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SIMULATION OF INFINITELY DIVISIBLE RANDOM FIELDS

WOLFGANG KARCHER, HANS-PETER SCHEFFLER, AND EVGENY SPODAREV

Abstract. Two methods to approximate infinitely divisible random fields are
presented. The methods are based on approximating the kernel function in the
spectral representation of such fields, leading to numerical integration of the
respective integrals. Error bounds for the approximation error are derived and
the approximations are used to simulate certain classes of infinitely divisible
random fields.

1. Introduction

In many cases, the normal distribution is a reasonable model for real phenom-
ena. If one considers the cumulative outcome of a great amount of influence factors,
the normal distribution assumption can be justified by the Central Limit Theorem
which states that the sum of a large number of independent and identically dis-
tributed random variables can be approximated by a normal distribution if the
variance of these variables is finite. However, many real phenomena exhibit rather
heavy tails. Stable distributions remedy this drawback by still being the limit dis-
tribution of a sum of independent and identically distributed random variables, but
allowing for an infinite variance and heavy tails.

Stable distributions are a prominent example of the class of infinitely divisible
distributions which we particularly concentrate on in this paper. Infinitely divis-
ible distributions are distributions whose probability measure P is equal to the
n-fold convolution of a probability measure Pn for any positive integer n. The class
of infinitely divisible distributions comprises further well-known examples such as
the Poisson, geometric, negative binomial, exponential, and gamma distribution,
see [19]. These distributions are widely used in practice, for instance in finance to
model the returns of stocks or in insurance to model the claim amounts and the
number of claims of an insurance portfolio.

In order to include time dependencies or the spatial structure of real phenomena,
random functions, in particular processes or fields, may be an appropriate model.
An example of infinitely divisible processes are Lévy processes which have been
extensively studied in the literature.

In this paper, we consider random fields that can be represented as a stochastic
integral of a deterministic kernel function as integrand and an infinitely divisible
random measure as integrator. The kernel function basically determines the de-
pendence structure, where-as the infinitely divisible random measure inhibits the
probabilistic characteristics of the random field, cf. Section 2 for details. As already
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noticed in [6], practitioners have to try a variety of kernels and infinitely divisible
random measures to find the model that best fits their needs.

Once the model is fixed, it is desirable to be able to perform simulations of
the considered random field. There are several papers that are devoted to this
problem. In [4, 21, 26], the fast Fourier transform is used for the simulation of linear
fractional stable processes, whereas in [9], a wavelet representation of a certain type
of fractional stable processes is applied to simulate sample paths. Furthermore, a
general framework for the simulation of fractional fields is given in [6].

In this paper, we consider infinitely divisible random fields for which the kernel
functions are assumed to be Hölder-continuous or bounded which is a less restrictive
assumption. Based on these assumptions, we derive estimates for the approximation
error when the kernel functions are approximated by step functions or by certain
truncated wavelet series. The approximation allows for simulation since the integral
representation of the random field reduces to a finite sum of random variables in
this case.

In Section 3, we present the main results for the approximation error which is
made when the kernel function is replaced by a step function or a truncated wavelet
series. Section 4 is devoted to a brief simulation study where we apply the derived
formulas for the approximation error to the simulation of two particular stable
random fields. Finally, in Section 5 we comment on the simulation results and the
methods discussed in Section 3.

2. Infinitely divisible random fields admitting an integral

representation

Let Λ be an infinitely divisible random measure with control measure λ, cf. [11]
and [17]. Let ft : R

d → R, d ≥ 1, be Λ-integrable for all t ∈ Rq, q ≥ 1, that is there

exists a sequence of simple functions {f̃ (n)
t }n∈N, f̃

(n)
t : Rd → R, t ∈ Rq, so that

(a) f̃
(n)
t → ft λ− a.e.,

(b) for every Borel set B ⊂ Rd, the sequence {
∫

B
f̃
(n)
t (x)Λ(dx)}n∈N converges

in probability,

for all t ∈ Rq. The integral of a simple function f =
∑m

j=1 xj1Aj , m ∈ N, is defined

in the obvious manner
∫

A
fdΛ :=

∑m
j=1 xjΛ(A ∩Aj). For each t ∈ Rq, we set

∫

Rd

ft(x)Λ(dx) := plim
n→∞

∫

Rd

f̃
(n)
t (x)Λ(dx),

cf. [17], where plim
n→∞

means convergence in probability, and consider random fields

of the form

(2.1) X(t) =

∫

Rd

ft(x)Λ(dx), t ∈ Rq.

Remark 2.1. In [17], it is shown that X(t) is infinitely divisible for all t ∈ Rq,
cf. Theorem 2.7 and the Lévy form of the characteristic function of an infinitely
divisible random variable. More generally, it can be shown that (X(t1), . . . , X(tn))

T

is infinitely divisible for all t1, . . . , tn ∈ Rq and n ∈ N (see [14]). Therefore, any
random field of the form (2.1) is an infinitely divisible random field.

Example 2.2 (α-stable random fields). Let 0 < α ≤ 2, Λ = M be an (indepen-
dently scattered) α-stable random measure on Rd with zero drift, control measure
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m and skewness intensity β, see [18]. Moreover, assume that ft ∈ Lα(Rd,m) if
α 6= 1 and that ft belongs to the set

{f ∈ L1(Rd,m) :

∫

Rd

|f(x)β(x) ln |f(x)||m(dx) < ∞}

if α = 1 for all t ∈ Rq. We denote the set of all functions ft satisfying these
conditions by F . Then

X(t) =

∫

Rd

ft(x)M(dx), t ∈ Rq,

is an α-stable random field.

Example 2.3 (Shot noise fields). Let Λ = Φ be a Poisson random measure on Rd

with intensity measure Θ, see [22]. Furthermore, we assume that ft is a measurable
function on Rd for each t ∈ Rq. Then we can consider the shot noise field

X(t) =

∫

Rd

ft(x)Φ(dx), t ∈ Rq,

which can be written as

(2.2) X(t) =
∑

x∈Ψ

ft(x),

where Ψ is the support set of the Poisson random measure.

Example 2.4 (Lévy processes). Let Q be a Poisson random measure on the set
(0,∞)×R\{0} with intensity measure µ×ν. Here, µ is the Lebesgue measure and
ν is the Lévy measure, cf. [15, 16]. Let G be a Gaussian (2-stable) independently
scattered random measure with Lebesgue control measure and skewness intensity
β ≡ 0. Then for any t ≥ 0

X(t) =

∫ t

0

∫

R

xQ(dx, ds) + t

(

γ −
∫

|x|<1

xν(dx)

)

+

∫ t

0

G(ds)(2.3)

=

∫

R

1(0 ≤ s ≤ t)Λ(ds)(2.4)

with Λ(ds) =
∫

R
xQ(dx, ds)+G(ds)+

(

γ −
∫

|x|<1 xν(dx)
)

µ(ds) is the Lévy process

with Lévy measure ν, Gaussian part G and drift γ = E

(

X(1)−
∫

|x|≥1 xν(dx)
)

if

EX(1) exists and is finite.

We now consider the cumulant function CΛ(A)(t) = ln(E exp{itΛ(A)}) of Λ(A)

for a set A in the δ-ring A of bounded Borel subsets of Rd which is given by the
Lévy-Khintchine representation

CΛ(A)(v) = iva(A)− 1

2
v2b(A) +

∫

R

(eivr − 1− ivr1[−1,1](r))U(dr,A)

for v ∈ R, where a is a σ-additive set function on A, b is a measure on the
Borel σ-algebra B(Rd), and U(dr,A) is a measure on B(Rd) for fixed dr and a
Lévy measure on B(R) for each fixed A ∈ B(Rd), that is U({0}, A) = 0 and
∫

R
min{1, r2}U(dr,A) < ∞, cf. [10]. The measure U is referred to as the general-

ized Lévy measure and (a, b, U) is called characteristic triplet. The control measure
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λ can be written as

(2.5) λ(A) = |a|(A) + b(A) +

∫

R

min{1, r2}U(dr,A), A ∈ A,

where |a| = a++ a−, see [17]. Furthermore, a and b are absolutely continuous with

respect to λ and we have the formulas a(dη) = ã(η)λ(dη), b(dη) = b̃(η)λ(dη) and
U(dr, dη) = V (dr, η)λ(dη), where V (dr, η) is a Lévy measure for fixed η.

We now introduce the so-called spot variable L′(η) with cumulant function

CL′(η)(v) = ivã(η)− 1

2
v2b̃(η) +

∫

R

(eivr − 1− ivr1[−1,1](r))V (dr, η)

with

E(L′(η)) = ã(η) +

∫

[−1,1]C
rV (dr, η),(2.6)

Var(L′(η)) = b̃(η) +

∫

R

r2V (dr, η)(2.7)

if E(L′(η)) and Var(L′(η)) exist. Here, [−1, 1]C means the complement of the
interval [−1, 1] in R. It is shown in [10] that CX(t)(v) =

∫

Rd CL′(η)(vft(η))λ(dη).
We can use the cumulant function of X(t) to obtain the second moment of X(t)
(in case it exists):

(2.8) E
(

X(t)2
)

=

∫

Rd

f2
t (y)Var(L

′(y))λ(dy) +

(∫

Rd

ft(y)E(L
′(y))λ(dy)

)2

.

As noticed in [10], it is no restriction for modeling purposes if we only consider

characteristic triplets of the form a(dη) = ãν(η)ν(dη), b(dη) = b̃ν(η)ν(dη) and
U(dr, dη) = Vν(dr, dη)ν(dη), where ν is a non-negative measure on B(Rd), the

functions ãν : Rd → R and b̃ν : Rd → [0,∞) are measurable and Vν(dr, η) is a Lévy
measure for fixed η.

