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Abstract

We propose a method to estimate the symmetric kernel fumetith compact support of am-stable moving average
random field witha € (1, 2]. We prove consistency of the estimator and apply the nektih@ numerical example.
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1. Introduction

Let 1< o < 2 andX = {X(t),t € RY} be a real-valued-stable moving average random field of the form
X(t) =f f(t—xM(dX), teRY, (1)
Rd

wheref € L*(RY) andM is ana-stable random measure with Lebesgue control measure,aeer&dnitsky and
Taqqu (1994, Chapter 3). A minimum contrast method to esérttee kernel functiorf parametrically is provided
by Karcher et al. (2009). In this paper, we are interestedtimatingf non-parametrically.

Assume thaff is symmetric, i.e.f(x) = f(=x) for all x € RY. If @ = 2, thenX is a Gaussian random field with
covariance functio® : R® — R given by

C(h) = Cov(X(h), X(0)) = 2 f]R H(h=»f(dx

cf. Samorodnitsky and Taqqu (1994, Example 2.7.2 and Pitiq@o8.5.2). By applying the Fourier transform, we
obtainF (C) = 2- ¥ (f)? and therefore

f() = £272F 1 (VF(C)) (0. xeR% )

The last formula can be used to estimétbased on an estimate of the covariance func@orHowever ifa < 2,
X does not have a second moment such that (2) cannot be appliedae. In this case, we can replacéy the
so-calledcovariation function : RY — R defined by

«(h) := f]R =T Vdx 3)

wherea® = |alsign(a) for real numbers andp. This is the most common generalization of the covarianoetfan,
see Samorodnitsky and Taqqu (1994, Chapter 2.7). Noti¢a(ihe= 1/2- C(h) for all h € RY if a = 2, c¢f. Samorod-
nitsky and Tagqu (1994, Proposition 3.5.2). Unfortunatily Fourier transform of the right hand side in (3) does not
factorize any more. Therefore, we propose a recursive apprio the next section in order to retrief/dased on (3).

In the following, we assume thdtis a step function which is compactly supported on a dkib&or the analysis of
the approximation error when using step functions to apprate the kernel function, see Karcher et al. (2011a).
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2. Non-parametric estimation of the kernel function

Suppose that the symmetric kernel functiohas the form

f(x) = Z fila(X), xeRY

1<i<n

wherel=(1,...,1)" eRY i = (ir,...,ig)T e N, n=(n,....,n)T e N9, f; € R, A; c RY are pairwise disjoint bounded
Borel sets such that;<j<nAj = K and inequalities are understood to be componentwise. Tvegiation function of
the field (1) is given by

k()= > KL Pvg(a 0 (A +h)), (4)
1<i,j<n
wherevq denotes thel-dimensional Lebesgue measure. If we replaite(4) by some estimate Wwe obtain for fixed
locationshy, ..., h, € RY, p € N, a non-linear system of equations

i(hg) = Z i Pva(ain (A +hg). a=1....p, (5)

1<ij<n

for the unknown value$,, . . ., f,. The system of equations (5) can be solved numerically ifigtism exists, e.g. with

the Levenberg-Marquardt algorithm (see Moré (1978)) dhwhe recursive algorithm we present in the next section.
By applying the recursive algorithm to (4), it imnmediateblléws that for an appropriate choice bf,. .., h,, (4)

has exactly two solutions. However, the existence of a soluif (5) cannot be guaranteed because estimators are
involved in the left hand side. We therefore include a diitechnique in the recursive algorithm which remedies
this problem and delivers two (approximate) solutions. Theice of the eligible solution is discussed after the
presentation of the algorithm.

2.1. Recursive algorithm

We restrict tod = 2. The extension td € N is straightforward. Let us assume that the ggtsl < i < n, are
squares with equal side lengths. Then we can represent thelKenction by the valuegy ), ..., fnn, N € N, as
shown in Figure 1.

fuy | faz) o fan-1) fan

fey | freo2 e fen1)| fen

fen |fen-1) e fe2) | fey

fan | fan-) e faz | fa

Figure 1: The shape of the kernel functifrior d = 2.

Under the preceding assumptions, the system of non-lirpaat®mns (5) can be solved with the following algo-
rithm which is based on two steps. In the first step, the firetlast line of the kernel matrigfi.j},_; is estimated.
In the second step, the remaining entries are calculatedsigely.

