permutation
based confidence intervals maintain the pre-assigned coverage probability at best,
uniformly for all underlying data distributions (normal, uniform, log-normal, and
exponential). Even when sample sizes are extremely small (ni = 5) and in the case
of unbalanced data, the permutation based confidence intervals greatly improve
the standard intervals CIid and CIt. However, it can also be readily seen that all
investigated intervals tend to highly liberal decisions when the true AUC is large.
This effect is intuitively clear, since the variance of the estimator tends to close to be
zero. Hence, very large sample sizes are necessary to obtain accurate results when
AUC ≥ 80%. Next, the behavior of the range preserving confidence intervals will
be explored.

5.2. Simulation results for range-preserving confidence intervals. We inves-
tigate the behavior of the logit-type range-preserving confidence intervals CINormalLogit

as given in (3.6) using standard normal quantiles, CI tLogit given in (3.6) using t1−α/2,f̂
quantiles and of the permutation based confidence intervals CIPermLogit as given in (4.4)
with regard to maintaning the pre-assigned coverage probability (95%) for varying
true AUC’s, sample sizes and data distributions. The simulation results are dis-
played in Figure 3. It turns out that both the confidence intervals CINormalLogit and
CI tLogit tend to result in rather conservative conclusions, particularly for small sam-
ple sizes ni ≤ 10. When sample sizes are extremely small (ni = 5), their empirical
coverage probabilities are very close to 1, a rather inappropriate property. This
behavior can be detected for all kinds of investigated distributions. It can further
be seen that the permutation based range-preserving confidence intervals reduce the
amount of conservativity dramatically and maintain the pre-assigned coverage prob-
ability at best. However, a slightly conservative behavior can be detected. The same
conclusions can be drawn using the probit-transformation function in Figure 4.

6. Example - Sonography Ultra-Sound Imaging Study

We reconsider the sonography ultra-sound imaging diagnostic study (Kaufmann et
al. 2005) which was performed to assess leg or pelvic thrombosis in patients. The
aim of this trial is to compare the diagnostic accuracy of the contrast medium
Levovist, used in color-coded Doppler sonography, with non-enhanced sonography
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(Baseline). Sonography with and without Levovist was performed for each of the
n1 = 84 non-diseased and n2 = 111 diseased subjects as ensured by phlebography.
Two blinded readers R1 and R2 interpreted the images from different modalities,
sonography at baseline and Levovist-enhanced. Thus, the design of this trial is
a typical paired-case paired-reader design (Kaufmann et al. 2005). The response
variable is an ordered categorical score ranging from 1=”thrombosis definitely no”
through 5=”thrombosis definitely yes”.
We will estimate the AUC for each reader × modality combination seperately and
compute 95%-confidence intervals with the studentized permutation approach. Fig-
ure 5 displays the ROC-curves for each reader × modality combination. The es-
timated AUC’s as well as 95%-confidence intervals for each individual AUC are
displayed in Table 1.

Table 1. AUC estimates and permutation-based 95%-confidence in-
tervals for the sonography ultra-sound imaging diagnostic study.

Reader Modality AUC Estimate Transformation Lower Upper

1 Baseline 0.50 Logit 0.36 0.65
Probit 0.35 0.66

Levovist 0.82 Logit 0.69 0.90
Probit 0.69 0.90

2 Baseline 0.44 Logit 0.30 0.60
Probit 0.29 0.60

Levovist 0.67 Logit 0.50 0.80
Probit 0.50 0.80

Table 1 demonstrates that the contrast medium Levovist enhances the diagnostic
accuracy of sonography for both readers. Test results for the null hypotheses ,,no
reader effect”, ,,no modality effect” and ,,no interaction between reader and modal-
ity” are given in Kaufmann et al. (2005).

7. Discussion and conclusions

In this paper, we have investigated rank-based studentized permutation methods for
the nonparametric Behrens-Fisher problem, i.e. inference methods for the area un-
der the ROC-curve. In particular, we have theoretically shown that the studentized
permutation test proposed by Neubert and Brunner (2007) can be inverted for the
computation of confidence intervals for the underlying treatment. This property is
highly desirable for practical applications. Furthermore, we have shown that permu-
tation methods can be applied for the computation of range-preserving confidence
intervals. Extensive simulation studies show that the permutation based confidence
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intervals greatly improve the standard confidence intervals. However, all investi-
gated confidence intervals tend to be highly liberal when the true AUC is very large
and sample sizes occur. This liberality, however, decreases with larger sample sizes.