Example 2.5. The following choice of (a, b, U) will lead to the so-called gamma

Lévy basis in Example 3.4. We choose the Lebesgue measure for ν and consider the
characteristic triplet (a, 0, U) with U(dr, dη) = V (dr, η)dη = 1(0,∞)(r)

1
r e

−θrdrdη

and a(dη) = ã(η)dη = 1
θ

(

1− e−θ
)

dη , where θ ∈ (0,∞). Then, by using (2.6)

and (2.7), we get E(L′(η)) = 1/θ and Var(L′(η)) = 1/θ2 and by (2.5), the control
measure is proportional to the Lebesgue measure with

λ(dη) =

(

1 + θ − 2θe−θ − e−θ

θ2
+

∫ ∞

1

1

r
e−θrdr

)

dη.

3. Approximation of infinitely divisible random fields

We now restrict our setting to the observation window [−T, T ]q with T > 0 so
that X(t) =

∫

Rd ft(x)Λ(dx) for t ∈ [−T, T ]q. We denote by supp(ft) the support

of ft for each t ∈ [−T, T ]q and assume that
⋃

t∈[−T,T ]q supp(ft) ⊂ [−A,A]d for an

A > 0. Then X(·) can be written as

X(t) =

∫

[−A,A]d
ft(x)Λ(dx), t ∈ [−T, T ]q.

Our goal is to approximate sample paths of X for a variety of kernel functions ft,
t ∈ [−T, T ]q. The idea is to approximate the kernel functions ft appropriately so
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that the approximations f̃
(n)
t are of the form f̃

(n)
t =

∑m(n)
i=1 aigt,i for t ∈ [−T, T ]q,

where m(n) ∈ N, ai ∈ R and gt,i : R
d → R is Λ-integrable.

Due to the linearity of the stochastic integral, we get for each t ∈ [−T, T ]q

(3.1) X̃(n)(t) =

∫

[−A,A]d
f̃
(n)
t (x)Λ(dx) =

m(n)
∑

i=1

ai

∫

[−A,A]d
gt,i(x)Λ(dx)

as an approximation X̃(n) of X . If the functions gt,i are simple functions such that
∫

[−A,A]d
gt,i(x)Λ(dx) =

∑l
j=1 gt,i(xj)Λ(∆j) for i = 1, . . . ,m(n), t ∈ [−T, T ]q, some

xj ∈ [−A,A]d, l ∈ N and a partition {∆j}lj=1 of [−A,A]d into pairwise disjoint
Borel sets, then

(3.2) X̃(n)(t) =

m(n)
∑

i=1

l
∑

j=1

aigt,i(xj)Λ(∆j)

which can be simulated if Λ(∆j), j = 1, . . . , l, can be simulated.

Example 3.1 (α-stable random fields). Let Λ = M be an α-stable random measure
with Lebesgue control measure and constant skewness intensity β. Then

M(∆j) ∼ Sα(|∆j |1/α, β, 0), j = 1, . . . , l,

cf. [18], where |∆j | is the volume of ∆j and Sα(σ, β, 0) denotes the stable distri-
bution with stable index α, scale parameter σ, skewness parameter β and location
parameter 0. Furthermore, the random variables M(∆j), j = 1, . . . , l, are indepen-
dent since M is an independently scattered random measure. A method to simulate
α-stable random variables is presented in [5].

Example 3.2 (Shot noise random fields). Let Λ = Φ be a Poisson random measure
with intensity measure Θ. Then

Λ(∆j) ∼ Poi(Θ(∆j)),

where Poi(Θ(∆j)) stands for the Poisson distribution with mean Θ(∆j). We notice

that simulating sample paths of a shot noise field X by X̃(n) in (3.1) is not efficient
since one can directly exploit the structure of X and use X(t) =

∑

x∈Ψ ft(x),
cf. equation (2.2) in Example 2.3. Realizations of a homogeneous Poisson process
Ψ (if Θ is proportional to the Lebesgue measure) can be obtained e. g. by means
of the radial simulation method, whereas for non-homoge-neous Poisson processes,
the thinning method can be used, cf. [22].

Example 3.3 (Lévy processes). Let Q be a Poisson random measure on the set
(0,∞)×R\{0} with intensity measure µ×ν, where µ is the Lebesgue measure and
ν is the Lévy measure. Let G be a Gaussian white noise measure with Lebesgue
control measure and skewness intensity β ≡ 0. In contrast to the representation
(2.4), we first approximate the Lévy process (2.3) by

XK(t) =

∫ K

−K

∫ t

0

xQ(ds, dx)− t

∫

|x|<1

xν(dx) + γt+G([0, t])
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for some K > 0. We approximate f(x) = x by a linear combination of simple
functions gi, i = 1, . . . ,m(n), m(n) ∈ N for all n ∈ N and get

X̃
(n)
K (t) =

m(n)
∑

i=1

l
∑

j=1

aigi(xj)Q(∆j)− t

∫

|x|<1

xν(dx) + γt+G([0, t]),

for a partition {∆j}lj=1, l ∈ N, of [−K,K] × [0, t] and some a1, . . . , am(n) ∈ R,
where Q(∆j) ∼ Poi((µ× ν)(∆j)) and G([0, t]) ∼ N (0, t).

Example 3.4 (Gamma Lévy random fields). Let us again choose the Lebesgue
measure for ν and the characteristic triplet (a, 0, U) from Example 2.5. Then
Λ(∆j) ∼ Γ(|∆j |, θ), cf. [10], where |∆j | is the Lebesgue measure of ∆j and Γ(|∆j |, θ)
is the gamma distribution with probability density function

f(x) =
θ|∆j |

Γ(|∆j |)
x|∆j |−1e−θx

1[0,∞)(x).

In the last formula, Γ(·) denotes the gamma function. Again, Λ(∆j), j = 1, . . . , n,
are independent. Due to its distributional property, Λ is called gamma Lévy basis

and

X(t) =

∫

Rd

ft(x)Λ(dx), t ∈ Rq,

gamma Lévy random field. Since gamma distributed random variables can be easily
simulated (cf. [12]), the procedure (3.2) applies immediately.

3.1. Measuring the approximation error. Approximating the random field X

with X̃(n) by taking an approximation f̃
(n)
t of the kernel functions ft implies that

X̃(n) is close to X when f̃
(n)
t is close to ft. We use

Errs(X(t), X̃(n)(t)) :=
∥

∥

∥ft − f̃
(n)
t

∥

∥

∥

Ls
:=

(

∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|sλ(dx)

)1/s

to measure the approximation quality of X̃(n) for some s > 0. In order to guarantee

the finiteness of the above integral, we assume from now on that ft and f̃
(n)
t belong

to Ls([−A,A]d, λ) for all t ∈ [−T, T ]q. The goal is then to find a set of functions

{f̃ (n)
t }t∈Rd so that Errs(X(t), X̃(n)(t)) is less than a predetermined critical value.
We see that the problem of approximating the random field X reduces to an

approximation problem of the corresponding kernel functions.
Let us now consider two special cases where Λ is an α-stable random measure

and a Poisson random measure, respectively, to analyze the choice of the error
measure.

3.1.1. α-stable random measures. Assume that 0 < α ≤ 2, α 6= 1, and let M be
an α-stable random measure with control measure m and skewness intensity β.
Furthermore, if α = 1, assume additionally that β(t) = 0 for all t ∈ [−T, T ]q.

Consider a set of functions {f̃ (n)
t }t∈Rd , where f̃

(n)
t ∈ F (cf. Example 2.2) for all

t ∈ [−T, T ]q and n ∈ N. The corresponding α-stable random field is denoted by

X̃(n)(t) :=

∫

[−A,A]d
f̃
(n)
t (x)M(dx), t ∈ [−T, T ]q.
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We know that X̃(n)(t) converges stochastically to X(t) in probability if and only

if the quantity
∫

Rd |ft(x) − f̃
(n)
t (x)|αm(dx) converges to 0 as n goes to infinity

(see [18]). Therefore, we can use X̃(n)(t) as an approximation for X(t) if f̃
(n)
t

approximates ft sufficiently well, i. e. X̃(n)(t) converges to X(t) in probability if

and only if Errα(X(t), X̃(n)(t)) → 0 as n → ∞.

The choice of Errα(X(t), X̃(n)(t)) can be further justified as follows. Since

the random variables X(t) and X̃(n)(t) are jointly α-stable distributed for each

t ∈ [−T, T ]q, the difference X(t)− X̃(n)(t) is also an α-stable random variable. The

scale parameter of X(t)− X̃(n)(t) is given by

σX(t)−X̃(n)(t) =

(

∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|αm(dx)

)1/α

,

cf. [18], so that Errα(X(t), X̃(n)(t)) = σX(t)−X̃(n)(t). Furthermore, let us consider

the quantity E|X(t)− X̃(n)(t)|p for 0 < p < α, that is the mean error between X(t)

and X̃(n)(t) in the Lp-sense. Since X(t)− X̃(n)(t) is an α-stable random variable,

we have E|X(t)− X̃(n)(t)|p < ∞ if 0 < p < α and E|X(t)− X̃(n)(t)|p = ∞ if p ≥ α.
For 0 < p < α, 0 < α < 2 and α 6= 1, this quantity can be written as

(3.3)
(

E|X(t)− X̃(n)(t)|p
)1/p

= cα,βt(p) · σX(t)−X̃(n)(t),

where

(cα,βt(p))
p

=
2p−1Γ(1− p

α )
(

1 + β2
t tan

2 απ
2

)
p
2α

p
∫∞
0

u−p−1 sin2 u du
cos
( p

α
arctan

(

βt tan
απ

2

))

,

βt =

∫

[−A,A]d|ft(x)− f̃
(n)
t (x)|αsign(ft(x)− f̃

(n)
t (x))β(x)dx

∫

[−A,A]d |ft(x) − f̃
(n)
t (x)|αdx

.