Let {¢};cy be a sequence such that

g—0, |- oo,

wherel is the size of the sampl&(ty), . .., X(t;)) with which the covariation functioris estimated.
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Step 1. There exists ahy 1) € R2 such thai(h 1)) = [f@1)|* cf. Figure 2. Therefore, we set

foy = =R T yya- (6)

hay

fwy

Figure 2: Estimation of(y 1).

Assume first thafy; 5 = 0 for 1< p < [n/2]. Here,[-] denotes the ceil function. Then there existhiap, 1) € R?
such that

—1 -1 -1 -1
(hapsn) = fanfiomn + -+ fan fipm + 1fwpl” + fap fi57 + -+ faapn fi7s

cf. Figure 3. Therefore, we set

2p+l Vo
fopry = £[K(@pen)l - Lthwpuaizer — Zf(l')f(12p+2 P~ Z iy f2pray
i=1 i=p+2
= 2R )M - Dt peoy)izen- (7

If fip = 0for[n/2] < p < n, then there exists amy p.1) € R? such that

k(hwprn) = fazprzn T+ + 1 fwpl™ + o+ fam {52 0

and we set
1/a

p
+ |’?(h(l,p+1))| : ]lll?(h(l_p+1))\2£| - Z f(ll) f(l 2p+2- iy~ Z f(1|) f(l 2p+2-i)
i=2p+2-n i=p+2

RN pr )M+ L poayizer- (8)

fA(l, p+1)

We refer to Remark 2 for a method to decide whether to takedkgiype or negative value in (6), (7) and (8).
Assume now that for somg e {1,...,n}, it holds f1q # 0 andfi ) = 0forj = 1,...,q - 1. Suppose that we
have estimatedi, g, . . ., fry for somer € {q,...,n— 1}. By successively moving the upper square in Figure 3 to the

right, we find soménr.1) € R? such that

(a-1) (a-1) (a-1)
K(h(l 1)) B f(l,l) f(qu) .+ f(l ) f(l ey Tt f(l’r+l) f(fq) +...+ f(l q+r) f(lal) , r<n-gq, )
r+1)) = (a-1)
f(l,q—n+r+l) f(l,n) Tt f(l q) f(l rey T f(l,l”rl) f(fq) Tt f(l n) f(l g-n+r+1)° r-n-aq

Plugging the estimateghi1-1)), ﬂl,l), .. f(l n in (9) and solving forf(1 1) yields with&(r) = ¥ gl f(l.)f

. . . (1r+q+1 i)
the estimation equatlon

fig) féfr_fi) + frsy fA((l(f;)D = k(her+1)) — &(r) (10)

becausef(11) = ... = fq-1) = 0. The last equation which is non-linear with respecktg, 1y can be solved with the
Newton-Raphson algorithm, for example (see e.g. Kelly D0
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ha2)

N
e
fa2)

Figure 3: Estimation of(1.2 when fi11) = 0. The estimate is obtained from the equatidny) = f.1) 5" +faal” + fan fiy" = Ifual”.

Remark 1. When using the Newton-Raphson algorithm to solve (10), ditiadal approximation error occurs which
propagates via(t). However, the error in each step can be made arbitrarilyilsand the problem of finding the
solution of (10) is stable with respect to small changea(im). "Namely the right hand side of (10) is a continuous
function in f(1 1) which is strictly monotonic increasing or strictly monoiodecreasing.

Step 2. Assume that we have estimatégd) for 1 <i < s—-1and 1< j < n, where 2< s < [n/2]. We choose
hs1) € R? such that the estimated valig) # 0 overlaps with the entrys1, cf. Figure 4.

1)

N

f(&1)

Figure 4: Estimation of(3 ;). Assume that| = 2, i. e. fA(Ll) =0 andﬂl,z) # 0 and the first and second row of the kernel matrix have alrbagy
estimated. The lightgray squares represent the véflggsand f(1 2). The equation to estimatis 1) is

~ e -1 £ a-1, £ Na—1 £ Na—1 Na—1 Na—1 £ -1 e Na—1 £ ~Na—1, ~Na—1,
K(h(3,1)) = f(l,l) f(<3'2) ) + f(l,z) f(<3’1) ) + f(z,l) f(<2’2) ) + f(z,z) f(<2'1) ) + f(3,1) f(<1'2) ) + f(3,2) f(<1'1) ) = f(l,z) f(<3'1) ) + f(z,l) f(<2'2) ) + f(z,z) f(<2’1) ) + f(3,1) f(<1’2) >.

