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Abstract

In this paper, a kernel estimator of the differential entropy of the mark distribu-
tion of a homogeneous Poisson marked point process is proposed. The marks have
an absolutely continuous distribution on a compact Riemannian manifold without
boundary. L? and almost surely consistency of this estimator as well as its asymp-
totic normality are investigated.
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1 Introduction

We consider a homogeneous Poisson marked point process (MPP) with marks from a
compact Riemannian manifold without boundary that are assumed to be independent
of the process. We are interested in detecting inhomogeneities in the distribution of the
marks by studying its differential (Shannon, Kolmogorov) entropy.

The concept of entropy was introduced by Shannon in [25] for the needs of information
theory and its origin lies in the classic Boltzmann entropy of thermodynamics. In Shan-
non’s original paper, entropy was defined both for discrete and continuous distributions
in R%. In the last case it is called differential entropy. This notion can be naturally
generalized (see e.g. [8, Section 14.8|) as follows: Let P be a probability distribution of
a random element X on an abstract measurable phase space M with probability density
f with respect to a certain reference measure . on M. The entropy of X is given by

& = ~Ep (g f(X)) = — [ f(0)log () n(da),

where the expectation Ep is taken with respect to the probability measure P. An overview
of nonparametric approaches to estimate the differential entropy for M = R¢ can be found
in [3]. Entropy estimation in discrete random settings has been treated in [16].
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In the present work, we consider a nonparametric plug-in estimate of the differential en-
tropy based on [I], which requires estimating the density of the distribution of interest
also in a nonparametric way. To this purpose we use kernel density estimation, a tech-
nique introduced for stationary sequences of real random variables by Rosenblatt [21] and
Parzen [17], extended to stationary real random fields in [9]. In the case of finite samples
of i.i.d random vectors on the sphere, nonparametric kernel estimation methods have
been studied in [10} 2], and extended to Riemannian manifolds in [19, 14]. Alternative
nonparametric estimators for the directional distribution in line and fiber processes have
been presented in [15].

The main result of our paper, Theorem [5.7, gives a central limit theorem (CLT) for an
estimator of the differential entropy of the mark distribution density f of a homogeneous
Poisson MPP as the observation window grows to R% in a regular manner. This result is
an application of the more general Theorem 5.1l of this type for sequences of m-dependent
random fields proved in Section

The paper is organized as follows: notation and basics of the theory of MPPs are given
in Section In Section [l we construct a nonparametric kernel density estimator of f
and give conditions for its LQAand almost surely consistency. In Section Ml we introduce
the nonparametric estimator £¢(B,,) of the entropy & of the density f in an observation
window B,, C R% and prove L?—consistency of this estimator when the window size grows
appropriately. Finally, we present in Section bl a CLT for random sums of m,,-dependent
random fields (cf. Corollary (.2)) where independence between the random number of
summands and the summands themselves is not assumed. A special case of this result is
applied to obtain a CLT of the entropy estimator.

2 Preliminaries

In this section, we briefly review basic notions from the theory of marked point processes.
For an introduction and summary on these and other models of stochastic geometry we
refer the reader to e.g. [27, 26, 23].

2.1 Poisson marked point processes

In the following, we consider II := {Y;};>1 to be a homogeneous Poisson point process on
R? of intensity A > 0. Moreover, we denote by (M, g) a compact smooth Riemannian
manifold of dimension p without boundary and with Riemannian metric g. We further
assume that (M, g) is complete, i.e. (M,d,) is a complete metric space, where d, denotes
the geodesic distance induced by the Riemannian metric g. The associated Riemannian
measure will be denoted by v,. A detailed construction of this measure can be found e.g.
in [22 p. 61]. Note that since M is compact, v, (M) is finite.

To each point Y; € II we attach a mark & € M and assume that the marks are i.i.d.
random variables independent of the location of the points in II. The collection ¥ :=



{(Y;, &), Y; € 11} is the Poisson marked point process we will work with. W can be seen as
a random variable with values in A/ := {¢ locally finite counting measure on R? x M}.
An important property of this process is stationarity, meaning that 7, ¥ L ¥ for all
y € R where the translation operator T}, is defined as T,o(B x L) := ¢(B +y x L) for
any Borel set B x L C R? x M and ¢ € N. We will assume that the probability law
of a typical mark &, has a density f: M — R with respect to the Riemannian volume
measure Ug.

Example 2.1. Let F be a random 1-dimensional line segment of finite length £ > 0 in RY
centered at the origin. We consider the Boolean model

O = U(Y@Fy),

Yell

where Fy is an independent copy of F' for each Y € Il and & denotes Minkowski addition.
The random set ® represents a system of independent fibers Fy whereas Y € Il is assumed
to be the middle point of Fy. To each point Y € II we attach a mark & € S9! that
represents the (random) unit direction vector of the fiber Fy. Here, M = S9! p =d—1,
and v, is the surface area measure on S%!.

2.2 Space of marks

Since our mark space is a manifold, we need to recall some useful concepts from Rieman-
nian geometry. For further details we refer to |5l 22].

Let 7,M denote the tangent space of M at n € M and let exp,: T,M — M denote
the exponential map. For any r > 0, By(n,r) == {v € M | d,(v,n) < r} defines a
neighborhood of 7, and we call it a normal neighborhood of n if there exists an open ball
V' C T,M such that exp,: V — By(n,r) is a diffeomorphism. The injectivity radius of
M is defined as inj, M := inf,cp sup{r > 0 | By(n,r) is a normal nbhd. of n}.