In the case α = 1, equation (3.3) holds if βt = 0, see [18].
We remind that β(·) is the skewness intensity of the α-stable random measure

M . The above implies that for 0 < p < α

Errα(X(t), X̃(n)(t)) =
1

cα,βt(p)

(

E|X(t)− X̃(n)(t)|p
)

1
p

.

Now assume that α = 1 and β(x) 6= 0 for at least one x ∈ [−A,A]d. In this
case, we need to impose an additional condition on the kernel functions in order
to guarantee the convergence of X̃(n)(t) to X(t) in probability. Namely, X̃(n)(t)

converges to X(t) in probability if and only if
∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|m(dx) and

∫

[−A,A]d
(ft(x)− f̃

(n)
t (x)) ln |ft(x)− f̃

(n)
t (x)|β(x)m(dx) tend to 0 as n → ∞, cf. [18].

We use

Err3/2(X(t), X̃(n)(t)) :=

(

∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|3/2m(dx)

)2/3

to measure the approximation error in this case.
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Using the fact that |x lnx| ≤ max{√x, x
√
x} for x > 0 and that −1 ≤ β(x) ≤ 1

for all x ∈ [−A,A]d, we have
∣

∣

∣

∣

∣

∫

[−A,A]d
(ft(x) − f̃

(n)
t (x))β(x) ln |ft(x)− f̃

(n)
t (x)|m(dx)

∣

∣

∣

∣

∣

≤
∫

[−A,A]d

∣

∣

∣(ft(x) − f̃
(n)
t (x))β(x) ln |ft(x)− f̃

(n)
t (x)|

∣

∣

∣m(dx)

≤
∫

[−A,A]d
max

{

|ft(x)− f̃
(n)
t (x)|1/2, |ft(x) − f̃

(n)
t (x)|3/2

}

m(dx)

≤
∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|1/2m(dx) +

∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|3/2m(dx).

Now, if Err3/2(X(t), X̃(n)(t)) tends to zero as n goes to infinity, then by Lya-
punov’s inequality (see [20]),

∫

[−A,A]d
|ft(x)− f̃

(n)
t (x)|3/2m(dx) → 0, n → ∞,

∫

[−A,A]d
|ft(x)− f̃

(n)
t (x)|1/2m(dx) → 0, n → ∞,

so that the integral
∫

[−A,A]d(ft(x) − f̃
(n)
t (x)) ln |ft(x) − f̃

(n)
t (x)|β(x)m(dx) goes to

zero as n → ∞. Furthermore, once again by using Lyapunov’s inequality, the

integral
∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|m(dx) tends to zero as n → ∞ so that X̃(n)(t)

converges to X(t) in probability.

Remark 3.5. If Errα(X(t), X̃(n)(t)) tends to zero as n goes to infinity for each
t ∈ [−T, T ]q, then

{X̃(n)(t)}t∈[−T,T ]q
f.d.→ {X(t)}t∈[−T,T ]q ,

where
f.d.→ denotes weak convergence of all finite dimensional distributions.

Proof. We first state a lemma which is an implication of the inequality

(x+ y)p ≤ xp + yp, 0 < p ≤ 1, x, y > 0.

Lemma 3.6. Let 0 < p ≤ 1 and fi ∈ Lp(Rd) for each i ∈ {1, . . . , n} with n ∈ N.

Then
∥

∥

∥

∥

∥

n
∑

i=1

fi

∥

∥

∥

∥

∥

p

Lp

≤
n
∑

i=1

‖fi‖pLp .

Now fix any t1, . . . , tm ∈ [−T, T ]q and λ1, . . . , λm ∈ R. If 0 < α < 1, we get


Errα





m
∑

j=1

λjX(tj),

m
∑

j=1

λjX̃
(n)(tj)









α

=

∥

∥

∥

∥

∥

∥

m
∑

j=1

λjftj −
m
∑

j=1

λj f̃
(n)
tj

∥

∥

∥

∥

∥

∥

α

Lα

≤
m
∑

j=1

|λj |α
∥

∥

∥ftj − f̃
(n)
tj

∥

∥

∥

α

Lα
=

m
∑

j=1

|λj |αErrα(X(tj), X̃
(n)(tj))

α → 0, n → ∞.



SIMULATION OF INFINITELY DIVISIBLE RANDOM FIELDS 9

For 1 < α ≤ 2, we can use Minkowski’s inequality and get

Errα





m
∑

j=1

λjX(tj),

m
∑

j=1

λjX̃
(n)(tj)



 =

∥

∥

∥

∥

∥

∥

m
∑

j=1

λjftj −
m
∑

j=1

λj f̃
(n)
tj

∥

∥

∥

∥

∥

∥

Lα

≤
m
∑

j=1

|λj |
∥

∥

∥ftj − f̃
(n)
tj

∥

∥

∥

Lα
=

m
∑

j=1

|λj |Errα(X(tj), X̃
(n)(tj)) → 0, n → ∞.

Analogously for α = 1,

Err3/2





m
∑

j=1

λjX(tj),
m
∑

j=1

λjX̃
(n)(tj)



→ 0, n → ∞.

Therefore, for any λ1, . . . , λm ∈ R we have
∑m

j=1 λjX(tj)−
∑m

j=1 λjX̃
(n)(tj) → 0

in probability which implies the convergence of all fi-nite-dimensional distributions.
�

3.1.2. Poisson random measures. Let Φ be a Poisson random measure with inten-
sity measure Θ and Ψ be the Poisson point process corresponding to the Poisson
random measure. Furthermore, we assume that the kernel functions ft are measur-
able on [−A,A]d for each t ∈ [−T, T ]q. Then, by the Campbell theorem (cf. [22]),
we have

Err1(X(t), X̃(n)(t)) =

∫

[−A,A]d

∣

∣

∣ft(x) − f̃
(n)
t (x)

∣

∣

∣Θ(dx)

= E

(

∫

[−A,A]d

∣

∣

∣
ft(x) − f̃

(n)
t (x)

∣

∣

∣
Φ(dx)

)

= E

(

∑

x∈Ψ

∣

∣

∣
ft(x) − f̃

(n)
t (x)

∣

∣

∣

)

≥ E

∣

∣

∣

∣

∣

∑

x∈Ψ

(

ft(x)− f̃
(n)
t (x)

)

∣

∣

∣

∣

∣

= E

∣

∣

∣

∣

∣

∫

[−A,A]d
ft(x)Φ(dx) −

∫

[−A,A]d
f̃
(n)
t (x)Φ(dx)

∣

∣

∣

∣

∣

= E

∣

∣

∣
X(t)− X̃(n)(t)

∣

∣

∣
,

that is we can control the mean error between X(t) and X̃(n)(t) in the L1-sense by

Err1(X(t), X̃(n)(t)).

3.1.3. Exploiting the spot variable representation of the second moment of X(t).
We assume that the second moment of the random field exists and recall formula
(2.8)

E
(

X(t)2
)

=

∫

[−A,A]d
f2
t (y)Var(L

′(y))λ(dy) +

(

∫

[−A,A]d
ft(y)E(L

′(y))λ(dy)

)2
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which implies

E(X(t)− X̃(n)(t))2 =

∫

[−A,A]d
(ft(y)− f̃

(n)
t (y))2Var(L′(y))λ(dy)

+

(

∫

[−A,A]d
(ft(y)− f̃

(n)
t (y))E(L′(y))λ(dy)

)2

≤
∫

[−A,A]d
(ft(y)− f̃

(n)
t (y))2Var(L′(y))λ(dy)

+

∫

[−A,A]d

(ft(y)− f̃
(n)
t (y))2λ(dy)

∫

[−A,A]d

(E(L′(y)))
2
λ(dy)

where we used the Cauchy-Schwarz inequality in the last inequality. If it holds

Var(L′(y)) ≤ c1 < ∞ for y ∈ Rd and
∫

[−A,A]d (E(L
′(y)))2 λ(dy) := c2 < ∞, then we

get

(

E(X(t)− X̃(n)(t))2
)1/2

≤ (c1+c2)
1/2‖ft−gt‖L2 = (c1+c2)

1/2Err2(X(t), X̃(n)(t)).

Example 3.7. Consider again the characteristic triplet (a, 0, U) from Example 2.5.

We have Var(L′(y)) = 1/θ2 =: c1 and
∫

[−A,A]d (E(L
′(y)))2 λ(dy) = (2A)d/θ2 =: c2,

so that
(

E(X(t)− X̃(n)(t))2
)1/2

≤ 1

θ

(

1 + (2A)d
)1/2

Err2(X(t), X̃(n)(t)).

3.2. Step function approximation. For any n ∈ N and k = (k1, . . . , kd)
T ∈ Zd

so that −n ≤ k1, . . . , kd < n, let

ξk :=

(

k1
A

n
, . . . , kd

A

n

)T

, ∆k :=

[

k1
A

n
, (k1 + 1)

A

n

)

× · · · ×
[

kd
A

n
, (kd + 1)

A

n

)

.

We define the step function f̃
(n)
t (x) :=

∑

|k|≤n ft(ξk)1∆k
(x) to approximate ft,

where |k| ≤ n means −n ≤ ki < n for i = 1, . . . , d. Then we have

(3.4) X̃(n)(t) =

∫

[−A,A]d
f̃
(n)
t (x)Λ(dx) =

∑

|k|≤n

ft(ξk)Λ(∆k).

The following theorem provides error bounds for Errs(X(t), X̃(n)(t)) for Hölder-
continuous functions ft.

