ulm university universität

Summer Term 2015

Dr. Tim Brereton Lisa Handl

Stochastic Simulation Problem Sheet 6

Deadline: June 11, 2015 at noon before the exercises

Please email your code to lisa.handl@uni-ulm.de AND hand in a printed copy of the code!

Exercise 1 (theory) (2 + 2 points)

- a) Let $\{X_n\}_{n\in\mathbb{N}}$ be a Markov chain. Show that $\{Y_n\}_{n\in\mathbb{N}}$, where $Y_n = X_{2n}$ for all $n \in \mathbb{N}$, is a Markov chain.
- b) Let $\{X_s\}_{s\in S}$ be a Markov random field with $S = \mathbb{Z}_m^2$ and neighborhood system, \mathcal{N} , given by

$$\mathcal{N}_s = \{(i,j) \in \mathbb{Z}_m^2 : |i - s_1| + |j - s_2| = 1\}$$

for all $s \in S$. Now, consider the case where we can only observe the values of $\{X_s\}_{s \in S}$ on the set

$$\tilde{S} = \{(i,j) \in \mathbb{Z}_m^2 : i+j \text{ is even}\}.$$

Show that $\{X_s\}_{s\in\widetilde{S}}$ is a Markov random field with respect to the neighborhood system, $\widetilde{\mathcal{N}}$, given by

$$\widetilde{\mathcal{N}}_s = \{(i,j) \in \mathbb{Z}_m^2 : |i - s_1| + |j - s_2| = 2\}$$

for all $s \in \widetilde{S}$.

Exercise 2 (theory) (3 + 2 points)

Consider the model given in Exercise 5 of the last problem sheet (this is called the *hardcore* model with fugacity). Recall we defined the set, A, of all 5×5 matrices with values in $\{0, 1\}$ and the subset $\Omega \subset A$ of all such matrices which have no 1s directly next to each other in a row or column. We put the following distribution on Ω :

$$\boldsymbol{\pi}_T(\boldsymbol{x}) = \frac{1}{Z_T} e^{-\frac{1}{T} \mathcal{E}(\boldsymbol{x})} \quad \forall \boldsymbol{x} \in A,$$
(1)

with the energy function

$$\mathcal{E}(\boldsymbol{x}) = \begin{cases} -\sum_{s \in S} x_s \log(\lambda) & \text{ if } \boldsymbol{x} \in \Omega, \\ \infty & \text{ otherwise,} \end{cases}$$

where T = 1 and $\lambda \in (0, \infty)$. Here S denotes the set of all sites in the matrix \boldsymbol{x} .

a) Is π_T the distribution of a Gibb's field (i.e., is the energy function a sum over a Gibb's potential)? If so, give the cliques (you can just draw them if you would like) and specify the Gibb's potential.

b) Give the local energy and local specification of x_s .

Exercise 3 (programming) (3 points)

Write a program to sample from the model described in Exercise 2 using the Gibb's sampler, run it for $\lambda = 0.5$ and $\lambda = 1.5$ and at least $N = 10^5$ steps, and estimate the expected number of ones in the matrix.

Exercise 4 (programming) (4 points)

The *Pott's model* is a generalization of the Ising model, where each variable is able to take values in the space $\Lambda = \{1, \ldots, M\}$. Everything else is as in the Ising model, except that the energy function is given by

$$\mathcal{E}(x) = -J\sum_{(s,t)} \delta(x_s, x_t) - \sum_{s \in S} h_s(x_s),$$

where

$$\delta(x,y) = \begin{cases} 1 & \text{if } x = y, \\ 0 & \text{otherwise,} \end{cases}$$

 $J \in \mathbb{R}$, and the $\{h_s\}$ are some functions. Assuming that $h_s(x) = 0$ for all $x \in \Lambda$ and $s \in S$, we have the simplified model with energy function

$$\mathcal{E}(x) = -J\sum_{(s,t)}\delta(x_s, x_t).$$

Write a program to simulate from this simplified model on a 10×10 lattice with periodic boundary conditions, temperature T = 1, J = 3 and M = 5 using the Gibb's sampler. Run it for at least $N = 10^5$ steps and estimate the expected sum of all values in the random field.

Exercise 5 (theory) (3 + 2 points)

- a) Prove that the Gibb's sampler is a special case of the Metropolis-Hastings algorithm, i.e., specify the proposal distributions $(Q)_{i,j}$ and show that the acceptance probability is always 1.
- b) Is the Gibb's sampler also a special case of the Metropolis algorithm? Justify your answer.

Exercise 6 (programming) (4 + 3 points)

In a knapsack problem you consider a set of n objects for which you know the weights w_1, \ldots, w_n and the values v_1, \ldots, v_n . The goal is to pack a selection of these objects into a knapsack (backpack), so that the total value of things in the knapsack is as large as possible, but the total weight does not exceed a given limit, w_{max} .

- a) Explain how you could use simulated annealing to solve this problem. In particular:
 - Define an appropriate state space S.

- Define an appropriate cost function f on S. Explain how you include the weight limit.
- Explain how you can take a "random step" in S, such that the resulting Markov chain is irreducible.
- Write out the acceptance probability of such a random step.
- b) Write a Matlab program solving the following knapsack problem:

Imagine you want to go on a day trip into mountains. You have many things you want to take with you, but you can only carry a maximum weight of 400. The following list contains the things you would like to take with you, their weights and their values to you.

object	weight	value
apple	39	40
banana	27	60
beer	52	10
book	30	10
camera	32	30
cheese	23	30
$\operatorname{compass}$	13	35
glucose	15	60
map	9	150
note-case	22	80
sandwich	50	160
socks	4	50
$\operatorname{sunglasses}$	7	20
suntan cream	11	70
t-shirt	24	15
tin	68	45
towel	18	12
trousers	48	10
$\operatorname{umbrella}$	73	40
water	153	200
waterproof overclothes	43	75
waterproof trousers	42	70

Using an initial temperature of $T_0 = 100$, geometric cooling with $\beta = 0.999$ and an arbitrary initial state, run the algorithm for at least $N = 10^4$ iterations. Plot the total value and weight of the objects in the knapsack in each iteration and list the final (best) set of objects you should take with you.

Hints:

- You can use dlmread to read the data from the file *hiking.txt* on the course website.
- If a and b are vectors, you can use setdiff(a,b) to get all entries of a which are are not in b.

Exercise 7 (programming) (3 + 1 points)

Consider the graph

with random independent edge lengths $X_1, \ldots, X_5 \sim \text{Poi}(2)$.

- a) Write a Matlab program to sample from (X_1, \ldots, X_5) conditional on the shortest path from vertex 1 to vertex 3 being longer than 4 using the Gibb's sampler. and start from the initial state (4, 4, 4, 4, 4).
- b) Run the algorithm for $N = 10^5$ iterations and estimate the mean length of the shortest path from 1 to 3 in this model.

Hint: You can use **poissrnd** to sample from a Poisson distribution.