Let U be a normal neighborhood of n € M and let (U, 1) be the induced exponential
chart of (M, g). For any v € U, the volume density function introduced by Besse in [4]

p.154] is given by
9 9 ’
det (gy <a—¢l(l/)a a—%(v)))mzl

where g,,(a%i(u), %(1/)) denotes the metric g in normal coordinates at the point exp, ! v

(see e.g. [22, p.24]). Note that this function is only defined for points v € U such that
dg(n,v) < inj, M. Since M is smooth, 6, is continuous on M.

1/2

On(v) :==
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3 Kernel density estimator of the mark distribution

In this section, we introduce a kernel density estimator for the density of the mark
distribution on a growing observation window B!, C R? More precisely, we consider
a sequence {B! },en of bounded Borel sets of R? growing in the van Hove sense (v.H.-
growing sequence). This means that

B & B
lim |B)| = oo and lim —|6 »© By (o)

n—o0 n—oo |B;L|

=0

where B, (0) denotes the ball of radius 7 > 0 centered at the origin 0. Given a set B C R,
| B| will denote its d—dimensional Lebesgue measure, where d is the “correct” dimension
of B, i.e. the one for which B is a d—set. In this particular case, |B),| is the d-dimensional
volume of BY,.

3.1 The estimator

Let ¥ = {(Y;,&)}i>1 be an homogeneous Poisson marked point process of intensity A > 0.
We define the kernel density estimator

by 1 Livienyy - ((dy(n, &)
F) = X757 2 5, @)K( b, )

This is an extension of the estimator given by Pelletier in [19]. The sequence of band-
widths {b, }neny C R satisfies

(b1) b, <79 Vn €N, with 0 <7y <inj, M and Bin(f )Hz(n) > ( for any z € M.
neLy (2,70

(b2) b, |0,
!
(b3) h_)m DBl =
The kernel K: R, — R is a bounded nonnegative function satisfying
K1) [eo K([Jz])dz =1,

K2) 0 < fRP (=) H:cH dx =: Ky < 00,

K4

(K1)

(K2)

(K3) supp K = [0, 1],
(K4) sup,»o K(r) =: Ko < 00,
(K5)

K5) [on K(||z]))z dz = o.

We further assume that



(f1) f € L2(M), e | flly = [y [F (I dvg(n) < oo,

(f2) f has bounded Hessian on any normal neighborhood U C M, i.e. 3 Cy > 0 such
that | D%f]| < Cs.

Assumptions on the kernel are standard when dealing with nonparametric density esti-
mation [19, 28]. For the ease of notation, we will usually write

1 dg(n,§)
Fn(”v&) T b%en(£>K( gbn ) ) ﬁaf € M.

In case the observation window B, needs to be explicitly indicated in the notation, we
will write fp, instead of f,.

3.2 Consistency

In this section we prove L? and almost surely consistency of fn In what follows, w, will
denote the surface area of the unit ball in R? and we will write z - y for the Euclidean
scalar product of any two vectors z,y € RP.

Note that in the classical (Euclidean) setting one could shorten proofs by applying Fourier
methods [28]. However, in the general case of manifolds, this approach does not seem to
be possible.

Theorem 3.1. Under the assumptions (b1) — (b3), (K1) — (K5), (f1) and (f2) we have
that

E[l fn = fl3] < 7“7402 vy (M),

where Cp :=sup  sup  0,(n)"".
2€M neBp(z,r0)

Corollary 3.2. Under the above assumptions, it follows dzrectly from Theorem [3.1] that
fn is an L2-consistent estimator of f, i.e. E[||f, — f]|2] —=5

Corollary 3.3. Under the assumptions of Theorem[3.3 it holds that

E[| f(é0) — f(&)[F] == 0.

In order to prove these results, we establish some auxiliary lemmata.

Lemma 3.4. For eachn e M andn € N,

/BM(n,bn) bﬁ@i(z)K (dg(:’Z)) dug(z) = 1. (3.1)




Proof. Consider the exponential chart (U, ) of (M, g) introduced in Section 2.2 and set
z = exp,(z), B(0,b,) := exp, By(n,b,). Note that by definition (see [22, p.65] for
details) the Jacobian of the transformation |g(z)|"?

integral in (B.0]) thus becomes

1 1Y 10—
K dz = K dy = 1.
Sron ooy () o oy K (sl dy

7

coincides with 6, (exp,(x)). The

The calculations in the proof of this lemma lead to the useful equality

/ Lalvg(z) = / de = / dx = WP w,. (3.2)
Bz (n,bn) 977(2) B(0,bn) Qn(expn(x)) B(0,b)

We give next an asymptotic bound for the bias of fn

Lemma 3.5. For anyn € supp f and n € N
Bias(fn, 1) == [E[f ()] = f(n)] < 0;Co K.
Proof. Let n € supp f. By the Campbell theorem,
Bl = | Fuln. 20/ dvy(2) = EIF . 60) (33

Due to Lemma [3.4] and (K3) we have that
1 dg(naz) _ v (
/B (z)K ( b, ) (f(2) = f(n)) dvg(z)|.

M (n,bn) bﬁen

B [F(n, §0)] = f(n)] =

Consider now a normal neighborhood € U € M and a point = = (z',...,2?) € T,M in
normal coordinates, i.e. z = exp, (z). Further, define f := foexp,. The Taylor expansion
of f(z) around 7 in normal coordinates is

f(z) = f(z) = f(0) + VF(0)-z + Re(0, ),

where Ry(0,2) = O(z” D? f(0)x) is the second order reminder. From assumption (f2) we
have that | Ry (0, z)| < Cy ||z||* for all z € B(0, b, ), hence passing to the exponential chart
as in the proof of Lemma [3.4] yields

1 dy(n, 2) B (2
/BM(n,bn) bﬁ@n(z’)K ( b, (f(Z) f(??))d 9( )

- = ! ] fl) — f A2 g

- /B(Obn) bﬁen(expn(x))K( b, ) (f(a) = F(0)) lg(x) I d (3.4)