It holds
s-1 (g
-1
Khsn) = fanfy” +- + faa ey’ +ZZ“<' Dty * fenfiy +--+ feafiy -
i=2 j=

From the last equation, we obtain the estimation equation

s1 g
Na-1) | £ -1 _ 1
fs) f(<fq) '+ fLa f(fl) = k(hsp) - Z Z @i.)) f(;—l—l a+1-j) (11)
i=2 j=1

sincef(l,l), e f(l,q—l) =0.

Assume now that we have estimatgd) for (i, j) e {(k, ) : 1 <k<s-11<l<nu{(sl):1<I<r}, where
2<s<[n/21and 1< r < n—-1. By successively moving the upper square in Figure 4 toigig,rwe find some
h(sr+1) € R? such that similarly to (9)

s-10+r
(a-1) (a-1) . fle-1)
fs1) f(](jq+r) +.+ fegn Ty + Ez El fi.p f(;tl—i,q+r+1— i)

+fwgen fEn7 + o+ fag D, r<n-g,
k(N(sr+1) = o tar (s1) @2 fgqn
fsg-ner+n) f(1,n) +...+ fsn) 1:(lq nere1) T |ZZ ] q Zn:+r+l @) f(s+l i,gq+r+1-j)
-1
+f(1 n) f(sq nerey Tooo f(l,Q*n”Jrl) f(<s(fn) >’ r-n-aq.
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The corresponding estimation equation is

s—1 min{g+r,n} r
F(a—1) 3 (=) _ =~ £ fla=1) 3 §la=1)
f(sr+1)f(1(fq) + f(Lq) f(_:ul) - K(h(sr+l))—z Z f(I,l) f(;l—i,q+r+l—j) - Z f(&r+q+171) f(fj)
i=2 j=max1l,g-n+r+1} j=q+1
r
3 Fa—1
- Z fwreqei- féfj) ), (12)
j=a+1

2.2. Consistency of the estimator

,,,,,

..........

.....

andij=1,...,n,je{2,...,n}

Proof. Without loss of generality, led = 2. If fi11) = k(h,1)) = 0, then

fay = RN )Y Lz = RO L g ke

EREQ)

as.
(1{1))\21 - i|K(h(1,1))|l/Q -0=0, |— oo

If k(hwyy) # 0, thenfiray = k(M )M Loz — lk(hw)® = fr1) almost surely becaugg — 0 asl — co.
Therefore, the estimators (6)—(8) are strongly consisténé sign of (1 1) is chosen as in Remark 2.
Consider now the estimation equation (10) far.1). The estimatoff(, .1y is the root of the function

900 = fagx“™ + fA((fa)l)X +a(r) = k(N r+n)-

Notice thatg is continuous and either strictly monotonic increasingtdcty monotonic decreasing. Therefore it
has exactly one root. Since the éidgents ofg are strongly consistent, its root converges almost sucefy t.1), SO

the estimator based on (10) is strongly consistent. Withstitree argument we obtain the strong consistency of the
estimators based on (11) and (12). O

Remark 2. (a) Let 1< a < 2 and suppose thakX(Y)" is ana-stable random vector with spectral measiisich
thatX ~ S,(ox,Bx,0) andY ~ S, (o, By, 0). For 1< p < «, it holds

E(XYPY) (X Vlu(d-c ) + o (X Ve
ElYP oy ’

(13)

where K, Y), = fsl s1|S|*ir(d9), St denotes the unit circle and

tan(n/2)
1+ ,8\2( tarf(ar/2)

p

C = Cop(By) = [ﬂy tann/2) - tan(; arctanfy tan(an/Z)))] ,

see Karcher et al. (2011b). ¥fis symmetric, i.e 8y = 0, thenc = 0. Equation (13) can be used to estimate
k(h) as follows.

If Xis a symmetriex-stable random field, then
(E|X(O)|P)a/p—l E (X(O)X(h)(p—l>)
K h) =
Ca(P)*

, l<p<a, (14)

where
2P-Ir(1 - p/a)

pJo uP-lsirfudy

C(t(p)p =
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(b)

(©

see Samorodnitsky and Taqqu (1994, Property 1.2.17).