Theorem 3.8. Assume that 0 < s ≤ 2, the control measure λ is the Lebesgue

measure and ft ∈ Ls(Rd) is Hölder-continuous for all t ∈ [−T, T ]q, i. e.

|ft(x) − ft(y)| ≤ Ct · ||x− y||γt

2 , x, y ∈ [−A,A]d,

for and t ∈ [−T, T ]q, some 0 < γt ≤ 1 and Ct > 0, where ‖·‖2 denotes the Euclidean
norm. Then for any t ∈ [−T, T ]q we have for all n ≥ 1 that

(3.5) Errs(X(t), X̃(n)(t)) ≤
(

2dCtd

1 + γts

)1/s

Aγt+d/s

(

1

n

)γt

.
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Proof. Since

X(t)− X̃(n)(t) =

∫

[−A,A]d



ft(x)−
∑

|k|≤n

ft(ξk)1∆k
(x)



Λ(dx),

we have

(

Errs(X(t), X̃(n)(t))
)s

=

∫

[−A,A]d

∣

∣

∣

∣

∣

∣

∑

|k|≤n

(ft(x)− ft(ξk))1∆k
(x)

∣

∣

∣

∣

∣

∣

s

dx.

For each x ∈ [−A,A]d, there exists exactly one index k̃ = k̃(x) with |k̃| ≤ n and
x ∈ ∆k̃. Hence

∣

∣

∣

∣

∣

∣

∑

|k|≤n

(ft(x) − ft(ξk))1∆k
(x)

∣

∣

∣

∣

∣

∣

s

= |ft(x) − ft(ξk)|s 1∆k̃
(x)

=
∑

|k|≤n

|ft(x) − ft(ξk)|s 1∆k
(x)

which implies

(

Errs(X(t), X̃(n)(t))
)s

=

∫

[−A,A]d

∣

∣

∣

∣

∣

∣

∑

|k|≤n

(ft(x)− ft(ξk))1∆k
(x)

∣

∣

∣

∣

∣

∣

s

dx

=
∑

|k|≤n

∫

∆k

|ft(x) − ft(ξk)|s dx ≤ Ct

∑

|k|≤n

∫

∆k

||x− ξk||γts
2 dx

= Ct

∑

|k|≤n

A/n
∫

0

· · ·
A/n
∫

0

(

y21 + · · ·+ y2d
)(γts)/2

dyd · · · dy1.

As (γts)/2 ≤ 1, we have
(

y21 + · · ·+ y2d
)(γts)/2 ≤ yγts

1 + · · ·+ yγts
d and hence

∫ A/n

0

· · ·
∫ A/n

0

(

y21 + · · ·+ y2d
)(γts)/2

dyd · · · dy1

≤ d

(

A

n

)d−1 ∫ A/n

0

yγts
1 dy1 =

d

γts+ 1

(

A

n

)d+γts

.(3.6)

Therefore, we get

Errs(X(t), X̃(n)(t)) ≤
(

2dCtd

1 + γts

)1/s

Aγt+d/s

(

1

n

)γt

.

�

Remark 3.9. In many applications, it suffices to consider a control measure λ pro-
portional to the Lebesgue measure (cf. Example 2.5), that is λ(dη) = c ·dη for some
c > 0. In this case, one has to multiply the upper bound in (3.5) by c1/s. If the
control measure λ is not the Lebesgue measure, then, in general, the integral

∫ A/n

0

· · ·
∫ A/n

0

(

y21 + · · ·+ y2d
)(γts)/2

λ(d(y1, . . . , yd))
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in (3.6) cannot be calculated explicitly so that one would have to include it in the
upper bound of the approximation error.

Remark 3.10. In the proof, one can estimate
∫ A/n

0

· · ·
∫ A/n

0

(

y21 + · · ·+ y2d
)(γts)/2

dyd · · · dy1

alternatively by
∫ A/n

0

· · ·
∫ A/n

0

‖y‖γts
2 dyd · · · dy1 ≤ 1

2d

∫

‖y‖2≤A
n

√
d

‖y‖γts
2 dy

and calculate the last integral using polar coordinates. This yields

Errs(X(t), X̃(n)(t)) ≤
(

Ctπd
(γts+d)/2

γts+ d

)1/s

Aγt+d/s

(

1

n

)γt

D(d, s),

where

D(d, s) :=































1, d = 2,

2, d = 3,

π, d = 4,

πd−3 Γ(3/2)
Γ(d/2) , d ≥ 5 odd,

πd−7/2 Γ(3/2)
Γ((d−1)/2) , d ≥ 5 even.

It is straightforward to show that this estimate is better than the one in Theorem
3.8 if

π

2d
d(γts+d)/2−1 ·D(d, s) · γts+ 1

γts+ d
< 1.

Remark 3.11. Suppose that the conditions of Theorem 3.8 hold true. If the support
of the function ft is not compact, we first need to estimate X(t) =

∫

Rd ft(x)Λ(dx)

by XK(t) =
∫

[−K,K]d ft(x)Λ(dx). For K > 0 large enough, the approximation error

is small since

Errs(X(t), XK(t)) =

(

∫

Rd\[−K,K]d
|ft(x)|sdx

)1/s

tends to zero as K → ∞ and ft, f̃
(n)
t ∈ Ls([−A,A]d, λ). Let ε > 0. If 1 ≤ s ≤ 2,

choose K > 0 so that Errs(X(t), XK(t)) ≤ ε/2. We can apply Theorem 3.8 to

XK(·) which yields Errs(XK(t), X̃
(n)
K (t)) ≤ ε/2 for n ∈ N large enough. Then

Errs(X(t), X̃
(n)
K (t)) ≤ Errs(X(t), XK(t)) + Errs(XK(t), X̃

(n)
K (t)) ≤ ε

2
+

ε

2
= ε.

If 0 < s < 1, then we choose K > 0 so large that Errs(X(t), XK(t)) ≤ εs/2. Again,

we can apply Theorem 3.8 to XK(·) and get Errs(XK(t), X̃
(n)
K (t)) ≤ εs

2 for n ∈ N

large enough. Then

Errs(X(t), X̃
(n)
K (t)) ≤

(

Errs(X(t), XK(t)) + Errs(XK(t), X̃
(n)
K (t))

)1/s

≤
(

εs

2
+

εs

2

)1/s

= ε.



SIMULATION OF INFINITELY DIVISIBLE RANDOM FIELDS 13

Remark 3.12. Theorem 3.8 provides a pointwise estimate of the approximation
error for each t ∈ [−T, T ]q. We can obtain a uniform error bound as follows.

Assume that γ := inft∈[−T,T ]q γt > 0. Then for each t ∈ [−T, T ]q, ft is Hölder-
continuous with parameters γ and some constant C∗

t > 0. Set C := supt∈[,T,T ]d C
∗
t

and assume C < ∞. Then Errs(X(t), X̃(n)(t)) can be estimated by (3.5) with Ct

and γt replaced by C and γ.
One can also consider the integrated error

Errs(X, X̃(n)) :=

∫

[−T,T ]q
Errs(X(t), X̃(n)(t))dt

and multiply the error bound by (2T )q.

Remark 3.13. Assume that 0 < s ≤ 2 and the functions ft are differentiable with
||∇ft(x)||2 ≤ Ct < ∞ for all x ∈ [−A,A]d and t ∈ [−T, T ]q, where ∇ft denotes the
gradient of ft. Then for any t ∈ [−T, T ]q, inequality (3.5) holds for all n ≥ 1 with
γt = 1, that is

Errs(X(t), X̃(n)(t)) ≤
(

2dCtd

1 + s

)1/s

A1+d/s · 1
n

since ft is Hölder-continuous with constant Ct and exponent γt = 1.

3.3. Approximation by wavelet series.

3.3.1. Series representation of kernel functions. Let s > 0, ft ∈ Ls(Rd), t ∈ Rq,
and let {ξi}i∈I be a basis for Ls(Rd), where I is an index set. Then ft can be
represented as

(3.7) ft =
∑

i∈I

ai · ξi

for certain constants ai ∈ R. In order to approximate ft, one can truncate (3.7)
so that it consists only of a finite number of summands. In [4], the trigonometric
system is used to approximate the kernel function of certain stable random fields.
In this paper, we will go another way and analyze whether a wavelet system may be
appropriate for the simulation of random fields with an infinitely divisible random
measure as integrator.

3.3.2. Haar wavelets. Wewill use the so-calledHaar basis to approximate the kernel
functions. For a detailed introduction into wavelets, see for example [7, 8, 24].

Definition 3.14. Consider ϕHaar : Rd → R with ϕHaar(x) := 1/(2A)1/2 ·1[−A,A](x)

for x ∈ Rd and the corresponding mother wavelet ΨHaar : Rd → R defined by
ΨHaar(x) := ϕHaar(2x+A)− ϕHaar(2x−A). The resulting basis

H := {ϕHaar} ∪ {ΨHaar
j−2k,k}k∈N0,2k≤j≤2k+1−1

is called Haar basis for L2([−A,A]), where

ΨHaar
j,k (x) := 2k/2ΨHaar(2k(x +A)− (1 + 2 · j)A).