I T R N

a /B(O bn) bﬁen(expn(x))K( b, )RQ(Ov Mg(x)]|*d (3.5)
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Equality (3.5]) follows from (K5) because

1 HxH) z d / 1 (Hx”) o
w VF0) - wdz = — K () vi0)a'd
L(O,bn) bg ( bn f( ) rar zzl B(0,bn) bﬁ bn f( ) T ax

d

Sy 1 ||a:||) - ; 1 <
= VOZ-/ —K(— ‘de =V 0-/ —K

i=1 f<) B(Ovbn)bﬁ by e f<) B(O,bn)bﬁ

[\

N~
=0

= 0.
]
Lemma 3.6. For anyn € N,
Cow,K?
| EIE2 060l duy(a) < S5,
M n
with Cy as in Theorem [31.
Proof. Applying Fubini’s theorem we write
| EE ) v = [ 16)1G)duyo) (3.6
M M
where ) 0. 2)
,Z
[(z):/ s K2( g: )dvg(n).
B (2,bn) b 6)z (TI) n
Let us define Cy(2) := sup  6,(n)~!, which is finite because of (b1l). By assumption
T]GB]VI(Z,T())
(K1) and (E3),
Co(2) K} / 1 Co(2)w, K2
I(z) < —— ——dv,(n) = ———.
( ) bﬁ B (2,bn) bwz(ﬁ) g( ) bﬁ
Plugging this estimate into (B.6]) finishes the proof. O

We proceed to prove Theorem [B.11

Proof of Theorem [3.1. By Fubini’s theorem,

Elllf, - £12) = /M Ellfu(n) — £(n)Plduy(n) = /M J(n)dv,(n).

Note that J(n) = Var(fB; (n)) —i—Bias(fB;L, n)%. In view of ([3.3) and the Campbell theorem

we get
Var(fu(n)) = ELf2 ()] — (BLf.(n)])’
1 1 #

i>1 4,521



o (B, x B;)
N By [?

E[F; (0, €o)]- (3.7)

—E[F.(n. %)) E[F2(n,%)] + E[F.(n,&)]° — E[F.(n, &)

~ B

~ B

Here, a(?(+) denotes the 2nd-order factorial moment measure of the Poisson point process
IT := {Yi}i>1. We refer to |27, Chapter 1| for further definitions and formulas related to
this measure in the Poisson case. Corollary and Lemma yield the existence of
constants Cy, Cy > 0 such that

ngng

Ellf. — f12] < N B + b, C3KFvy(M).

Analogous arguments show the L2-convergence of f,, (&) to f(&).

Proof of Corollary[3.3. Passing to normal coordinates as in (3.4) and (3.3) and setting
[ = [ oexp,, we obtain

1 x ~
sroel= [ gr (W) fow—asomsm. e
B(0,br) bg bn
From the proof of Lemma3.6] we thus obtain
KC, 2K,C
ELF2 . &0) < TN g(r, (7, ¢0)) < 200y 3.9)
for any 7 € supp f. In view of (8.7) and Lemma this yields
; 2CoKo || f3
_ 2] « 2072010 T2 4 ~2 12
Bl 60) — f(60) ) < Z i s vicins
which tends to zero as n — oc. O

Remark 3.7. The problem of finding an optimal sequence of bandwidths {b,},en can
be understood as a special case of regularization [24] and we can use the bound of the
estimation error given in Theorem B.I] in order to find it. We start by considering the
bandwidth b > 0 being independent of n. For any fixed n € N the optimal bandwidth
will be )

argmin, E[]| f, — f113].
By Theorem [B.1I] we can approximate the order of magnitude of this optimal b by min-

imizing the upper bound of the mean square error e(b) := if;zgﬁ + V'CEK3v,(M). A

. . . .. . . pCowp K2 p+4
simple calculation leads to the unique minimum point b,,; = ( 1T 0y (DN B] . Note

that this value depends on n, so that we have b, | 0 and bgpt |Bl| — 00 as n — oc.
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We finish this section by proving that if the observation window B! is large enough, then
the previous bounds provide the almost surely consistency of f,.

(4+p)(1+96)

Theorem 3.8. Under the assumptions of Theorem[31 and if |Bl,| >n~— %  for some
0 >0, then

[falm) = f)] =250 aus.
for anyn € M such that f(n) < oco.

1/p
Proof. Notice that the assumption on |B/| can be rewritten as (%) <n~ % and we

1/p
can therefore choose b, satisfying assumptions (b1) - (b3) and (\;“) <b, <n i
For each £ > 0, Chebyshev’s inequality and the bounds used in the proof of Corollary [3.3]
yield

A

E(lfn(n) — f(DP] _ 2CoKof(n) | BLCEKE

P(|fn<77>_f<n)‘ >€) < £2 — 82)\551|BM g2

Due to the choice of b, we have b2|B’| > n'*° and b* < n~(1+9 hence

ZPVH )‘>5)<01f()2#<oo

n=1

for some ¢; < oo. The almost sure convergence follows from Borel-Cantelli’s lemma. [

4 Entropy estimator

As already mentioned in the introduction, we measure the diversity of the distribution of
interest by analyzing its Kolmogorov entropy defined as

- /M F(n) log £(n) dug(n),

where f is the density of the distribution. This section is devoted to the construction of
a consistent estimator for &£y.

4.1 Definition of the estimator and consistency

For each n € N we define

~

E(B,) = > ivienaylog fo v (&), (4.1)

”| i>1

where B! + y denotes the translation of B!, by y € R Moreover, we assume that
B! C B, whereas their size relation will be determined later. From now on, we substitute
the previous assumption (f1) by



(f1) f is continuous.

