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Abstract

We propose a method to estimate the symmetric kernel function with compact support of anα-stable moving average
random field withα ∈ (1, 2]. We prove consistency of the estimator and apply the method to a numerical example.
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1. Introduction

Let 1< α ≤ 2 andX = {X(t), t ∈ Rd} be a real-valuedα-stable moving average random field of the form

X(t) =
∫

Rd
f (t − x)M(dx), t ∈ Rd, (1)

where f ∈ Lα(Rd) and M is anα-stable random measure with Lebesgue control measure, see Samorodnitsky and
Taqqu (1994, Chapter 3). A minimum contrast method to estimate the kernel functionf parametrically is provided
by Karcher et al. (2009). In this paper, we are interested in estimating f non-parametrically.

Assume thatf is symmetric, i.e.f (x) = f (−x) for all x ∈ Rd. If α = 2, thenX is a Gaussian random field with
covariance functionC : Rd → R given by

C(h) = Cov(X(h),X(0))= 2
∫

Rd
f (h− x) f (x)dx,

cf. Samorodnitsky and Taqqu (1994, Example 2.7.2 and Proposition 3.5.2). By applying the Fourier transformF , we
obtainF (C) = 2 · F ( f )2 and therefore

f (x) = ±2−1/2F −1
(√

F (C)
)

(x), x ∈ Rd. (2)

The last formula can be used to estimatef based on an estimate of the covariance functionC. However ifα < 2,
X does not have a second moment such that (2) cannot be applied any more. In this case, we can replaceC by the
so-calledcovariation functionκ : Rd → R defined by

κ(h) :=
∫

Rd
f (h− x) f (x)〈α−1〉dx, (3)

wherea〈p〉 = |a|sign(a) for real numbersa andp. This is the most common generalization of the covariance function,
see Samorodnitsky and Taqqu (1994, Chapter 2.7). Notice that κ(h) = 1/2 ·C(h) for all h ∈ Rd if α = 2, cf. Samorod-
nitsky and Taqqu (1994, Proposition 3.5.2). Unfortunately, the Fourier transform of the right hand side in (3) does not
factorize any more. Therefore, we propose a recursive approach in the next section in order to retrievef based on (3).
In the following, we assume thatf is a step function which is compactly supported on a cubeK. For the analysis of
the approximation error when using step functions to approximate the kernel function, see Karcher et al. (2011a).
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2. Non-parametric estimation of the kernel function

Suppose that the symmetric kernel functionf has the form

f (x) =
∑

1≤i≤n

fi1∆i (x), x ∈ Rd,

where1 = (1, . . . , 1)T ∈ Rd, i = (i1, . . . , id)T ∈ Nd, n = (n, . . . , n)T ∈ Nd, fi ∈ R,∆i ⊂ Rd are pairwise disjoint bounded
Borel sets such that∪1≤i≤n∆i = K and inequalities are understood to be componentwise. The covariation function of
the field (1) is given by

κ(h) =
∑

1≤i,j≤n

fi f
〈α−1〉
j νd(∆i ∩ (∆j + h)), (4)

whereνd denotes thed-dimensional Lebesgue measure. If we replaceκ in (4) by some estimate ˆκ, we obtain for fixed
locationsh1, . . . , hp ∈ R

d, p ∈ N, a non-linear system of equations

κ̂(hq) =
∑

1≤i,j≤n

fi f 〈α−1〉
j νd(∆i ∩ (∆j + hq)), q = 1, . . . , p, (5)

for the unknown valuesf1, . . . , fn. The system of equations (5) can be solved numerically if a solution exists, e.g. with
the Levenberg-Marquardt algorithm (see Moré (1978)) or with the recursive algorithm we present in the next section.
By applying the recursive algorithm to (4), it immediately follows that for an appropriate choice ofh1, . . . , hp, (4)
has exactly two solutions. However, the existence of a solution of (5) cannot be guaranteed because estimators are
involved in the left hand side. We therefore include a cut-off technique in the recursive algorithm which remedies
this problem and delivers two (approximate) solutions. Thechoice of the eligible solution is discussed after the
presentation of the algorithm.