Let Ψ0 := ϕHaar, Ψ1 := ΨHaar and E be the set of non-zero vertexes of the unit
cube [0, 1]d. Consider the functions Ψe : Rd → R, e = (e1, . . . , ed)

T ∈ E, defined
by Ψe(x) := Ψe(x1, . . . , xd) := Ψe1(x1) · · ·Ψed(xd) for x = (x1, . . . , xd)

T ∈ Rd. Let
a = (A, . . . , A)T, c = (1, . . . , 1)T ∈ Rd. Translation by j = (j1, . . . , jd)

T and dilation
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by 2k yields Ψe
j−2kc,k(x) := 2kd/2Ψe(2k(x−a)−A(c+2j)) with 2k ≤ ji ≤ 2k+1− 1,

k ∈ N0, i = 1, . . . , d, e ∈ E, that form an orthonormal basis of L2([−A,A]d). Then,
each f ∈ L2([−A,A]d) has the expansion

ft = (ft,Ψ
∗)Ψ∗ +

∑

e∈E

∞
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k,(3.8)

in the sense of L2([−A,A]d) convergence, where

Ψ∗(x) :=
1

(2A)d/2
, x ∈ [−A,A]d,(3.9)

(ft,Ψ
e
j−2kc,k) :=

∫

[−A,A]d

f(x)Ψe
j−2kc,k(x)dx.(3.10)

It can be shown that any function f ∈ Lp([−A,A]d) for some p > 1 can be
represented by a wavelet series of the form (3.8) in the sense of Lp([−A,A]d)-
convergence. However, there exist examples of functions for which (3.8) does not
hold in particular for p = 1 (see [8]). Recall that we use

Errs(X(t), X̃(n)(t)) =

(

∫

[−A,A]d
|ft(x) − f̃

(n)
t (x)|sdx

)1/s

to measure the approximation quality of X̃(n) for some s > 0. Therefore, we restrict
our setting to kernel functions ft ∈ Lp([−A,A]d) ∩ Ls([−A,A]d) with p > 1.

As noticed, we want to use the expansion (3.8) in order to approximate the
kernel functions ft by truncating the (potentially) infinite sum to a finite number
of summands. The goal is then to find an upper bound for the approximation error.

3.3.3. Approximation by cutting off at a certain detail level. Let ft belong to the
space Lp([−A,A]d) ∩ Ls([−A,A]d), p > 1, be a kernel function with corresponding
Haar series

ft = (ft,Ψ
∗)Ψ∗ +

∑

e∈E

∞
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k.

The idea is now to cut off this series at a certain detail level k = n, that is to
approximate the kernel function ft by

f̃
(n)
t,cut = (ft,Ψ

∗)Ψ∗ +
∑

e∈E

n
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k.

The following lemma provides an upper bound for the approximation error of
bounded kernel functions by applying the cut-off truncation method.

Lemma 3.15. Let s > 0 and d > s. Assume that Mt := supx∈[−A,A]d |ft(x)| < ∞.

Then for n ∈ N0

‖ft − f̃
(n)
t,cut‖Ls ≤







(

(2d−1)
2d−1−1

)
1
s

d
1
sMt(2A)

d
s

(

1
2(d−1)/s

)n
, 0 < s < 1,

2d−1
2d/s−1−1

· d ·Mt · (2A)
d
s ·
(

1
2d/s−1

)n
, s ≥ 1.
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Proof. Let s ≥ 1. We have

(3.11) ‖ft − f̃
(n)
t,cut‖Ls ≤

∑

e∈E

∞
∑

k=n+1

∑

2k≤ji≤2k+1−1
i=1,...,d

|(ft,Ψe
j−2kc,k)|

∥

∥

∥
Ψe

j−2kc,k

∥

∥

∥

Ls
.

Now |(ft,Ψe
j−2kc,k)| can be estimated by

|(ft,Ψe
j−2kc,k)| ≤ Mt

∫

[−A,A]d
|Ψe

j−2kc,k(x)|dx = Mt2
−kd/2(2A)d/2

and
∥

∥

∥
Ψe

j−2kc,k

∥

∥

∥

Ls
is equal to

∥

∥

∥Ψe
j−2kc,k

∥

∥

∥

Ls
=

(

∫

[−A,A]d
|Ψe

j−2kc,k(x)|sdx
)1/s

=
2kd/2

(2A)d/2
· 2−kd/s · (2A)d/s.

Thus

‖ft − f̃
(n)
t,cut‖Ls ≤

∑

e∈E

∞
∑

k=n+1

∑

2k≤ji≤2k+1−1
i=1,...,d

Mt2
− kd

2 2
kd
2 2−

kd
s (2A)

d
s

=
(

2d − 1
)

Mtd(2A)
d/s

∞
∑

k=n+1

(

21−d/s
)k

.

Since d > s, we have 1− d/s < 0 and the geometric series formula implies

(3.12) ‖ft − f̃
(n)
t,cut‖Ls ≤ 2d − 1

2d/s−1 − 1
dMt(2A)

d/s

(

1

2d/s−1

)n

.

Now let 0 < s < 1. By Lemma 3.6, we have

∥

∥

∥ft − f̃
(n)
t,cut

∥

∥

∥

s

Ls
≤
∑

e∈E

∞
∑

k=n+1

∑

2k≤ji≤2k+1−1
i=1,...,d

|(ft,Ψe
j−2kc,k)|s

∥

∥

∥Ψe
j−2kc,k

∥

∥

∥

s

Ls
.

By using the estimates for the wavelet coefficients and the Ls-norms of the wavelets
from above, we get

∥

∥

∥
ft − f̃

(n)
t,cut

∥

∥

∥

s

Ls
≤
(

2d − 1
)

d
(

Mt(2A)
d/s
)s ∞

∑

k=n+1

(

21−d
)k

and finally

‖ft − f̃
(n)
t,cut‖Ls ≤

(

2d − 1
)1/s

(2d−1 − 1)
1/s

· d1/s ·Mt · (2A)d/s ·
(

1

2(d−1)/s

)n

.

�

If we make further assumptions about the kernel function ft, we can improve
the rate of convergence of the upper bound.
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Lemma 3.16. Assume that ft is Hölder-continuous with parameters Ct and γt for
all t ∈ [−T, T ]q. Then for n ∈ N0

‖ft − f̃
(n)
t,cut‖Ls ≤







(

2d−1
2d+sγt−1−1

)
1
s d

1
s 2+

γt
2

C t
(2A)

d
s+γt

(

1

2
d−1
s

+γt

)n

, 0 < s < 1,

2d−1
2d/s+γt−2

· d1+γt/2Ct(2A)
d/s+γt

(

1
2d/s+γt−1

)n
, s ≥ 1.

Proof. We estimate |(ft,Ψe
j−2kc,k)| as in the preceding lemma. Let

B := {x ∈ [−A,A]d : Ψe
j−2kc,k(x) > 0} andC := {x ∈ [−A,A]d : Ψe

j−2kc,k(x) < 0}.
Then we have

|(ft,Ψe
j−2kc,k)| =

∣

∣

∣

∣

∣

∫

[−A,A]d
ft(x)Ψ

e
j−2kc,k(x)dx

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B

ft(x)
2kd/2

(2A)d/2
dx−

∫

C

ft(x)
2kd/2

(2A)d/2
dx

∣

∣

∣

∣

≤ 2
kd
2

(2A)
d
2

max

{∣

∣

∣

∣

max
x∈B

ft(x)|B| −max
x∈C

ft(x)|C|
∣

∣

∣

∣

,

∣

∣

∣

∣

min
x∈B

ft(x)|B| −max
x∈C

ft(x)|C|
∣

∣

∣

∣

,

∣

∣

∣

∣

max
x∈B

ft(x)|B| −min
x∈C

ft(x)|C|
∣

∣

∣

∣

,

∣

∣

∣

∣

min
x∈B

ft(x)|B| −min
x∈C

ft(x)|C|
∣

∣

∣

∣

}

.

Here, |B| and |C| denotes the volume of B and C, respectively. Let x1 ∈ B and
x2 ∈ C so that the maximum in the last inequality is attained. Furthermore, we
have |B| = |C| = 1/2 · (2A)d · 2−kd. Then, since ft is Hölder-continuous, we get

|(ft,Ψe
j−2kc,k)| ≤

2kd/2

(2A)d/2
|ft(x1) · |B| − ft(x2) · |C||

=
2kd/2

(2A)d/2
· 1
2
(2A)d · 2−kd|ft(x1)− ft(x2)| ≤

1

2
(2A)d/2 · 2−kd/2Ct‖x1 − x2‖γt

≤ 1

2
(2A)d/2 · 2−kd/2Ct

(

2A
√
d2−k

)γt

= Ad/2+γtCt2
d/2+γt−1dγt/2

(

1

2d/2+γt

)k

.

The remainder of the proof is analogous to the one of Lemma 3.15. �

Corollary 3.17. Assume that ft is differentiable with ||∇ft(x)||2 ≤ Ct for all

x ∈ [−A,A]d, some Ct > 0 and t ∈ [−T, T ]q. Then for n ∈ N0

‖ft − f̃
(n)
t,cut‖Ls ≤







1
2

(

2d−1
2d+s−1−1

)
1
s

d
1
s+

1
2Ct(2A)

d
s+1

(

1
2(d−1)/s+1

)n
, 0 < s < 1,

2d−1
2d/s+1−2

· d3/2 · Ct · (2A)d/s+1 ·
(

1
2d/s

)n
, s > 1.

3.3.4. Near best n-term approximation. For p > 1 and s > 0, taking a wavelet basis
of Lp([−A,A]d) ∩ Ls([−A,A]d) has advantages in particular in the representation
of functions with discontinuities and sharp peaks, that is functions with a certain
local behavior. By simply cutting of at a certain detail level, this advantage is not
honored. In view of (3.11), we may expect that we have to calculate less Haar

coefficients if we approximate the kernel function ft by a truncated Haar series f̃
(n)
t

that contains those n summands (f,Ψe
j−2kc,k)Ψ

e
j−2kc,k with the largest values

∥

∥

∥(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k

∥

∥

∥

Ls
= |(ft,Ψe

j−2kc,k)|
∥

∥

∥Ψe
j−2kc,k

∥

∥

∥

Ls
.
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An approach to use such a truncation in order to approximate functions is presented
in [7]. We summarize the main statements.

Consider a function S defined by S =
∑

(e,k,j)∈Ξ aej,kΨ
e
j−2kc,k, where

Ξ = {(e, k, j) : e ∈ E, k ∈ N0, 2
k ≤ ji ≤ 2k+1 − 1, i = 1, . . . , d},

the cardinality of Ξ is less or equal to n ∈ N and aej,k ∈ R for all (e, j, k) ∈ Ξ.