Note that since M is compact, the new (f1) in particular implies the former. With the
additional assumptions for a typical mark &g,
v 2
(n f<§0>||) ] oo

(L) Eflog? f(§0)] =Ly <00 and (LD E | =8

we can prove L2-consistency of the estimator.

Theorem 4.1. Let B, := (0,m,)¢, B, := (=pn,pn)?, n € N, for some p, > m,, > 0,
and let B!, satisfy (b1) — (b3). Further, assume that conditions (K1) — (K5), (f1), (f2),
(L1) and (L2) hold. Then,

N 8 KoCyv, (M) 4 L
E[|E:(B,) — &% < 3 g 1662 L
1€5(Bx) =& < (A%Bnuw yerm O

for sufficiently large n € N.

Corollary 4.2. Under the above assumptions, it follows directly from Theorem [{.1] that

5f( B,,) is an L*-consistent estimator of &;, i.e. E[|5f( ) — &2 2% 0.

4.2 Proof of Theorem 4.1

We start by proving the following lemma assuming that all conditions of Theorem [4.1]
are satisfied.

Lemma 4.3. For sufficiently large n € N it holds that

(Elfp, ()] — f(n))? ;
/suppf f(n) dvg(n) < 4b; Lo.

Proof. Recall from (3.3]) that EJ fB; (n)] = E[F,.(n,&)]. Using normal coordinates analo-
gously to (3.4)) and (B.35) with f := f o exp, we obtain

E[F(n, o)) I—)/Ob —K(m') /Vf dtdx’

<t [ KD Iyl / IV F(tba) | dt dy.

B(0,1)

Since b, | 0, we have HVf th,y) H = HVf H ) for sufficiently large n € N and
in view of (Kl) last expression can be bounded by

25O [ Kl Iy < 20,90
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Hence, \E[fB% (m)] — f(n)| <2b, ||V f(n)| for sufficiently large n € N and (L2) yields

(ELfz, (m)] = f(m)? N
/suppf f(n) dvg(n) < 4b, /Suppf f(n) dvg(n) = 4b;, Ly.

0

We now proceed to prove Theorem Il Based on the ideas of [I], we introduce the
quantities

1 A
L, = _m Z IL{Y;’GBW,} log E[fB;L+n<§Z'>]7
nli>1

1
M, = —— 1y, 1 ).

i>1
Applying inequality (a + b+ ¢)? < 3(a® + b* + ¢?), a,b,c € R, leads to

E[1€/(B) — &[] < 3(E[|;(Ba) — Lol +E[ Ly — M "] +E[|M, — &),

n
d1n =l pn =:I3.n

hence our aim is to compute an upper bound for [, ; and each i = 1,2, 3. First,

1 . .
L, = WE[Z ]I{YiEBn}(lOg fB;erYi (&) — IOgE[fB;JrYi (fz)])ﬂ
n i>1
1 # P A
+ WE[Z Ly, v,eBay(log [ 4y, (&) — log Elfr 1y, (&)]) %
n ij>1

x (log fr1v,(&) — log E[fpy v, (&)])] =: Ji + Ja.

On the one hand, notice that by definition,

h(Yi, & Ty, — o) = Livienny (108 far 1y, (&) — Log E[fpr 4v:(&)])*

depends on (Y;,&;) and Ty, ¥ — 6(o¢,). Thus, since VU is an independently marked Poisson
MPP, the Campbell-Mecke type formula in [26, p.129] yields

1 1
B EEL 2 MY 6 Tr Y — b)) = W/Rd/MEP;! [y, 0)Lf () dvy(n)dy,

1>1

where EP(! : denotes expectation with respect to the reduced Palm distribution of W.
0,1

Again because VU is an independently marked Poisson MPP, P(!O ;) coincides with the
distribution of ¥ and we obtain

N = ﬁ / ) /M E[(10g [, +(n) — 108 E[ {5+, (n)])*]f ()dvy(n)dy.
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Now, recall that for any differentiable function g and any x, z € R we have
l9(x) = g(2)| = |z = 2l[g' (A =)z +72)],  7€(0,1),
which in the particular case of g(z) = logz yields

|z — 2| |z — 2|
(L =7)z +~vz[ ~ min{z, 2}’

|logx —log z| = x,z> 0. (4.2)

Note that W is stationary and by assumption (f1) f is continuous, thus by Theorem B.§
[ +y(n) converges to f(n) a.s. for any y € R? and y € M. Furthermore, in view of (3.8,
E[F,.(n,&)] = (1 + o(1)) f(n), hence for n € N large enough

mind fry 4, (), El oy o ()]} > £ /). (4.3)

Applying inequality @2) with @ = fi; 1,(n) and z = E[fn,,(n)] = E[F,(n,&)] we
obtain

[(f5;,44(n) — Elf5,1(0)])?]
Ji < A|B B // (77) f(n)dvy(n)dy.

Due to (87) and (3.9),

F2 77 50 8K009U9(M)
dy < —————~, .
S s A By |/ f(n 2)\|B’ (o )dvg(n) y= )\2|Bn||B;L|bﬁ (4.4)

Analogously, each summand in J; can be expressed as a function h depending of (V;, &),
(Y;,&;) and Ty, W —6(o¢,) — O(v; ¢;)- Hence, the Campbell-Mecke type formula in [26], p.129]
in the independently marked Poisson case yields

"
= E[Z h<1/;7 §i7 Y}7£j7 TYz\I, o 5(0752') - 5(3/1751))]
i1

_A/R/R/M st [R(Y1, 11, Y2, 712, W)L () f (02) dvg (n2)dvg () dys dys

77171

-4 /Rd /Rd /]\/[2 E[R(yr, m1s yo, n2, )L f () f (n2) dvg(me)dvg (i) dyr dya,

where last inequality follows from the independent marking of the Poisson MPP. Applying
again Theorem B.8, (4.2) and (3.8]), we obtain for n € N large enough