2.1. Recursive algorithm

We restrict tod = 2. The extension tod ∈ N is straightforward. Let us assume that the sets∆i, 1 ≤ i ≤ n, are
squares with equal side lengths. Then we can represent the kernel function by the valuesf(1,1), . . . , f(n,n), n ∈ N, as
shown in Figure 1.

f(1,1) f(1,2) f(1,n−1) f(1,n)

f(2,1) f(2,2) f(2,n−1) f(2,n)

f(2,n) f(2,n−1) f(2,2) f(2,1)

f(1,n) f(1,n−1) f(1,2) f(1,1)

· · ·

· · ·

· · ·

· · ·

...
...

...
...

. . .

Figure 1: The shape of the kernel functionf for d = 2.

Under the preceding assumptions, the system of non-linear equations (5) can be solved with the following algo-
rithm which is based on two steps. In the first step, the first and last line of the kernel matrix{ f(i, j)}ni, j=1 is estimated.
In the second step, the remaining entries are calculated recursively.

Let {εl}l∈N be a sequence such that
εl → 0, l → ∞,

wherel is the size of the sample (X(t1), . . . ,X(tl)) with which the covariation functionκ is estimated.
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Step 1. There exists anh(1,1) ∈ R
2 such thatκ(h(1,1)) = | f(1,1)|

α, cf. Figure 2. Therefore, we set

f̂(1,1) = ±|κ̂(h(1,1))|1/α · 1|κ̂(h(1,1))|≥εl . (6)

h(1,1)

f(1,1)

Figure 2: Estimation off(1,1).

Assume first that̂f(1,p) = 0 for 1≤ p < ⌈n/2⌉. Here,⌈·⌉ denotes the ceil function. Then there exists anh(1,p+1) ∈ R
2

such that

κ(h(1,p+1)) = f(1,1) f
〈α−1〉
(1,2p+1) + . . . + f(1,p) f 〈α−1〉

(1,p+2) + | f(1,p+1)|
α + f(1,p+2) f 〈α−1〉

(1,p) + . . . + f(1,2p+1) f
〈α−1〉
(1,1) ,

cf. Figure 3. Therefore, we set

f̂(1,p+1) = ±

∣

∣

∣

∣

∣

∣

∣

∣

|κ̂(h(1,p+1))| · 1|κ̂(h(1,p+1))|≥εl −

p
∑

i=1

f̂(1,i) f 〈α−1〉
(1,2p+2−i) −

2p+1
∑

i=p+2

f(1,i) f̂ 〈α−1〉
(1,2p+2−i)

∣

∣

∣

∣

∣

∣

∣

∣

1/α

= ±|κ̂(h(1,p+1))|
1/α · 1|κ̂(h(1,p+1))|≥εl . (7)

If f̂(1,p) = 0 for ⌈n/2⌉ ≤ p < n, then there exists anh(1,p+1) ∈ R
2 such that

κ(h(1,p+1)) = f(1,2p+2−n) f 〈α−1〉
(1,n) + . . . + | f(1,p+1)|

α + . . . + f(1,n) f 〈α−1〉
(1,2p+2−n)

and we set

f̂(1,p+1) = ±

∣

∣

∣

∣

∣

∣

∣

∣

|κ̂(h(1,p+1))| · 1|κ̂(h(1,p+1))|≥εl −

p
∑

i=2p+2−n

f̂(1,i) f 〈α−1〉
(1,2p+2−i) −

n
∑

i=p+2

f(1,i) f̂ 〈α−1〉
(1,2p+2−i)

∣

∣

∣

∣

∣

∣

∣

∣

1/α

= ±|κ̂(h(1,p+1))|1/α · 1|κ̂(h(1,p+1))|≥εl . (8)

We refer to Remark 2 for a method to decide whether to take the positive or negative value in (6), (7) and (8).
Assume now that for someq ∈ {1, . . . , n}, it holds f̂(1,q) , 0 and f̂(1, j) = 0 for j = 1, . . . , q− 1. Suppose that we

have estimatedf(1,q), . . . , f(1,r) for somer ∈ {q, . . . , n− 1}. By successively moving the upper square in Figure 3 to the
right, we find someh(1,r+1) ∈ R