Hence, (3.3.4) is a linear combination of n Haar wavelets. We denote by Σn the
set of all functions S defined as in (3.3.4) and let σs

n(ft) := inf
S∈Σn

||ft − S||Ls . Now,

we truncate the wavelet expansion (3.8) of ft by taking those n summands for

which the absolute value of |(ft,Ψe
j−2kc,k)|

∥

∥

∥
Ψe

j−2kc,k

∥

∥

∥

Ls
is largest and denote the

truncated sum by f̃
(n)
t . In [23],the following theorem has been proven which shows

that this truncation is a near best n-term approximation (in the sense of (3.13)).

Theorem 3.18. Let 1 < s < ∞. Then for any function f ∈ Ls([−A,A]d), we have

(3.13) ‖f − f̃ (n)‖Ls ≤ C1(s, d, A)σ
s
n(ft)

with a constant C1(s, d, A) ≥ 0 only depending on s, d and A.

If the sequence
{

|(f,Ψe
j−2kc,k)|

∥

∥

∥
Ψe

j−2kc,k

∥

∥

∥

Ls

}

j,k
is in the Lorentz space wlτ ,

0 < τ < ∞, that is

(3.14) #{(j, k, e) : {‖(f,Ψe
j,k)Ψ

e
j,k‖Ls > ε} ≤

(

M

ε

)τ

for any ε > 0 and some M ≥ 0 with a certain additional condition on τ , then σs
n(ft)

can be bounded from above as shown in [7].

Theorem 3.19. Let 1 < s < ∞ and f ∈ Ls([−A,A]d). Furthermore, let
{∥

∥

∥(f,Ψe
j−2kc,k)Ψ

e
j−2kc,k

∥

∥

∥

Ls

}

j,k
∈ wlτ

and u > 0 with 1/τ = u+ 1/s. Then

σs
n(f) ≤ C2(s, d, A)M

(

1

n

)u

, n = 1, 2, . . . ,

with a constant C2(s, d, A) ≥ 0 only depending on s, d and A and M being a

constant satisfying (3.14).

Remark 3.20. As mentioned above, we cannot use the Haar basis for Ls([−A,A]d)
if s ≤ 1 because there exist functions f ∈ Ls([−A,A]d) which cannot be represented
by a wavelet series of the form (3.8). In this case, the Haar basis has to be replaced
by a smoother wavelet basis and the so-called Hardy space Hs([−A,A]d) has to be
used in place of Ls([−A,A]d). Then any function f ∈ Hs([−A,A]d) has a wavelet
expansion for a certain range of 0 < s ≤ 1 that depends on the smoothness of the
underlying wavelet basis (see [8]).

Combining Theorem 3.18 and Theorem 3.19 yields an upper bound of the ap-
proximation error by using the near best n-term approximation with a rate of con-
vergence of O ((1/n)u). In [13], the following formulas for C1 and C2 are derived
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for functions f ∈ Ls([0, 1]d) (instead of f ∈ Ls([−A,A]d)):

C1(s, d) =

(

2 +
(

1− 2−
d
s

)−2
)(

(

2d − 1
)

(

max

(

s,
s

s− 1

)

− 1

))2

,

C2(s, d) =
2
(

2τ/s − 1
)

(

1−
(

1
2

)d/s
)

(

1−
(

1
2

)τ )1/s (
1− 2τ/s−1

)

.

We notice that on the one hand, these constants are not sharp and may be quite
large, and on the other hand, we would have to find a value ofM in (3.14) as small as
possible for each kernel function ft or for certain classes of kernel functions, which is
not so easy to determine. Therefore, we suggest an approach in the following which
is not based on the error estimate with those constants, but still determines an
approximation at least close to the near best n-term approximation while keeping
the desired level of accuracy.

If s > 1, it is clear that ‖(f,Ψe
j−2kc,k)Ψ

e
j−2kc,k‖Ls goes to zero as k → ∞. This

means that the n largest values ‖(f,Ψe
j−2kc,k)Ψ

e
j−2kc,k‖Ls are likely to be found for

small values of k.
We now assume that d > s and Mt := supx∈[−A,A]d |ft(x)| < ∞ and choose ε > 0

as the desired level of accuracy.
Let s > 1. From Lemma 3.15 and its proof, we get

‖ft − f̃
(n)
t,cut‖Ls ≤ 2d − 1

2d/s−1 − 1
· d ·Mt · (2A)d/s ·

(

1

2d/s−1

)n

≤ ε

if

n ≥ ln(ε(2d/s−1 − 1))− ln((2d − 1)dMt(2A)
d/s)

(1− d/s) ln 2
.

We take

mt :=

⌈

ln(ε(2d/s−1 − 1))− ln((2d − 1)dMt(2A)
d/s)

(1− d/s) ln 2

⌉

,

where ⌈x⌉ is the integral part of x, as our minimal detail level to obtain the desired
level of accuracy.

If 0 < s ≤ 1, then by analogous calculations

mt :=









ln
(

ε(2d−1 − 1)
1
s

)

− 1
s ln

(

(2d − 1)dM s
t (2A)

d
)

d−1
s ln 2









.(3.15)

We now add l ∈ N0 detail levels to the truncated wavelet series at detail level
mt, that is we consider

f̃
(mt+l)
t,cut = (ft,Ψ

∗)Ψ∗ +
∑

e∈E

mt+l
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k.(3.16)

Furthermore, we define

(3.17) C := ‖(ft,Ψ∗)Ψ∗‖Ls +
∑

e∈E

mt+l
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

‖(ft,Ψe
j−2kc,k)Ψ

e
j−2kc,k‖Ls
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and

D := ‖(ft,Ψ∗)Ψ∗‖Ls +
∑

e∈E

∞
∑

k=mt+l

∑

2k≤ji≤2k+1−1
i=1,...,d

‖(ft,Ψe
j−2kc,k)Ψ

e
j−2kc,k‖Ls .

By Lemma 3.15, the corresponding level of accuracy of (3.16) is at least

ε∗t :=







2d−1
2d/s−1−1

· d ·Mt · (2A)d/s ·
(

1
2d/s−1

)mt+l
, s > 1,

(

2d−1
2d−1−1

)1/s

· d1/s ·Mt · (2A)d/s ·
(

1
2(d−1)/s

)mt+l
, 0 < s ≤ 1.

Now we take the n largest summands from (3.17), that is from

{‖(ft,Ψ∗)Ψ∗‖Ls} ∪ {‖(ft,Ψe
j−2kc,k)Ψ

e
j−2kc,k‖Ls}j,k

and denote them by a1, . . . , an. The remaining summands are denoted by an+1,
an+2, . . ., and the corresponding summands from equation (3.16) by b1, . . . , bn,
bn+1, bn+2, . . .. The number n ∈ N is chosen to be the smallest number so that

C −
n
∑

i=1

ai ≤ ε− ε∗t .

We define f̃
(n)
t :=

∑n
i=1 bi which is close to the near best n-term approximation if

s > 1 and l is chosen large enough since ‖(ft,Ψe
j−2mt+l,mt+l)Ψ

e
j−2mt+l,mt+l‖Ls goes

to zero as l goes to infinity. Then we have

‖ft − f̃
(n)
t ‖Ls =

∥

∥

∥

∥

∥

∞
∑

i=n+1

bi

∥

∥

∥

∥

∥

Ls

≤
∞
∑

i=n+1

ai

= C −
n
∑

i=1

ai +D ≤ ε− ε∗t + ε∗t = ε.

3.3.5. Implementation. When implementing the wavelet approach, one more prob-
lem has to be considered which we discuss now. Let I be the set of the indexes
(e, j, k) for which the summands (ft,Ψ

e
j−2kc,k)Ψ

e
j−2kc,k are part of the approxima-

tion f̃
(n)
t . Then we can write

f̃
(n)
t = (ft,Ψ

∗)Ψ∗ +
∑

(e,k,j)∈I

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k

if (ft,Ψ
∗)Ψ∗ is included in the truncated series or

f̃
(n)
t =

∑

(e,k,j)∈I

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k

if it is not included. In order to approximate the random field X , we use

X̃(n)(t) = (ft,Ψ
∗) · Λ([−A,A]d)

(2A)d/2
+

∑

(e,k,j)∈I

(ft,Ψ
e
j−2kc,k)

∫

[−A,A]d
Ψe

j−2kc,kΛ(dx)

or

X̃(n)(t) =
∑

(e,k,j)∈I

(ft,Ψ
e
j−2kc,k)

∫

[−A,A]d
Ψe

j−2kc,kΛ(dx)
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if again (ft,Ψ
∗)Ψ∗ is not included in the truncated series. Since the Haar wavelets

Ψe
j−2kc,k are simple step functions, the integrals

∫

[−A,A]d Ψ
e
j−2kc,kΛ(dx) can be eas-

ily simulated although they are not independent: Let z ∈ N be the finest detail
level of the wavelet approximation. Then all of these integrals can be built up from

∫

[−A+k A
2z ,−A+(k+1) A

2z )
d
Λ(dx) = Λ

(

[

−A+ k
A

2z
,−A+ (k + 1)

A

2z

)d
)

for k = 0, . . . , 2z+1 − 1. These random variables are independent because the sets
[

−A+ k A
2z ,−A+ (k + 1) A

2z

)d
are disjoint.

However, the wavelet coefficients (ft,Ψ
e
j−2kc,k) cause problems if no closed for-

mula of the integral of the kernel functions ft over cubes is known. In this case,
they have to be determined numerically by using the fast wavelet transform (see
for instance [24]).