C / /
Jy < )\\B E /nXM ov fB (1), fB +y2(772)) Fm)f (1) dvy (1) dvg (1 )y do.

f(m)f(ne)
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In view of (B.3)) and the Campbell theorem,

Cov (fB' o (M), fB' +yz(712)) = E[fB' +y1(n1)fB’ +yz(712)] - E[JEBHyl(nl)]E[fBHya(nz)]
1
- )\2|B’|2 Z {Yie(By,+y1)N(By, +y2)}F (m, &) F, (772,@)]

1
+)\2\B’|2 Z 1{Y€B’+yl}]1{Y€B’+y2}F (m, &)F, (772751)]

1,7>1

— E[F,(n1, So)JE[F (172, So)]

B g, (. 0) P )

_)\ulg,‘E[ (11, §0) P2, $0)]-

Fubini’s theorem and Lemma [3.4] yield

4
Jo < )\Q\B’ | / n (01, &0) Fr(n2, fo)]dvg<ﬁ1)dvg(772) )\Q‘BM )

which together with (4.4]) leads to

8I(06¥1@( ) 4

I n .
S BB T NIB

Secondly, due to the stationarity of ¥ and the Campbell theorem,

1

Ly, = mE[Z Liv,en,;(og Efp 1v,(&)] — log f(&))?]
+ mmzi Liv,v,en. (108 E[ 51y, (&)] — log £(&)) (log E[ 5, +v, (€)] — log f(&;))]

i,5>1

= 375 El02 Blfo, (€0)] — log 1 (€0))*] + (Bllog ELf (€0)] ~ o ()]
< 2E[(log E[ 3, (¢0)] — log f (%0))*]

for large n € N. On the other hand, by (43) and Lemma we get

E[(log E[fs, (¢)] — log f(%0))*] = / f(log E[fr, (n)] = log f(1))* f (n)dv(n)

(Elf5, ()] — f(n))* 5
< 4/Suppf ) dv(n) < 16b;, Lo,

so that Iy < 16biL2.

Finally, note that & = —E[log f(&)]. Applying once more the Campbell theorem we
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obtain

I3, = AQ\B z Zﬂ{YeBn}log f(&)] + )\2|B E Z Liv,y,enqy log f(&) 1og f(&))]

i,5>1
2
* MB"‘E[; Livien,y log f(&)]&r + &F
- A\/lB |1E‘3[10g2 f(&)] + (Ellog f(£0)])” + 2E[log f (&))Ef + €3
Ly
= >\|B | [log f(fo)] = >\|Bn|

Remark 4.4. The proof of Theorem [A.1] gives an explicit bound of the error that can be
used to find an optimal sequence of bandwidths. In this case analogous calculations to

1
Remark 3.7 lead to by, = (M) =

4L2)2| By || B

5 Central limit theorem for entropy

We start by fixing some notation. In general, we use uppercase for coordinates and
lowercase for enumerating elements. For K € {N,Z,R}, any j € K¢ will therefore be
written as j = (j1,..., %), while ji, jo, ... will denote a sequence in K¢ Moreover, we
write t = (¢,...,t) € K* for any ¢t € K. We set C,, := x¢_,[0,y*) for any y € R% and
V; == C; NN for j € N%. In particular, Cy = [0,¢)%.

The estimator &, #(By,) can be seen as a normalized random sum of elements of a stationary

—dependent random field, where m,, is the diameter of B/, C B, from the definition
of &, #(By) in ([@I). We will present in this section a CLT for a modified version of the
original estimator.

A random field {X;: j € K%} is said to be m—dependent for some m € N if for any
finite sets I, J C K¢ the random vectors (X;);e; and (X;);cs are independent whenever
i —jll, >mforalliel and je J.

In stochastic geometry, m—dependent random fields often appear in connection with
models based on independently marked point processes. A CLT for sums of m—dependent
random fields was first investigated by Rosén [20] and improved by Heinrich [I1]. These
results have been extended in the last years to weaker dependence structures. We refer
to [26] for an overview on the subject.

5.1 Theoretical results

Our CLT is based on a slightly weaker version of the result obtained by Wang and
Woodroofe [29)] for deterministic sums of stationary m-dependent random fields.
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Theorem 5.1. Let {X,,;: j € Nd}neN be a sequence of stationary m,—dependent zero
mean random fields observed on a sequence of windows {Vy, }neny C N, with m,,, p, — 0o
as n — 00. Suppose that there exists C' > 0 such that

E[(Y X.)' <Cj'--j*  VneN, jeN, (D1)

i€V

and there ezists a sequence {q, tnen C N such that

Mn n—oo 0 and n AN 0, (D2)
dn Pn
..o 2 2
linf & = L >0, where o= E[( ) X,w») } (D3)
J€Van
.1 2
lim EE[( X)L D Xyl >pi%e)] =0 Ve>o. (D4)
n jEVQrA jeVQn
Then,
E' Xn,'
]ixp; L N(0,1).
Dr Oy, n—oo
Proof. This follows by dividing by ¢ and replacing it by L in the original proof. O

We give an extension of this theorem to random sums of stationary m—dependent random
fields indexed in Ri. For simplicity, we will assume that our observation windows are
cubic, i.e. B, = Cp, with p, — 0o as n — oo.

Corollary 5.2. Let {X,,,: y € Ri}neN be a sequence of stationary m,,—dependent zero
mean random fields observed on a sequence {Cp, }nen C Ri with p,, m, — 00 asn — o0,
and let 11 be a stationary Poisson point process on Ri. Suppose that there exists C' > 0
such that

E[( Y Xu,)]<CICl  VneN, jeN, (A1)

yelINCj

and there ezists a sequence {q, tnen C N such that

My n—oo dn n—oo

— —0 and — ——0, (A2)
4n Pn
2
lim inf J—Z =L >0, where o =E[( Z me)ﬂ, (A3)
n—oo @9 el
.1
lim q—gE[( ST X)) (Y] Xyl > VIBie)] =0 Veo. (A4)

Then,
X,
ZyeHﬂBn v o d N(0,1).