2 such that

κ(h(1,r+1)) =















f(1,1) f
〈α−1〉
(1,q+r) + . . . + f(1,q) f 〈α−1〉

(1,r+1) + . . . + f(1,r+1) f
〈α−1〉
(1,q) + . . . + f(1,q+r) f 〈α−1〉

(1,1) , r ≤ n− q,

f(1,q−n+r+1) f
〈α−1〉
(1,n) + . . . + f(1,q) f 〈α−1〉

(1,r+1) + . . . + f(1,r+1) f
〈α−1〉
(1,q) + . . . + f(1,n) f 〈α−1〉

(1,q−n+r+1), r > n− q.
(9)

Plugging the estimates ˆκ(h(1,r−1)), f̂(1,1), . . . , f̂(1,r) in (9) and solving forf(1,r+1) yields with â(r) =
∑r

i=q+1 f̂(1,i) f̂ 〈α−1〉
(1,r+q+1−i)

the estimation equation

f̂(1,q) f 〈α−1〉
(1,r+1) + f(1,r+1) f̂

〈α−1〉
(1,q) = κ̂(h(1,r+1)) − â(r) (10)

becausef̂(1,1) = . . . = f̂(1,q−1) = 0. The last equation which is non-linear with respect tof(1,r+1) can be solved with the
Newton-Raphson algorithm, for example (see e.g. Kelly (2003)).
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h(1,2)

f(1,2)

Figure 3: Estimation off(1,2) when f̂(1,1) = 0. The estimate is obtained from the equation ˆκ(h(1,2)) = f̂(1,1) f 〈α−1〉
(1,3) + | f(1,2)|

α + f(1,3) f̂ 〈α−1〉
(1,1) = | f(1,2)|

α.

Remark 1. When using the Newton-Raphson algorithm to solve (10), an additional approximation error occurs which
propagates via ˆa(r). However, the error in each step can be made arbitrarily small and the problem of finding the
solution of (10) is stable with respect to small changes in ˆa(r). Namely the right hand side of (10) is a continuous
function in f(1,r+1) which is strictly monotonic increasing or strictly monotonic decreasing.

Step 2. Assume that we have estimatedf(i, j) for 1 ≤ i ≤ s− 1 and 1≤ j ≤ n, where 2≤ s < ⌈n/2⌉. We choose
h(s,1) ∈ R

2 such that the estimated valuêf(1,q) , 0 overlaps with the entryf(s,1), cf. Figure 4.

h(s,1)

f(s,1)

Figure 4: Estimation off(3,1). Assume thatq = 2, i. e. f̂(1,1) = 0 and f̂(1,2) , 0 and the first and second row of the kernel matrix have alreadybeen
estimated. The lightgray squares represent the valuesf(3,1) and f(1,2). The equation to estimatef(3,1) is

κ̂(h(3,1)) = f̂(1,1) f 〈α−1〉
(3,2) + f̂(1,2) f 〈α−1〉

(3,1) + f̂(2,1) f̂ 〈α−1〉
(2,2) + f̂(2,2) f̂ 〈α−1〉

(2,1) + f(3,1) f̂ 〈α−1〉
(1,2) + f(3,2) f̂ 〈α−1〉

(1,1) = f̂(1,2) f 〈α−1〉
(3,1) + f̂(2,1) f̂ 〈α−1〉

(2,2) + f̂(2,2) f̂ 〈α−1〉
(2,1) + f(3,1) f̂ 〈α−1〉

(1,2) .

It holds

κ(h(s,1)) = f(1,1) f
〈α−1〉
(s,q) + . . . + f(1,q) f 〈α−1〉

(s,1) +

s−1
∑

i=2

q
∑

j=1

f(i, j) f 〈α−1〉
(s+1−i,q+1− j) + f(s,1) f

〈α−1〉
(1,q) + . . . + f(s,q) f 〈α−1〉

(1,1) .