Assume that we can observe the random field on theNg¥idForm = (my,...,my)" € N% andh € Z9, let
D(m) = [1,m] n N% andDy(m) = D(m) N (D(m) — h). We consider the estimators

EXOP = = > X (15)
| |teD(m)
E (X(0)X(h)P-D) = = DT XX+ hyPY, (16)

cardPn(m)) bt

wherelm| = my - ... - my and cardDn(m)) denotes the cardinality dd,(m). Since the support of the ker-
nel function ofX is bounded, the random fieldX(t),t € RY} and {X(t)X(t + h),t € RY} are M-dependent,
cf. Samorodnitsky and Tagqu (1994, Theorem 3.5.3). 48 < «, thenE (]X(0)|P)*/P = E|X(0)f¥ < co and

liM o M7 (EIX(O)P -~ EIX(0)?) =0 as
liMm_seo cardOn(m))+ (IE (XO)X(h)P-2) — E (X(O)X(h)<p*1>)) -0 as

for eachy € (p/B,1), wherem — oo is to be understood componentwise, see Méricz et al. (2C08pI-
lary 2). Therefore, the estimators (15) and (16) are styoaghsistent with rates of convergen@gl/|m|*=)
andO(1/cardDn(m))*~?). We have almost surely

)a/ p-1

(EIXQ)P 1

E (X(O)X(h)®-)
B L

&(h) - k(h) = T

«(h) = 0(

) mo.

Notice that we can obtain a rate of convergenc@(t/im[*~?) for anyy € (1/a, 1) by choosingp andg
appropriately. The sample size is givenlby |m|. It is straightforward to construct a sequeniegicn which
satisfies the conditions of Theorem 1, for example 1/(14-7)/2),

The estimatof(l“l) based on (10) is obtained by finding the root of the function
909 = fagX* ™ + 775" % = &(harin) + &r).

Therefore, it is essential to have a reliable estinfatg if the theoretical valud(, 4 is equal to zero. To account
for this and stabilize the estimation procedure, we muyltibé raw estimators in (6)—(8) with the corresponding
indicator functions.

In (6)—(8), one has to decide whether to take the positiveegative sign in the definition d:(i,,-). Assume that
fiay - f @and fy...., f ) are the estimates based on the uniform choice of the positidenegative
sign, respectively. Then (10), (11) and (12) imdjy, = —f;, fori,j = 1,...,m Let f* and f~ denote
the corresponding kernel functions akd and X~ the corresponding random fields. Xfis symmetric, then
the finite-dimensional distributions &f~ are equal to the ones oft due to Samorodnitsky and Taqqu (1994,
formula (3.2.4)), i. e. it does not matter whether to takegbsitive or negative value in (6)—(8). ¥ is non-
symmetric, thegx- = —Bx-(), Wheresx:( denotes the skewness parametexsft), t € RY, cf. Samorodnit-
sky and Taqqu (1994, Proposition 3.2.2). Also, the randohd {i®) is stationary since it is a moving average
with Lebesgue control measure. Thus, one can base the abfaécpositive or negative sign in (6)—(8) on an
estimate of the skewness of the marginal distributions kmie.

Assume that the skewness intensity of the stable randomuresiss(1) is constant and equalgoThen

Jra FOO@dx
Jra lE(QI2dx”
6
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see Samorodnitsky and Taqqu (1994, Proposition 3.4.1ygdffg the estlmate@x(t) andf* of Bxy andf inthe
last equation, we obtain fdr* andf~ a unique3* andg- (with 3~ = —3*) such that the marginal distributions
of X have the appropriate skewness. For modeling purposespaath(f*, 3*) and (f~,3") are reasonable
choices because they yield the same finite-dimensionailditibns of the estimated stable random field, cf. the
following Lemma 1. A method to estimate the skewness pamntdtana-stable distribution is presented
in McCulloch (1986).

Lemmal. Letl < a < 2and X = (fRd ff(x)Mi(dx),...,f]Rd f¥(x)M*(dX))", d,n € N, be two stable random
vectors, where f(x) = —f*(x) for all x € RY and M* are stable random measures with Lebesgue control measure
and constant skewness intensifEswith 3~ = —8*. Then X 9 x-.