All investigated confidence intervals are implemented in the free R software package
nparcomp within its function npar.t.test (Konietschke et al. 2014). The use of the
function is as follows:

> data

Goldstandard Response

0 x

0 x

... ...

0 x

1 x

1 x

... ...

1 x

>library(nparcomp)

>npar.t.test(Response ~ Goldstandard, data=data, permu=TRUE,

asy.method="logit") # Logit-type

8. Appendix

In order to show that the permutation based confidence intervals are asymptotically
exact we need to prove conditional central limit theorems for the permutation statis-
tic given in Equation (4.1). Therefore we would like to point out that its studentized
version can be rewritten as a studentized two-sample rank statistic

√
N(p̂− 1

2
)

σ̂N
=

√
n1n2

N
1
N

(R2. −R1.)

VN
, (8.1)

where V 2
N =

n2σ̂2
1

N
+

n1σ̂2
2

N
. We will use this representation throughout the proofs for

technical reasons. Moreover, we also introduce the quantity H = κF1 + (1 − κ)F2

with its natural estimator Ĥ = N−1(n1F̂1 + n2F̂2).

Proof of Theorem 4.1
We will prove that the conditional distribution of the permutation version of the
statistic (8.1) is asymptotically standard normal for any treatment effect p. There-
fore we start by addressing the enumerator of (8.1). Note, that it can be rewritten
as

EN = EN(X) :=
N∑
i=1

cN,iĤ(XN,i),
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where

XN,i =

{
X1i, 1 ≤ i ≤ n1

X2i, n1 + 1 ≤ i ≤ N
cN,i =

√
n1n2

N

{
−1/n1, 1 ≤ i ≤ n1

1/n2, n1 + 1 ≤ i ≤ N

Let τ be uniformly distributed on the symmetric group SN , i.e. the set of all
permutations of the numbers 1, . . . , N , which is independent from the data X. Here
we understand independence in terms of an underlying product space, see e.g. the
notation in Janssen (2005), Pauly (2011a) or Omelka and Pauly (2012) for more
details. Denote the randomly permuted data by Xτ := (XN,τ(1), . . . , XN,τ(N)). Since

we have Ĥτ (t) := 1
N

∑N
i=1 1{XN,τ(i) ≤ t} = Ĥ(t) the permuted enumerator fulfills

Eτ
N := EN(Xτ ) (8.2)

=
√
N

N∑
i=1

cn,i
Ĥ(XN,τ(i))√

N
(8.3)

d
=
√
N

N∑
i=1

cn,τ(i)
Ĥ(XN,i)√

N
, (8.4)

where
d
= means equality in distribution. We will now apply Theorem 4.1 from Pauly

(2011a), see also Theorem 2.1 in Janssen (2005) for a more general version of this
conditional central limit theorem for real-valued arrays. Note that our permuted
coefficients (cN,τ(i))i fulfill Assumptions (2.3)-(2.5) in his paper. Hence it remains to
check his Conditions (4.1)-(4.2) in the case of dimension 1 (i.e. p = 1 in the notation

of his paper). Set ZN,i :=
Ĥ(XN,i)√

N
and note that we have convergence in probability

max
1≤i≤N

|ZN,i| −→ 0.

Moreover, we have by means of the Extended Glivenko-Cantelli theorem, see e.g. in
Shorack and Wellner (1986, Theorem 1 p.106), that

∑N
i=1(ZN,i − ZN))2 is asymp-

totically equivalent to

1

N

N∑
i=1

(H(XN,i)−
1

N

N∑
j=1

H(XN,j))
2.

Hence we can obtain from the law of large numbers that

N∑
i=1

(ZN,i − ZN)2 −→ σ2
τ

converges in probability as N →∞, where

σ2
τ := κE(H(X11)

2) + (1− κ)E(H(X21)
2)− [κE(H(X11)) + (1− κ)E(H(X21))]

2.
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Note, that our assumptions imply σ2
τ > 0. Thus Theorem 4.1 from Pauly (2011a)

shows conditional convergence in distribution of the permuted enumerator to a nor-
mal distribution with variance σ2

τ , i.e.

sup
x∈R
|P (Eτ

N ≤ x|X)− Φ(x/στ )| −→ 0 (8.5)

in probability as N →∞, where Φ denotes the distribution function of the standard
normal distribution.
It now remains to study the denominator of Tid or its squared version

V 2
N =

n2

N
σ̂2
1 +

n1

N
σ̂2
2. (8.6)

We will start by treating σ̂2
1. Note that it can be rewritten as

σ̂2
1(X) =

1

n1 − 1

n1∑
k=1

(F̂2(X1k)−
1

n1

n1∑
j=1

F̂2(X1j))
2.