This results in a further approximation error which we need to estimate. When
the detail level at which the wavelet series is cut off is equal to n, the input vector
of the fast wavelet transform consists of integrals of the form

(3.18)

∫

cube

2(n+1)d/2

(2A)d/2
ft(x)dx,

where cube is a cube in Rd of side length 2−d(n+1).
We now assume that we have calculated these integrals with a precision of δ > 0

and denote the wavelet coefficients computed by the fast wavelet transform by
̂(ft,Ψ∗) and ̂(ft,Ψe

j−2kc,k
). When applying the fast wavelet transform, the value

of each integral is used 2d − 1 times at each detail level k to calculate the wavelet
coefficients (ft,Ψ

e
j−2kc,k) for any e ∈ E. For (ft,Ψ

∗), each integral is used once.

There are 2(n+1)d such integrals. Furthermore, the wavelet coefficients (ft,Ψ
e
j−2kc,k)

consist of integrals of the form
∫

cube
2kd/2/(2A)d/2ft(x)dx. Since (3.18) contains

the factor 2(n+1)d/2/(2A)d/2, the factors 2kd/2/2(n+1)d/2 are used in the following

estimates for | ̂(ft,Ψe
j−2kc,k

)− (ft,Ψ
e
j−2kc,k)| to adjust for this fact.

When s ≥ 1, the precision of

̂̃
f
(n)
t,cut =

̂(ft,Ψ∗)Ψ∗ +
∑

e∈E

n
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

̂(ft,Ψe
j−2kc,k

)Ψe
j−2kc,k

to approximate

f̃
(n)
t,cut = (ft,Ψ

∗)Ψ∗ +
∑

e∈E

n
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k(3.19)
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is

‖̂̃f (n)
t,cut − f̃

(n)
t,cut‖Ls

≤ | ̂(ft,Ψ∗)− (ft,Ψ
∗)|‖Ψ∗‖Ls

+
∑

e∈E

n
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

| ̂(ft,Ψe
j−2kc,k

)− (ft,Ψ
e
j−2kc,k)|‖Ψe

j−2kc,k‖Ls

≤ 2(n+1)d (2A)
d/s−d/2

2(n+1)d/2
δ + (2d − 1)

n
∑

k=0

2(n+1)d 2kd/2

2(n+1)d/2
δ(2A)

d
s− d

2 2
kd
2 − kd

s

≤







(2A)
d
s−d

2 2
(n+1)d

2

(

1 + (2d − 1)2
(d− d

s
)(n+1)−1

2d−d/s−1

)

δ, s > 1,

(2A)d/22(n+1)d/2
(

1 + (2d − 1)(n+ 1)
)

δ, s = 1.

When 0 < s < 1, we can use Lemma 3.6 and get

‖̂̃f (n)
t,cut − f̃

(n)
t,cut‖Ls

≤
(

| ̂(ft,Ψ∗)− (ft,Ψ
∗)|s‖Ψ∗‖sLs

+
∑

e∈E

n
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

∣

∣

∣

̂(ft,Ψe
j−2kc,k

)− (ft,Ψ
e
j−2kc,k)|s‖Ψe

j−2kc,k‖sLs

)
1
s

≤ (2A)d/s−d/22(n+1)d(1−s/2)

(

1 + (2d − 1)
2(ds−d)(n+1) − 1

2ds−d − 1

)1/s

δ.

Let ε > 0. We choose ε1 > 0 and ε2 > 0 so that ε1 + ε2 = ε if s ≥ 1 and
εs1 + εs2 = εs if 0 < s < 1. Furthermore, we choose the detail level n so large (by

using the formulas in Section 3.3.3) such that ‖ft− f̃
(n)
t,cut‖Ls ≤ ε1. We approximate

the elements of the input vector for the fast wavelet transform with a precision of

δ =



























ε2

(2A)
d
s
−

d
2 2

(n+1)d
2

(

1+(2d−1) 2(ds−d)(n+1)
−1

2ds−d
−1

)1/s , 0 < s < 1,

ε2
(2A)d/22(n+1)d/2(1+(2d−1)(n+1))

, s = 1,
ε2

(2A)
d
s
−

d
2 2(n+1)d(1− s

2
)

(

1+(2d−1) 2
(d− d

s
)(n+1)

−1

2
d−d

s −1

) , s ≥ 1.

Then we have for s ≥ 1

‖ft − ̂̃
f
(n)
t,cut‖Ls ≤ ‖ft − f̃

(n)
t,cut‖Ls + ‖f̃ (n)

t,cut −
̂̃
f
(n)
t,cut‖Ls ≤ ε1 + ε2 = ε,

and for 0 < s < 1

‖ft − ̂̃
f
(n)
t,cut‖Ls ≤

(

‖ft − f̃
(n)
t,cut‖sLs + ‖f̃ (n)

t,cut −
̂̃
f
(n)
t,cut‖sLs

)1/s

= ε.
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We summarize this result in the following algorithm.

Algorithm

Let Mt := supx∈[−A,A]d |ft(x)| < ∞ and d > s. Choose ε > 0 as the desired level

of accuracy. Choose ε1, ε2 > 0 so that ε = ε1 + ε2 if s ≥ 1 and ε = (εs1 + εs2)
1/s if

0 < s < 1.

(a) Let

mt :=











⌈

ln(ε(2d−1−1)1/s)− 1
s ln((2d−1)dMs

t (2A)d)
d−1
s ln 2

⌉

, 0 < s < 1,
⌈

ln(ε(2d/s−1−1))−ln((2d−1)dMt(2A)d/s)
(1−d/s) ln 2

⌉

, s ≥ 1,

and choose a number l ∈ N0 that increases the detail level mt.
(b) Calculate the wavelet coefficients for

(ft,Ψ
∗)Ψ∗ +

∑

e∈E

mt+l
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

(ft,Ψ
e
j−2kc,k)Ψ

e
j−2kc,k

using the fast wavelet transform with a precision of

δ =























ε2(2A)d/2−d/s2−(n+1)d/2

(

1+(2d−1) 2(ds−d)(n+1)
−1

2ds−d
−1

)1/s , 0 < s < 1,

ε2(2A)−d/22−(n+1)d/2

(1+(2d−1)(n+1)) , s = 1,
ε2(2A)d/s−d/22(n+1)d(1−s/2)

(

1+(2d−1) 2(d−d/s)(n+1)
−1

2d−d/s
−1

) , s > 1.

(c) Take the n largest summands from

C := ‖ ̂(ft,Ψ∗)Ψ∗‖Ls +
∑

e∈E

mt+l
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

∥

∥

∥

̂(ft,Ψe
j−2kc,k

)Ψe
j−2kc,k

∥

∥

∥

Ls

and denote them by a1, . . . , an. The corresponding summands from

̂(ft,Ψ∗)Ψ∗ +
∑

e∈E

mt+l
∑

k=0

∑

2k≤ji≤2k+1−1
i=1,...,d

̂(ft,Ψe
j−2kc,k

)Ψe
j−2kc,k

are denoted by b1, . . . , bn. Choose the number n so that C−
n
∑

i=1

ai ≤ ε1−ε∗t ,

where

ε∗t =







(

2d−1
2d−1−1

)
1
s

d1/sMt(2A)
d/s
(

1
2(d−1)/s

)mt+l
, 0 < s < 1,

2d−1
2d/s−1−1

dMt(2A)
d/s
(

1
2d/s−1

)mt+l
, s ≥ 1.

(d) Take f̃
(n)
t =

∑n
i=1 bi as the approximation for ft.
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Remark 3.21. (a) Assume that d ∈ N and the kernel functions ft are Hölder-
continuous with parameters Ct and γt for each t ∈ [−T, T ]q. Then the
algorithm can be applied with mt and ε∗t replaced by

mt :=







⌈

ln(2ε1(2
d+sγt−1−1)1/s)

((1−d)/s−γt) ln 2 − ln((2d−1)1/sd1/s+γt/(2s)Ct(2A)d/s+γt)
((1−d)/s−γt) ln 2

⌉

, 0 < s < 1,
⌈

ln(ε1(2
d/s+γt−2))

(1−d/s−γt) ln 2 − ln((2d−1)d1+γt/2Ct(2A)d/s+γt)
(1−d/s−γt) ln 2

⌉

, s ≥ 1,

ε∗t :=







1
2

(

2d−1
2d+sγt−1−1

)1/s

d1/s+γt/2Ct(2A)
d/s+γt

(

1
2(d−1)/s+γt

)mt+l
, 0 < s < 1,

2d−1
2d/s+γt−2

d1+γt/2Ct(2A)
d/s+γt

(

1
2d/s+γt−1

)mt+l
, s ≥ 1.

(b) Assume that d ∈ N and ft is differentiable with ||∇ft(x)||2 ≤ Ct for all
x ∈ supp(ft) with Ct > 0 and for all t ∈ [−T, T ]q. Then the algorithm can
be applied with mt and ε∗t as in (a) with γt = 1 for all t ∈ [−T, T ]d.

We conclude this section with its main result.

Theorem 3.22. Assume that s > 0 and ft ∈ Lp([−A,A]d)∩Ls([−A,A]d) for some

p > 1. Let X be an infinitely divisible random field and the control measure λ of

the infinitely divisible random measure be the Lebesgue measure. Let ε > 0. If f̃
(n)
t

is calculated using the algorithm mentioned above, then

Errs(X(t), X̃(n)(t)) ≤ ε, ∀t ∈ [−T, T ]q.

4. Simulation study

For the simulation study, we used two different types of kernel functions for α-
stable random fields of dimension d = 2. The first one is an Epanechnikov-type
kernel function defined by

(4.1) ft(x) = b · (a2 − ‖x− t‖22)1{‖x−t‖2≤a},

where a > 0 and b > 0, whereas for the second one, we take

(4.2) f(t1,t2)(x1, x2) = b(a− |x1 − t1|)(a− |x2 − t2|)1{|x1−t1|≤a, |x2−t2|≤a}(x1, x2)

where a > 0 and b > 0. Examples of both kernel functions are plotted in Figure 1.