/|Bn| 0-7% n—00




Proof. Define Z,, ; := >~ ciirjmey) Xny for each j € N% and n € N. Obviously, {Z,,;}jena
is (my, +1)-dependent. Moreover, - g Xny =D ey, Zn,j, and Theorem . holds
for the sequence {7, : j € N}, cn. O

Remark 5.3. Note that Corollary does not require independence between the random
fields {Xnvy}yeRi and the point process II. If independence is provided, applying the
Campbell theorem and the stationarity of II we get

E[( S %) =E[ 3 X2]+E[ 3 Xy Xoun]

yeHﬂCj yEHﬁCj y17y2€HﬂCj
3 [ BRC gyt A [ EXe0Xoyn] a®(dun,due)
Cj CJ'XCJ'

= NGIELE )+ X [ 1651(C; = )| Cov(Xao, Xy
R
Thus, condition (A1) can be substituted by the existence of ¢ > 0 such that

sup (E[Xfl,o] + /]Rd |C0V(Xn70Xn7y)\dy> <ec. (A1)
+

neN

Condition (A3) can now be formulated as

Can N (Cq, —
it (B2 [ G0l l0 = cox, o x ) a) >0 (a3)
n—00 ' Ri | an |
Before applying this result to our entropy estimator, we want to analyse conditions under
which the limiting variance exists. The following theorem is an extension of [0, Theorem

1.8, p.175] to random sums of wide-stationary random fields indexed in R

Theorem 5.4. Let {X,,, : y € R%},cy be a sequence of wide-sense stationary measurable
centered random fields and let IT be a homogeneous Poisson point process of intensity A > 0
independent of {X,., : y € RY}. Assume that

lim lim sup/ | Cov(X,0, Xny)| dy =0, (5.1)
P70¢ m—oo JRA\(—p,p)?
and
sup | | Cov(Xp 0, Xny)| dy < oo. (5.2)
neN JRd

If the limit
0% = lim ()\E[XEL,O] P /

n—o0 Rd

Cov (X0, Xny) dy)

exists and is positive, then

]_ n o
Var X, . ) =5 o2 5.3
U K

| "| yeIlNU,

for any sequence of subsets {U, }nen growing in the van Hove sense.

16



Proof. Since II is a Poisson point process independent of {X;, ,},cga, it follows from the
Campbell theorem and the wide-sense stationarity that

Var( 3 me) = AU B o] + XU | | Cov(Xu0, Xoy)dy

yGHﬂUn
—)\2/ / Cov( Xy, Xnys) dyr1dys.

Following the proof of [6] Theorem 1.8|, let p > 0 be arbitrary and set G,, :== U, N (9U,),,
W, := U, \ G,,, where (9U,), := 0U,, ® B,(0) denotes the p—neighborhood of oU,, C R%.
From the previous calculation we have

MULE[X2 o] 4 A2|U,| / Cov(Xoo, o) dy —Var( 3 Xn,y)
R

yEHﬂUn

- )\2/ / COV(meu Xn,yQ) dyldyz + )\2/ / COV(mel, Xn7y2) dy1dyz

=. le + ng.
On the one hand, |G,,| < [(0U,,),| and assumption (5.2)) yield
|Unl |Unl

since {Uy }nen is v.H.-growing. On the other hand, dist(W,,,U¢) > p and |W,| < |U,|,
hence

|Rn72| < |Wn|
Ul = |Unl

P \2 / | Cov( X0, Xny)| dy 2250
]Rd

)\2/ | Cov (X0, Xny)| dy < )\2/ | Cov(X,0, Xny)| dy
R4\ (—p,p)4 R\ (—p,p)?

and in view of assumption (5.]]) the convergence in (5.3]) is established. O

The same result holds under weaker assumptions if the random fields {X,,, : y € Rd}neN
are m,—dependent.

Corollary 5.5. Let {X,, : y € R%},cn be a sequence of wide-sense stationary measur-
able centered m,—dependent random fields, and let 11 be a homogeneous Poisson point
process of intensity A > 0 independent of {X,., : y € R},cn. Assume that

sup [ | Cov(Xp 0, Xny)| dy < oo. (5.4)
neN JRd

If the limit
0% = lim ()\E[Xz,o] P /

n—o0 Rd

Cov (X0, Xny) dy)

exists and is positive, then

1 n 0.0]
lim Var( Z me) 170 52

n—00 |Un| yellnUn

|OUn)mp | =0

for any sequence of subsets {U, }nen satisfying s — 0.
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Remark 5.6. For instance, the result holds taking cubic windows U,, = (—un,un)d with
m, N—00

— 0.
Un

Proof. Set p =m,, in the proof of Theorem [5.4l Due to m, —dependence, condition (5.1I)
is trivially fulfilled and therefore lim sup Bn2l — (), On the other hand,

n—00 |Unl
— < - Cov(X,,0, Xny) dy —— 0
|Un| |Un| R | ( 0 y) |
due to assumption (5.4) and the choice of U,. O

5.2 Application to entropy

The results of last paragraph evince that the independence between the Poisson point pro-
cess and the sequence {X,,, : y € R%},cy is crucial to perform calculations. Therefore,
we need to consider the modified estimator

o 1 R *
EH(Bn) == Z log fr;+y(&,) Lime(B.)>0}

)\|Bn‘ y€eIll*NBy,

where ¥* := {(V,&5),Y € II*} is an independent copy of the original marked Poisson
point process W. The study of the original estimator is subject of further research and
it involves marked point processes where the marks depend of their location (we refer
to [18, 13, 12] for some investigations in this direction). Moreover, we also need to
assume

(f3) infﬂésuppf f(n) ==c¢o > 0.