From the last equation, we obtain the estimation equation

f(s,1) f̂
〈α−1〉
(1,q) + f̂(1,q) f 〈α−1〉

(s,1) = κ̂(h(s,1)) −
s−1
∑

i=2

q
∑

j=1

f̂(i, j) f̂ 〈α−1〉
(s+1−i,q+1− j) (11)

since f̂(1,1), . . . , f̂(1,q−1) = 0.
Assume now that we have estimatedf(i, j) for (i, j) ∈ {(k, l) : 1 ≤ k ≤ s− 1, 1 ≤ l ≤ n} ∪ {(s, l) : 1 ≤ l ≤ r}, where

2 ≤ s < ⌈n/2⌉ and 1≤ r ≤ n − 1. By successively moving the upper square in Figure 4 to the right, we find some
h(s,r+1) ∈ R

2 such that similarly to (9)

κ(h(s,r+1)) =



























































f(s,1) f
〈α−1〉
(1,q+r) + . . . + f(s,q+r) f 〈α−1〉

(1,1) +
s−1
∑

i=2

q+r
∑

j=1
f(i, j) f 〈α−1〉

(s+1−i,q+r+1− j)

+ f(1,q+r) f 〈α−1〉
(s,1) + . . . + f(1,1) f

〈α−1〉
(s,q+r), r ≤ n− q,

f(s,q−n+r+1) f
〈α−1〉
(1,n) + . . . + f(s,n) f 〈α−1〉

(1,q−n+r+1) +
s−1
∑

i=2

n
∑

j=q−n+r+1
f(i, j) f 〈α−1〉

(s+1−i,q+r+1− j)

+ f(1,n) f 〈α−1〉
(s,q−n+r+1) + . . . + f(1,q−n+r+1) f

〈α−1〉
(s,n) , r > n− q.

4



The corresponding estimation equation is

f(s,r+1) f̂
〈α−1〉
(1,q) + f̂(1,q) f 〈α−1〉

(s,r+1) = κ̂(h(s,r+1)) −
s−1
∑

i=2

min{q+r,n}
∑

j=max{1,q−n+r+1}

f̂(i, j) f̂ 〈α−1〉
(s+1−i,q+r+1− j) −

r
∑

j=q+1

f̂(s,r+q+1− j) f̂ 〈α−1〉
(1, j)

−

r
∑

j=q+1

f̂(1,r+q+1− j) f̂ 〈α−1〉
(s, j) . (12)

2.2. Consistency of the estimator

Theorem 1. Let h(1,...,1), . . . , h(⌈n/2⌉,n,...,n) be vectors inRd as described in Step 1 and Step 2 (for the case d= 2).
Let κ̂(h(1,...,1)), . . . , κ̂(h(⌈n/2⌉,n,...,n)) be strongly consistent estimators forκ(h(1,...,1)), . . . , κ(h(⌈n/2⌉,n,...,n)) with rate of conver-
genceO(g(l)) for some function g: N → R+, where l∈ N is the sample size. Assume thatεl → 0 and g(l)/εl → 0 as
l → ∞. Then the estimators based on (6)–(8) and (10)–(12) for f(i1,...,in) are strongly consistent for i1 = 1, . . . , ⌈n/2⌉
and ij = 1, . . . , n, j ∈ {2, . . . , n}.

Proof. Without loss of generality, letd = 2. If f(1,1) = κ(h(1,1)) = 0, then

f̂(1,1) = ±|κ̂(h(1,1))|1/α1|κ̂(h(1,1))|≥εl = ±|κ̂(h(1,1))|1/α1 g(l)
εl

|κ̂(h(1,1))|

g(l) ≥1

a.s.
→ ±|κ(h(1,1))|1/α · 0 = 0, l → ∞.

If κ(h(1,1)) , 0, then f̂(1,1) = ±|κ̂(h(1,1))|1/α1|κ̂(h(1,1))|≥εl → ±|κ(h(1,1))|1/α = f(1,1) almost surely becauseεl → 0 asl → ∞.
Therefore, the estimators (6)–(8) are strongly consistentif the sign of f̂(1,1) is chosen as in Remark 2.

Consider now the estimation equation (10) forf(1,r+1). The estimatorf̂(1,r+1) is the root of the function

g(x) = f̂(1,q)x
〈α−1〉 + f̂ 〈α−1〉

(1,q) x+ â(r) − κ̂(h(1,r+1)).