Figure 1. The Epanechnikov-type kernel function (4.1) (left) and
the kernel function (4.2) (right)

The main difference between these two types of kernel functions is that one can
derive a simple formula for the integral of (4.2) over squares, but not for the integral
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of (4.1). This does not affect the step function approach since the kernel functions
are only evaluated there at the points ξk, but it does affect the wavelet approach
because the input vector consists of such integrals of (4.1) and (4.2) over squares.
Therefore, we have to expect a loss in computational performance for kernel (4.1)
with the wavelet approach in this case.

Both functions (4.1) and (4.2) are Hölder-continuous with (C1, γ1) = (2ab, 1)

and (C2, γ2) = (2
√
2ab, 1), respectively. We fix the parameters α = 1.5, β = 0 and

[−T, T ]2 = [−1, 1]2 for both types of kernel functions.
For the remaining parameters, we started with the following configuration: b = 1,

a = 0.2 and ε = 0.5. Furthermore, we divided [−1, 1]2 into an equidistant grid of
100 × 100 points and chose l = 0 for the number of detail levels to be increased.
Two realizations of the 1.5-stable random field X with kernels (4.1) and (4.2) are
shown in Figure 2.

Figure 2. Realization of a symmetric 1.5-stable random field with
kernel (4.1) (left) and kernel (4.2) (right)

First, we kept all parameters fixed and determined the computational time de-
pending on the number of realizations. For the step function approach, each real-
ization needs the same computational time. For the wavelet approach, however,
the wavelet coefficients only have to be calculated for the first realization and
can be stored afterwards. Therefore, any further realization needs less compu-
tational time. Table 1 shows the results for both the Epanechnikov-type kernel
(4.1) and kernel (4.2). By trial-and-error, we figured out that a combination of
ε = ε1 + ε2 = 0.49 + 0.01 performs quite good for the corresponding parameters in
the wavelet algorithm in this case.

Table 1. Computational time in msec (Pentium(R) Dual-Core
CPU E5400, 2.70GHz)) for the first and further realizations

Kernel (4.1) Kernel (4.2)

Step function approach 5.72 6.86

Wavelet approach (first realization) 70552.02 11546.07

Wavelet approach (further realizations) 1453.18 252.3
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Second, we focused on kernel (4.2) and the computational time of any further
realization except the first one and varied subsequently one of the parameters α,
m (the number of pixels per row) and ε while all the other parameters were kept
fixed. It turned out that the computational time decreased for the wavelet approach
and increased for the step function approach when α ∈ [1, 2] was decreased. For
decreasing α ∈ (0, 1], the computational time of both approaches increased. How-
ever, the step function approach performed at least twice as good as the wavelet
approach. For decreasing ε, the computational time for the step function approach
increased much faster than the one for the wavelet approach. Varying m affected
the computational time of both approaches in a similar manner. We emphasize that
we found parameter configurations where the wavelet approach performed better
than the step function approach, e. g. α = 0.5, ε = 0.2 and m = 150. The above
results imply that neither of the two approaches outperforms the other one. For
some combinations of the parameters, the step function approach was faster than
the wavelet approach, for others it was slower.

Finally, we increased the parameter l successively for a field with 10× 10 pixels
while all other parameters were kept fixed and investigated the computational time
for the wavelet approach for any further realization except the first one. Table 2
shows the corresponding results.

Table 2. Computational time in msec (Pentium(R) Dual-Core
CPU E5400, 2.70GHz)) for different values of l (kernel (4.2))

l 0 1 2 3

Computational time 58.6 221.84 871.12 3252.32

One might have expected that the computational time tends to decrease if l is
increased since the wavelet series usually consists of less summands when keeping
the same level of precision. At the same time, however, more stable random variable
simulations have to be performed for the calculation of the integrals

∫

[−A,A]d
Ψe

j−2m+l,m+lM(dx).

That is why for larger values of l, the computational time increases sharply.
A 2-stable random field is a Gaussian random field. Therefore, we can use the

simulation methods to simulate such fields, too. The kernel function

ft(x) = b exp{−‖x− t‖22/a}, t ∈ R2,

corresponds to the isotropic and stationary covariance function

C(h) := Cov(X(0, 0), X(h, 0)) = πab2e−
h2

2a .(4.3)

We now want to investigate how our simulation methods perform compared with
the circulant embedding method (see [25]) to simulate Gaussian random fields with
the given covariance function (4.3) for a = 0.05, b = 1 and [−T, T ]2 = [−0.5, 0.5]2

for a grid of size 100 × 100. We choose the circulant embedding method since it
is exact in principle, and if exact simulation takes too much computational time,
approximation techniques exist so that at least the one-dimensional marginal dis-
tributions are exact in principle.
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For the comparison of the circulant embedding me-thod with the step function
approach and the wavelet approach, we simulate 1000 fields and estimate their
mean and their covariance function for the distances 0, 0.01, 0.02, . . . , 0.5. We then
compare the values with the theoretical ones and require that the estimated values
do not differ from the theoretical ones more than 0.01. If at least one value differs
more than 0.01, the precision level is increased. The following table shows the
computational time for each of the three methods.

Table 3. Computational time in msec (Pentium(R) Dual-Core
CPU E5400, 2.70GHz)) for the circulant embedding method, the
step function approach and the wavelet approach

Circulant embedding Step function approach Wavelet approach

Computational time 48.43 9588.29 N/A

As one can see, the step function approach takes much more computational time
than the circulant embedding method. For the wavelet approach, it was not pos-
sible to obtain the desired accuracy since the stored wavelet coefficients exceeded
the available random-ac-cess memory (6 GB RAM). Here, the best approximation
yielded an estimated mean and variance which differed from the corresponding the-
oretical quantities by 0.005 and 0.031, respectively, while only 9% of the estimated
covariance function values where within the deviation allowance of 0.01. For Gauss-
ian random fields, it is therefore advisable to use existing simulation methods such
as the circulant embedding method that exploit the specific structure of these fields.

5. Summary

We presented two approaches to simulate infinitely divisible random fields that
are based on approximating the kernel function by a step function and by a wavelet
series. For both approaches, we derived estimates for the approximation error
Errs(X(t), X̃(n)(t)). In the simulation study we have seen that neither of the
approaches outperformed the other one.

Let us compare the rates of convergence of the step function approach and the
wavelet approach more generally. If ft is Hölder-continuous, the error estimate for
the step function approach is

(5.1) Errs(X(t), X̃(n)(t)) ≤ C1(d, Ct, γt, s, A)

(

1

n

)γt

for a constant C1(d, Ct, γt, s, A) > 0. In the simulation study, we have seen that
increasing the parameter l in order to get closer to the best n-term approximation
is not so advantageous. Therefore, we consider the rate of convergence for the cut
wavelet series with error estimate

Errs(X(t), X̃(n)(t)) ≤ C2(d, Ct, γt, s, A)

(

1

2
d
s+γt

)n

(5.2)

with a constant C2(d, Ct, γt, s, A) > 0. Notice that we cannot compare the error
estimates directly because for the step function approach, n determines the number
of cubes ((2n)d) that form a partition of [−A,A]d, while for the wavelet approach, n
is the detail level. Therefore, we express the error bounds in terms of the number of
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summands of the step function approximation (3.4) and the wavelet approximation
(3.19), respectively, see Table 4.

Table 4. Number of summands of (3.4) and (3.19) and error
bounds for (5.1) and (5.2) in terms of the number of summands

Step function approach Wavelet approach

Number of summands u = (2n)d u = 1 + (2d − 1)d(2n+1
− 1)

Error bounds O
(

(

1
u

)γt/d
)

O
(

(

1
u

)(d/s+γt) ln 2
)

Let us consider the number of random variables that need to be simulated for
a single realization of a random field. For the step function approach, we need to
simulate (2n)d random variables. For the wavelet approach, the number of ran-
dom variables to simulate is equal to the number of cubes that form a partition
of [−A,A]d in the finest detail level n: 2d(n+1). In the examples of the simulation
study, the number of random variables to be simulated for the step function ap-
proach increased much faster than for the wavelet approach when the value of ε
was decreased.

Some remarks about the wavelet approach are in order. First, we have seen
that one drawback is that the computation of the input vector for the fast wavelet
transform may take quite a long time if no explicit formula for

∫

C
ft(x)dx is known,

where C is a cube in Rd. Second, for an arbitrary (not necessarily Haar) wavelet
basis {Ψi}i∈I , we would have to calculate

∫

C
ft(x)Ψi(x)dx for many i which mostly

requires additional numerical integration. Interpolating wavelets can remedy this
disadvantage since for this kind of wavelets bases, the wavelet coefficients are com-
puted by evaluating the kernel function at a certain point. However, the interpo-
lating wavelets themselves are no step functions any more, hence the simulation
of the integrals

∫

[−A,A]d
Ψi(x)Λ(dx), where Ψi is an interpolating wavelet function,

is much more complicated than for the Haar basis. Third, one could use adaptive
wavelet methods in order to calculate the wavelet coefficients. This might decrease
the computational time for the first random field realization. However, we have
seen in the simulation study that increasing the parameter l has little advantage
over the cut wavelet series (l = 0) since the negative effect of the increasing detail
level and thus the need of more random variable simulations dominates the positive
one of less summands in the wavelet series.
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cations. Berlin Heidelberg: Springer-Verlag.
13. Protter, P.E. (2005). Stochastic Integration and Differential Equations, 2nd Edition. Berlin

Heidelberg: Springer-Verlag.
14. Rajput, B.S., Rosinski, J. (1989). Spectral Representations of Inifinitely Divisible Processes.

Probab. Th. Rel. Fields 82:451-487.
15. Samorodnitsky, G., Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes. Boca Ra-

ton: Chapman & Hall.
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