Now its randomly permuted version behaves asymptotically as

1

n1

n1∑
k=1

(F̂ τ
2 (XN,τ(k))−

1

n1

n1∑
j=1

F̂ τ
2 (XN,τ(j)))

2, (8.7)

where now, different to the situation with Ĥ above, the permuted version

F̂ τ
2 (t) :=

1

2n2

N∑
j=n1+1

(
1{XN,τ(j) < t}+ 1{XN,τ(j) ≤ t}

)
of F2 is not invariant under the permutation of the data. Hence the summands

F̂ τ
2 (XN,τ(k)), 1 ≤ k ≤ n1, in (8.7) are dependent given the data X. However, using

a result from van der Vaart and Wellner (1996) we will see that there is asymptot-

ically no difference if we replace F̂ τ
2 by Ĥ. To be concrete, recall that the classes

F+ := {1{(−∞, t]} : t ∈ R} and F− := {1{(−∞, t)} : t ∈ R} are Donsker for
every underlying distribution, i.e. especially for F+

1 and F+
2 . Moreover, note that

every Donsker Theorem implies a Glivenko-Cantelli Theorem in probability. Hence
Theorem 3.7.1. in van der Vaart and Wellner (1996) together with the triangular
inequality imply that

sup
x∈R
|F̂ τ

2 (x)− Ĥ(x)| −→ 0

given X in probability. Together with the observations above from the first part of
the proof, this shows that σ̂2

1(Xτ ) is asymptotically equivalent (in probability) to

1

n1

n1∑
k=1

(H(XN,τ(k))−
1

n1

n1∑
j=1

H(XN,τ(j)))
2

=
1

n1

n1∑
k=1

H(XN,τ(k))
2 − (

1

n1

n1∑
j=1

H(XN,τ(j)))
2
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given the data X. Since H is bounded by 1, another application of Theorem 3.7.1.
in van der Vaart and Wellner (1996) on the simple class F := {H,H2} together with
the above considerations imply the convergence of

σ̂2
1(Xτ ) −→ σ2

τ

in probability. Since the same holds for σ̂2
2(Xτ ), it follows from the decomposition

(8.6) that V 2
N(Xτ ) converges in probability to σ2

τ as N →∞. Hence it follows from
(8.5) and Slutsky’s theorem that

sup
x∈R
|P (T τid ≤ x|X)− Φ(x)| −→ 0

converges in probability as N →∞ and the proof is completed.
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Figure 2. 95%-coverage probabilities of the three different confi-
dence intervals CIPermid as given in (4.4), CIid as given in (3.2) and CIt
given in (3.4) for different sample size constellations: Top left n1 = 5,
n2 = 5; top right n1 = 5, n2 = 10; down left n1 = 10, n2 = 10; down
right n1 = 10, n2 = 20.
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Figure 3. 95%-coverage probabilities of the three different confi-
dence intervals CIPermLogit as given in (4.4), CINormalLogit as given in (3.6) us-
ing standard normal quantiles and CI tLogit given in (3.6) using t1−α/2,f̂
quantiles for different sample size constellations: Top left n1 = 5,
n2 = 5; top right n1 = 5, n2 = 10; down left n1 = 10, n2 = 10; down
right n1 = 10, n2 = 20.
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Figure 4. 95%-coverage probabilities of the three different confi-
dence intervals CIPermProbit as given in (4.4), CINormalProbit as given in (3.7) us-
ing standard normal quantiles and CI tProbit given in (3.7) using t1−α/2,f̂
quantiles for different sample size constellations: Top left n1 = 5,
n2 = 5; top right n1 = 5, n2 = 10; down left n1 = 10, n2 = 10; down
right n1 = 10, n2 = 20.
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Figure 5. ROC curves of reader 1 and reader 2 for Levovist and the baseline.