Notice thatg is continuous and either strictly monotonic increasing or strictly monotonic decreasing. Therefore it
has exactly one root. Since the coefficients ofg are strongly consistent, its root converges almost surely to f(1,r+1), so
the estimator based on (10) is strongly consistent. With thesame argument we obtain the strong consistency of the
estimators based on (11) and (12).

Remark 2. (a) Let 1< α < 2 and suppose that (X,Y)T is anα-stable random vector with spectral measureΓ such
thatX ∼ Sα(σX, βX, 0) andY ∼ Sα(σY, βY, 0). For 1≤ p < α, it holds

E
(

XY<p−1>
)

E|Y|p
=

[X,Y]α(1− c · βY) + c · (X,Y)α
σαY

, (13)

where (X,Y)α =
∫

S1 s1|s2|
α−1Γ(ds), S1 denotes the unit circle and

c = cα,p(βY) =
tan(απ/2)

1+ β2
Y tan2(απ/2)

[

βY tan(απ/2)− tan
( p
α

arctan(βY tan(απ/2))
)]

,

see Karcher et al. (2011b). IfY is symmetric, i.e.βY = 0, thenc = 0. Equation (13) can be used to estimate
κ(h) as follows.

If X is a symmetricα-stable random field, then

κ(h) =
(E|X(0)|p)α/p−1

E
(

X(0)X(h)〈p−1〉
)

cα(p)α
, 1 < p < α, (14)

where

cα(p)p =
2p−1Γ(1− p/α)

p
∫ ∞

0
u−p−1 sin2 u du

,

5



see Samorodnitsky and Taqqu (1994, Property 1.2.17).

Assume that we can observe the random field on the gridNd. For m = (m1, . . . ,md)T ∈ Nd andh ∈ Zd, let
D(m) = [1,m] ∩Nd andDh(m) = D(m) ∩ (D(m) − h). We consider the estimators

Ê|X(0)|p =
1
|m|

∑

t∈D(m)

|X(t)|p, (15)

̂E
(

X(0)X(h)〈p−1〉
)

=
1

card(Dh(m))

∑

t∈Dh(m)

X(t)X(t + h)〈p−1〉, (16)

where|m| = m1 · . . . · md and card(Dh(m)) denotes the cardinality ofDh(m). Since the support of the ker-
nel function ofX is bounded, the random fields{X(t), t ∈ Rd} and {X(t)X(t + h), t ∈ Rd} areM-dependent,
cf. Samorodnitsky and Taqqu (1994, Theorem 3.5.3). Ifp < β < α, thenE (|X(0)|p)β/p = E|X(0)|β < ∞ and

limm→∞ |m|1−γ
(

Ê|X(0)|p − E|X(0)|p
)

= 0 a.s.

limm→∞ card(Dh(m))1−γ
(

̂E
(

X(0)X(h)〈p−1〉
)

− E
(

X(0)X(h)〈p−1〉
)

)

= 0 a.s.

for eachγ ∈ (p/β, 1), wherem → ∞ is to be understood componentwise, see Móricz et al. (2008,Corol-
lary 2). Therefore, the estimators (15) and (16) are strongly consistent with rates of convergenceO(1/|m|1−γ)
andO(1/card(Dh(m))1−γ). We have almost surely

κ̂(h) − κ(h) =

(

Ê|X(0)|p
)α/p−1

̂E
(

X(0)X(h)〈p−1〉
)

cα(p)α
− κ(h) = O

(

1
|m|1−γ

)

, m→ ∞.

Notice that we can obtain a rate of convergence ofO(1/|m|1−γ) for any γ ∈ (1/α, 1) by choosingp andβ
appropriately. The sample size is given byl = |m|. It is straightforward to construct a sequence{εl}l∈N which
satisfies the conditions of Theorem 1, for exampleεl = 1/(l(1−γ)/2).

(b) The estimator̂f(1,r+1) based on (10) is obtained by finding the root of the function

g(x) = f̂(1,q)x
〈α−1〉 + f̂ 〈α−1〉

(1,q) x− κ̂(h(1,r+1)) + â(r).