Proof. The characteristic function of* is given by
o =exp|- [ i@sr(1-isan(z 9y}, zer
§d-1

whereS%! is the unit sphere ilRY andI™* are finite measures déf-1, see Samorodnitsky and Taqqu (1994, Theo-
rem 2.3.1). For giver, the measures* completely determine the distribution ¥f. By Samorodnitsky and Taqqu
(1994, formula (3.2.4)), we have for each Borel &eatf S4-1

rm = g + T e A,
where
n a2 n
mdx) = (Z fii(x)z] dx, E= {xe RY : Z f(x)? > 0},
i=1 i=1
“(X) = B i=1...nxeE g'A)={xeE:(gX (x)" € Al
R A ¢ A (G '

Sincef~(x) = —f*(x) for all x e RY, we haveg;*(A) = g-*(—A) which implies together witjg~ = —

1+ﬂ+ . a/2 1- /2
fl(A)(Zf (x)] dx+ fl( A)[Zf (x)) dx
/2 14 a/2 )
= f_l( A)[Zf (x)] dx+ —2 f_l(A)[Zf (x)] dx=T"(A).

I (A)

3. Practical issues and open problems

Letd = 2 andAj, 1 <i < n, be squares with side length 1. We chonse 5 and simulate a symmetric8tstable
random field with the kernéfl given in the left plot of Figure 5 on the grid [200F N N?. We advice that in practical
applications, the side length of the observation windowt isast two times the diameter of the supportah order
to reduce boundaryfkects with the estimation of the covariation function. We Bsgnark 2 ang = 1.4 to estimate
the covariation function from the realization of the stafsledom field.

The choice ofy mainly determines the quality of the kernel function estiora By Theorem 1, we only know
how the sequende, }icy has to behave ds— «. However, for some fixetle N, it is not clear which value we should
take. As one can see in Figure 5, we completely fail to retritve kernel ifs) is too small € = 0.01). The estimate
also difers evidently from the theoretical kernekifis too large § = 1.3). An appropriate choice fafj is 1.086 for
which the kernel is estimated very well.



Figure 5: The theoretical kernél(first plot) and the estimated kernel wigh= 0.01 (second plot)g; = 1.3 (third plot) ands; = 1.086 (forth plot).

In applications, one possibility to handle this problemaddok at the estimated covariation function and set a
plausible value by hand. Another possibility is to usedent choices of) and take the resulting kernel which looks
most reasonable.

We now present an approach to obtain a reasonable choigeTdfe intuition of the method is as follows. It holds
«(0) = J&d [f(X)|*dx. We transform the subgraph of the functidif to a cuboidC(f) which has the same volume

va(C(f)) = ﬁ%d |f(X)|“dx as the volume below the graph [df* and the same suppdkt = Ui<i<nAi, see Figure 6.
The heights of the cuboid is equal to the mean heightifif. Let K = supp() be the support of. Then we have

Figure 6: The functionf|® (left plot) and the corresponding cubd{f) (right plot).

k(0) = 6v4(K) and therefore = «(0)/v4(K). The last formula yields the practical choice of the ordemagnitude of
g, hamely

)
g = Va(K)"

In the numerical example, we havgK) = 5-5 = 25 andk{0) = 27.152 which impliess; = 1.086. In Figure 5, we
see that this value fay retrieves the actual kernel very well.

We now address some open problemsX s a symmetric stable random field, the covariation functian be
estimated via (14). For non-symmetric stable random fidhis,use of (13) to estimate the covariation function is
not advisable because the quanti¥y Y), involves the spectral measure of a stable random vectohidrcase, it is
more straightforward to consider directly the formuaY], = fgl sls;"‘bl"(ds) and estimate it via an estimation of
the spectral measure. Estimation methods for the spectasune can be found in Nolan et al. (2001); Pivato and
Seco (2003). However, this approach is not ficient and better methods to estimate the covariation fanctiay
be developed.

In Remark 2(c), we addressed the problem of choosing thedosign in the definition of}i,j) and presented
a solution when the skewness intensity of the stable randeasure is constant. For stable random measures with
non-constant skewness intensity, it is not clear yet howxtth& sign.

Finally, the choice of the cutfb parameter; might be based on a more systematic approach by considering
techniques which are applied in kernel density estimatarhtain the optimal band width parameter.
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