

ulm university universität **UU** 

Prof. Dr. Volker Schmidt Matthias Neumann

Sommersemester 2016

## Stochastik I - Übungsblatt 13

Abgabe am 12.7.2016 vor Beginn der Übung

## Aufgabe 1 (6 Punkte)

Für  $n \geq 2$  sei  $(Y_1, \ldots, Y_n)$  eine Folge von Zufallsvariablen und  $x_1, \ldots, x_n \in \mathbb{R}$  derart, dass nicht alle  $x_i$  den gleichen Wert annehmen. Betrachte das Regressionsmodel

$$Y_i = \alpha + \beta x_i + \varepsilon_i$$
 für jedes  $i \in \{1, \dots, n\},$ 

wobei  $\varepsilon_1, \ldots, \varepsilon_n$  unabhängige und identisch verteilte Zufallsvariablen sind mit  $\varepsilon_1 \sim N(0, \sigma^2)$  für beliebiges  $\sigma^2 > 0$ . Seien  $\widehat{\alpha}$  und  $\widehat{\beta}$  die ML-Schätzer für  $\alpha$  und  $\beta$ . Zeige, dass  $Cov(\varepsilon_i, \widehat{\alpha}) = Cov(\varepsilon_i, \widehat{\beta}) = 0$ , für jedes  $i \in \{1, \ldots, n\}$ .

## **Aufgabe 2** (4 + 3 + 3 + 3 + 3 + 3 + 3 Punkte)

Betrachte folgende Daten

An die Daten soll ein lineares Regressionsmodel der Form

$$Y_i = \alpha + \beta x_i + \varepsilon_i$$
 für jedes  $i \in \{1, \dots, 5\}$ 

angepasst werden, wobei angenommen wird, dass  $\varepsilon_1, \ldots, \varepsilon_5$  unabhängige und identisch verteilte Zufallsvariablen sind mit  $\varepsilon_1 \sim N(0, \sigma^2)$  für unbekanntes  $\sigma^2 > 0$ .

- (a) Berechne die ML-Schätzwerte  $\widehat{\alpha}$ ,  $\widehat{\beta}$ ,  $\widehat{\sigma}^2$  für  $\alpha$ ,  $\beta$ ,  $\sigma^2$  sowie den zugehörigen Wert von  $Cov(\widehat{\alpha}, \widehat{\beta})$ .
- (b) Berechne die Verteilung von  $\widehat{\alpha}$  und  $\widehat{\beta}$  in Abhängigkeit von  $\alpha$  und  $\beta$ .
- (c) Berechne  $\operatorname{Var} \widehat{\varepsilon}_i$  in Abhängigkeit von  $\sigma^2$  für jedes  $i \in \{1, \dots, 5\}$ .
- (d) Teste die Nullhypothese  $H_0: \alpha = 2.1$  gegen die Alternativhypothese  $H_1: \alpha \neq 2.1$  zum Niveau  $1 \gamma = 0.05$ .
- (e) Teste die Nullhypothese  $H_0:\beta=0$  gegen die Alternativhypothese  $H_1:\beta\neq 0$  zum Niveau  $1-\gamma=0.05.$
- (f) Teste die Nullhypothese  $H_0: \sigma^2=1$  gegen die Alternativhypothese  $H_1: \sigma^2\neq 1$  zum Niveau  $1-\gamma=0.05$ .