Therefore, it is essential to have a reliable estimatef̂(1,q) if the theoretical valuef(1,q) is equal to zero. To account
for this and stabilize the estimation procedure, we multiply the raw estimators in (6)–(8) with the corresponding
indicator functions.

(c) In (6)–(8), one has to decide whether to take the positiveor negative sign in the definition of̂f(i, j). Assume that
f̂ +(1,1), . . . , f̂

+
(n,n) and f̂ −(1,1), . . . , f̂

−
(n,n) are the estimates based on the uniform choice of the positiveand negative

sign, respectively. Then (10), (11) and (12) implyf̂ +(i, j) = − f̂ −(i, j) for i, j = 1, . . . ,m. Let f + and f − denote
the corresponding kernel functions andX+ andX− the corresponding random fields. IfX is symmetric, then
the finite-dimensional distributions ofX− are equal to the ones ofX+ due to Samorodnitsky and Taqqu (1994,
formula (3.2.4)), i. e. it does not matter whether to take thepositive or negative value in (6)–(8). IfX is non-
symmetric, thenβX+(t) = −βX−(t), whereβX±(t) denotes the skewness parameter ofX±(t), t ∈ Rd, cf. Samorodnit-
sky and Taqqu (1994, Proposition 3.2.2). Also, the random field (1) is stationary since it is a moving average
with Lebesgue control measure. Thus, one can base the choiceof a positive or negative sign in (6)–(8) on an
estimate of the skewness of the marginal distributions as follows.

Assume that the skewness intensity of the stable random measure in (1) is constant and equal toβ. Then

βX(t) = β

∫

Rd f (x)〈α〉dx
∫

Rd | f (x)|αdx
,
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see Samorodnitsky and Taqqu (1994, Proposition 3.4.1). Plugging the estimateŝβX(t) and f̂ ± of βX(t) and f in the
last equation, we obtain for̂f + and f̂ − a uniqueβ̂+ andβ̂− (with β̂− = −β̂+) such that the marginal distributions
of X have the appropriate skewness. For modeling purposes, bothpairs (f̂ +, β̂+) and (f̂ −, β̂−) are reasonable
choices because they yield the same finite-dimensional distributions of the estimated stable random field, cf. the
following Lemma 1. A method to estimate the skewness parameter of anα-stable distribution is presented
in McCulloch (1986).

Lemma 1. Let 1 < α < 2 and X± = (
∫

Rd f ±1 (x)M±(dx), . . . ,
∫

Rd f ±n (x)M±(dx))T, d, n ∈ N, be two stable random
vectors, where f−(x) = − f +(x) for all x ∈ Rd and M± are stable random measures with Lebesgue control measure

and constant skewness intensitiesβ± with β− = −β+. Then X+
d
= X−.

Proof. The characteristic function ofX± is given by

ϕ(z) = exp

{

−

∫

Sd−1
|〈z, s〉|α

(

1− isign(〈z, s〉) tan
πα

2

)

Γ±(ds)

}

, z ∈ Rd,

whereSd−1 is the unit sphere inRd andΓ± are finite measures onSd−1, see Samorodnitsky and Taqqu (1994, Theo-
rem 2.3.1). For givenα, the measuresΓ± completely determine the distribution ofX±. By Samorodnitsky and Taqqu
(1994, formula (3.2.4)), we have for each Borel setA of Sd−1

Γ±(A) =
1+ β±

2
m(g−1

± (A)) +
1− β±

2
m(g−1

± (−A)),

where

m(dx) =















n
∑

i=1

f ±i (x)2















α/2

dx, E =















x ∈ Rd :
n

∑

i=1

f ±i (x)2 > 0















,

g±i (x) =
f ±i (x)

(
∑n

i=1 f ±i (x)2)1/2
, i = 1, . . . , n, x ∈ E, g−1

± (A) =
{

x ∈ E : (g±1 (x), . . . , g±n(x))T ∈ A
}

.