This assumption, although being very restrictive, is usual in the context of entropy esti-
mation (see e.g. [3]). We could substitute it by a set of slightly milder yet cumbersome
assumptions and we opted for the former for ease of proofs. The aim of this section is to
apply Corollary in order to obtain a CLT for £3(B,).

Theorem 5.7. Let {B,}nen, {Bn}nen C Ri be sequences of observation windows such
that B, = Cy,, B!, = Ciny, Pn =m0 for some 6 > 0, and m,, — 0o as n — oco. Under
the conditions of Theorem [4.1],

~

* Bn 0N
VB BT i i),

where 11*(B,)
fin. 1= =1, | B0 foi ()],
and
. Cq. N (Cq, — ; ;
0, = AE[log [, (60)*] + * / = \é ] DL Covlton fi (). Tos 0 €) .
B;L dn

where {gé}yeRi are independent copies of & and g, = m:T with 48’ < 6.
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Notice that c‘?;?(Bn) can be expressed as a sum of m,—dependent random fields and
therefore

V |Bn|(§;(3n) - /:LBn) = )\\/|Bi Z ( — log ka-i-y(g;) - E[ —log ]EB;L(SO)]>

yell*NB,

— Xy, 5.5
: #\Bn| >, X, (5.5)

yell*NBy,

where, by construction, {Xn,y}yeRi is a stationary centered m,,—dependent random field.
The CLT follows directly from Corollary if the required conditions are satisfied. The
next paragraphs are thus devoted to the proof of assumptions (A1’),(A2),(A3’) and (A4)
of Corollary for {—log fB¢L+y(§;)}yeRi.

For the ease of reading, we use the notation fB;Ler instead of fBHy(%) and only refer

explicitly to the argument when confusion may occur. Moreover, we assume that the
conditions of Theorem [5.7] hold in the subsequent lemmata without mentioning them
explicitly.

5.2.1 Condition (A1’)

We start by establishing some helpful bounds.

Lemma 5.8. There exists ¢; > 0 such that for any x1,x9 € B, and n € N,

Cov (10g fABLL—I—xla 1Og fB;L-i-m) S (&1 Cov (fB;L-i-J:U fABLL-i-m)'

Proof. Adding and subtracting log E| fgﬁyl] resp. logE| fBHyQ], Theorem B.8 (A3]) and
assumption (f3) lead to

Cov ( log fAB;L+:B17 log JEBHM)

= E[(log fp; +a1 — logE[f5:])(10g fp; 1o — log E[f5,])] — (E[log f5: ] — logE[fp: ])?
4 R ~

< —2 OV(fB;LerN fB;LJr:BQ)
&)

for n € N sufficiently large. Thus the Lemma follows for any n € N with a constant
c1 > 0 (maybe different from 4/c3). O

Lemma 5.9. There exists co > 0 such that for any n € N and x1,25 € By,

Co|(By, + 21) N (B, + #5)|
AlBJ?

Cov(fB, 1215 [BL4as) <
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Proof. Applying the Campbell theorem,

COV(]EB;-HCN fB§L+x2) = E[fB;-l—xlfB;ﬁ-m] - (E[fB;])Q
1
- _____E
| B2
L1
| By |7

Fol6> €0 Ful€y, €2,

yelIN(BY, +x1)N(B., +x2)

E[ Y Rt )6 )] — (BIFu(60,€,)°

y1€N(B),+x1)
y2€IIN( By, +x2)

(B, +x1) N (B, + x2)| / /

— )\|B;L‘2 E[Fn(éo,éxl)Fn(£07£x2)]

(B, +21) N (B, + 3)|
AlBy[?

(E[F (o, &)

Further, it follows from (B.8) that for n € N large enough

E[F, (€0.€., ) Fulbo. £,)] = / Foljts 2)Fo (22 m) F(2) F(2) £ () dvgps, 2, m)

— (1 o(D) [ FePdu(2) = (L+o()ELF (o)
as well as
B{F(Go.)) = [ Falis )0 (2) () = (1-+ o()ELF(€o))

Thus the Lemma holds with ¢, = 2E[f?(&)] + (E[f()])* > 0 for n € N large and for
any n € N with maybe a different constant ¢, > 0. O

In order to prove condition (A1), notice first that Corollary .3 and analogous argu-
ments involved in (£2)-(E4) imply that log f5 (o) converges to log f(&o) in L*. There-
fore, E[log? fB%] 7% Eflog? f(&)], and since Eflog? f(&)] < Ly by assumption (L1),
E[log fB;L] can be bounded by some constant L; > 0 uniformly on n € N. On the other
hand, Lemmata 5.8 and and the m, —dependence yield

/R
C1C2 C1C2

< B’ B’ dy = .
< Sip 1B (Bl = i < o0

, | Cov(log fB;LJOg fB;L+y)|dy :/ | Cov(log ]EB;L,lOg fB;L+y)|dy
¢ B

Condition (A2)

Since g, = m:t with 40’ < §, we have

1+0
Mmoo, and I _ mZH 0. (5.6)
dn Pn my
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Condition (A3’)
Recall that we are assuming that the density f is continuous.

Lemma 5.10. The estimator fBHy(&?’J) is uniformly bounded with respect to y € RY and
n € N almost surely.

Proof. By stationarity it suffices to prove the assertion for fB;L (o). Note that &g is a
generic mark that is independent of the MPP W. From Theorem B.8 and since M is

compact and f continuous, we have that f,(n) “—= f(n) < | fllo, @.s., and hence
fa(n) < |Iflle + € as. for any € > 0 and n € N. The same holds for fp (o). O

Lemma 5.11. [t holds that

e Cq,. N (Cq, — P P ,
lim mf/ Can 1 (Can —y)] Cov(log g (€0),10g fa,44(E,)) dy > 0.
R

n—oo Elk |Cq

n ‘

Proof. Since TI is a Poisson point process, we know from [7] that it is positively asso-
ciated. On the other hand, the random variables {fgl;}yeRi are positively associated as

well because they are iid. (see [6, Theorem 1.8]). Therefore, by [6, Corollary 1.9],
the random field { fBHy(gg//)}yeRi is positively associated. Using the characterization of

positively associated random fields given in [0, Remark 1.4], this means that for any
non-decreasing functions h, g: R — R such that the expectations forming the covariance
Cov(R([Br441), 9([Br44,)) exist, Cov(h(fp:1y,): 9(fB,+y.)) = 0. In view of Lemma 5.1
we thus have Cov(log fB;mLyl, log fB;ﬂLyQ) > 0 and since log is an increasing function, the

random field {log fB;LJFy}yeRi is also positively associated.

From Lemma [5.10 we know that fz, < ||f]le + ¢ a.s. for large n € N, and following the
proof of [6, Theorem 5.3] with the exponential function, we obtain

-
[flloo +€)

Together with the calculations in the proof of Lemma [£5.9] this yields

Cov(log fB;L,IOg fB;ler) > o 5 Cov(fB;L,fBHy),

Cq. N (Cqy,, — ; f
/ | dn ( Qn y)‘ COV<]0g fB';z7 log fB;Ler) dy
R

i |qu’l‘

s |an N (an - y)| ! /

= B, N (B d

(Il +€)2A B2 /Ba [ 1B, N (B, +y)|dy
C3 Mn d

= Ufle + 2)2Amaigd ( / (40 = ) (ma — y)dy)

_ cs <qnmfl m N m_§L>d

= (1fllse + £)2Am2dgd \ 2 5 T3

for some constant cs > 0, and the whole expression tends to szFE- > 0asn —oo. L
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5.2.2 Condition (A4)

We begin by proving the uniform boundedness of the third moment.

Lemma 5.12. There exists a constant ¢y > 0 such that for any y € R? and n € N

E[|log fog|'] < ca.

3}.

Proof. Due to stationarity, it suffices to show that the assertion holds for EH log fB;l
On the one hand, by adding and subtracting log E[ fB;L] we have

E[|log JEB;L}?’} <E[| 10ng;L — IOgE[fB;LHg] +3] IOgE[J?B;L] E[| long% — lOgE[fB;L]
+ 3(10g E[f5,))°E[| log fr, — logE[f5, ][] + | log Elfs,] |’

]

By Corollary B.3] log E[fB/] 272, log B[f(&)], and since f is continuous, any power of

this quantity is also bounded. Hence it suffices to show that E[| log fB;L —log E| fB;L] 3] < oo.
For n € N large, Theorem 3.8 and (4.3) yield

HfB’ — fB/]

3
Co

]

E[|log fz, —logE[fs,]|*] <

and it suffices to prove that E[| fB%|3] is finite for large n € N. In view of the Campbell
theorem,

Eu&x&ﬂﬂzxagpﬁwﬁ%@n] ARG
[ (507 gl) (§07 52) (507 §3)] (57)

where &1, &, €5 are independent copies of ;. Moreover, following the proof of Lemma
we find constants Cy, Ky > 0 such that for n € N large enough,

Ce

n

E[F, (8, 61)] < (1+ o(1))E[f (&)];

BIF(E, ) Fa(6 &)] < 521+ o(D)EL(E),

as well as

E[F,(€), €)Fo(€h, &) F, @m@ﬂ5w1+ou»/;fw%m@w>:<1+ou»EV%%n

Plugging this into (5.7) we obtain

202 K2 , 209K, 2/ et 3¢
< LB + S EL (6] + 2E1(E)

E[| /5, °] <

for n € N sufficiently large. This quantity is bounded because all expressions depending
on n tend to zero as n — oo. U
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For the ease of reading, we set X, , := log j?BHy — Ellog fBHy], y € R%. The aim of this
paragraph is to show

1 3 i
nh_)rgo q_dE[( Xn,y) ]l{| > Xn,y\>6pﬁ/2}} =0,
" y€ll*NCqpn vel*NCan

with ¢, as in (5.6). Applying Holder inequality, the expectation in the limit can be
bounded by

(E[( 3 Xw)BDz/g(IP’(] 3 Xnvyy>gpg/2)>”3.
yEIT*NCyqp yEIT*NCyqp

On the one hand, repeated application of the Campbell theorem, the stationarity of IT*
and the generalized Holder inequality lead to

E[( 3 Xu) ] <A+ [ (B PEXD,) 0l de)

2
yeH*ﬂan CCln

+ /CS EXE, DVPEXE,DPEXE,DYa® (dy, dys, dys)
=E[X2 o] (Ag! + N2+ N3¢27) < ea( Al + N2 + N3¢,

n n

where last inequality follows from Lemma[5.12 On the other hand, Chebyshev’s inequal-
ity and condition (A1’) yield

1 Aqle
]P’(‘ Z me‘ > 5pf/2) < ﬂ\/’ar< Z me) <=
yell*NCqp &P yell*NCqp € Pn
Hence we get

2
1 2 ea/e\ P [ A2+ A3 4 N
@EK Z X"’y> LS Xn,y\>ep‘f/2}} < ( c ) ( /2 ;

yeI*NCqp YEN*NCqn Dn

Wit

which tends to zero as n — oo due to the choice of g,.
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