Since f −(x) = − f +(x) for all x ∈ Rd, we haveg−1
+ (A) = g−1

− (−A) which implies together withβ− = −β+

Γ+(A) =
1+ β+

2

∫

g−1
+ (A)















n
∑

i=1

f +i (x)2















α/2

dx+
1− β+

2

∫

g−1
+ (−A)















n
∑

i=1

f +i (x)2















α/2

dx

=
1− β−

2

∫

g−1
− (−A)















n
∑

i=1

f −i (x)2















α/2

dx+
1+ β−

2

∫

g−1
− (A)















n
∑

i=1

f −i (x)2















α/2

dx= Γ−(A).

3. Practical issues and open problems

Let d = 2 and∆i, 1 ≤ i ≤ n, be squares with side length 1. We choosen = 5 and simulate a symmetric 1.8-stable
random field with the kernelf given in the left plot of Figure 5 on the grid [1, 500]2∩N2. We advice that in practical
applications, the side length of the observation window is at least two times the diameter of the support off in order
to reduce boundary effects with the estimation of the covariation function. We useRemark 2 andp = 1.4 to estimate
the covariation function from the realization of the stablerandom field.

The choice ofεl mainly determines the quality of the kernel function estimation. By Theorem 1, we only know
how the sequence{εl}l∈N has to behave asl → ∞. However, for some fixedl ∈ N, it is not clear which value we should
take. As one can see in Figure 5, we completely fail to retrieve the kernel ifεl is too small (εl = 0.01). The estimate
also differs evidently from the theoretical kernel ifεl is too large (εl = 1.3). An appropriate choice forεl is 1.086 for
which the kernel is estimated very well.
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Figure 5: The theoretical kernelf (first plot) and the estimated kernel withεl = 0.01 (second plot),εl = 1.3 (third plot) andεl = 1.086 (forth plot).

In applications, one possibility to handle this problem is to look at the estimated covariation function and set a
plausible value by hand. Another possibility is to use different choices ofεl and take the resulting kernel which looks
most reasonable.

We now present an approach to obtain a reasonable choice ofεl . The intuition of the method is as follows. It holds
κ(0) =

∫

Rd | f (x)|αdx. We transform the subgraph of the function| f |α to a cuboidC( f ) which has the same volume

νd(C( f )) =
∫

Rd | f (x)|αdx as the volume below the graph of| f |α and the same supportK = ∪1≤i≤n∆i, see Figure 6.
The heightδ of the cuboid is equal to the mean height of| f |α. Let K = supp(f ) be the support off . Then we have

Figure 6: The function| f |α (left plot) and the corresponding cuboidC( f ) (right plot).

κ(0) = δνd(K) and thereforeδ = κ(0)/νd(K). The last formula yields the practical choice of the order of magnitude of
εl , namely

εl ≈
κ̂(0)
νd(K)

.

In the numerical example, we haveν2(K) = 5 · 5 = 25 and ˆκ(0) = 27.152 which impliesεl = 1.086. In Figure 5, we
see that this value forεl retrieves the actual kernel very well.

We now address some open problems. IfX is a symmetric stable random field, the covariation functioncan be
estimated via (14). For non-symmetric stable random fields,the use of (13) to estimate the covariation function is
not advisable because the quantity (X,Y)α involves the spectral measure of a stable random vector. In this case, it is
more straightforward to consider directly the formula [X,Y]α =

∫

S1 s1s〈α−1〉
2 Γ(ds) and estimate it via an estimation of

the spectral measure. Estimation methods for the spectral measure can be found in Nolan et al. (2001); Pivato and
Seco (2003). However, this approach is not so efficient and better methods to estimate the covariation function may
be developed.

In Remark 2(c), we addressed the problem of choosing the correct sign in the definition of̂f(i, j) and presented
a solution when the skewness intensity of the stable random measure is constant. For stable random measures with
non-constant skewness intensity, it is not clear yet how to fix the sign.

Finally, the choice of the cut-off parameterεl might be based on a more systematic approach by considering
techniques which are applied in kernel density estimation to obtain the optimal band width parameter.

8



Acknowledgements

The authors would like to thank Prof. Dr. Eva Vedel Jensen forher hospitality during their research visit in Aarhus
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