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Chapter 1

Discrete-time Markov Chains

1.1 Discrete-Time Markov Chains

In this course, we will consider techniques for simulating many interesting (and
often complicated) random objects. In doing so, we will review the mathematical
theory that makes these techniques work. (Arguably) the most important tools
we will use are discrete-time Markov chains. As we will learn, these will allow us
to simulate an incredibly large number of random objects. Discrete-time Markov
chains are a particular type of discrete-time stochastic process with a number of
very useful features.

Definition 1.1.1 (Discrete-Time Stochastic Process). A discrete-time stochastic
process with state space X is a collection of X -valued random variables {Xn}n∈N.

In this course, I will take N to be the set of natural numbers including 0.
In general, as the term “discrete-time” implies, n will represent a point in time.
However, it could also represent a point in space for example.

Definition 1.1.2 (Discrete-Time Markov Chain). A discrete-time Markov chain
is a discrete-time stochastic process, {Xn}n∈N, with a countable state space, X ,
that satisfies

P(Xn = j |X0 = i0, . . . , Xn−1 = in−1) = P(Xn = j |Xn−1 = in−1)

for all n ≥ 1 and events {X0 = i0, . . . , Xn−1 = in−1} with

P(X0 = i0, . . . , Xn−1 = in−1) > 0.

If P(Xn = j |Xn−1 = i) does not depend on n for all i, j ∈ X , we say {Xn}n∈N
is time homogenous. In this course, unless otherwise stated, we will assume that
Markov chains are time homogenous.

Example 1.1.3 (Random walk on the corners of a square). Consider a random
walker that jumps around on the corners of a square (pictured in Figure 1.1.1).
At each time step, it selects one of the adjacent corners (uniformly) and jumps to
it.
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6 CHAPTER 1. DISCRETE-TIME MARKOV CHAINS

0 1

23

Figure 1.1.1: State space of the random walk, showing possible transitions.

The state space of this Markov chain is X = {0, 1, 2, 3}. The transition prob-
abilities are given by

P(Xn = j |Xn−1 = i) =


1/2 if j = i+ 1 mod 4,

1/2 if j = i− 1 mod 4,

0 otherwise.

Example 1.1.4 (A jumping flea). A flea lives in a house with 3 dogs. Each day
it either stays where it is (with probability 1/2) or jumps (with probability 1/2)
to one of the other dogs (selected uniformly).

The state space of this Markov chain is X = {0, 1, 2}. The transition proba-
bilities are given by

P(Xn = j |Xn−1 = i) =


1/2 if j = i,

1/4 if j = i+ 1 mod 3,

1/4 if j = i− 1 mod 3.

Example 1.1.5. Random walk on the integers Consider a random walker taking
integer values. At each turn, it goes up one with probability 1/2 and goes down
one with probability 1/2.

The state space of this Markov chain is X = Z and the transition probabilities
are given by

P(Xn = j |Xn−1 = i) =


1/2 if j = i+ 1,

1/2 if j = i− 1,

0 otherwise.

Definition 1.1.6. Let {Xn}∈N be a discrete-time homogenous Markov chain.
The |X | × |X | matrix P defined by

P(Xn = j |Xn−1 = i) = (P )i,j ∀i, j ∈ X ,

is called transition matrix .

Properties of transition matrices
In order for P to be a transition matrix, it must satisfy three properties:

(i) It is real-valued (i.e., P ∈ R|X |×|X |).
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(ii) It is non-negative (i.e., (P )i,j ≥ 0 for all i, j ∈ X ).

(iii) It has rows that sum to one (i.e.
∑

j∈X (P )i,j = 1 for all i ∈ X ).

A matrix that satisfies these properties is called a stochastic matrix.

A transition matrix can be represented by a directed weighted graph with
vertex set X and an edge (with weight (P )i,j) placed between i ∈ X and j ∈ X if
and only if (P )i,j > 0. Such a graph is called a transition graph.

Example 1.1.7 (Example 1.1.3 continued: random walk on the corners of a
square). The transition matrix of this Markov chain is

P =


0 1/2 0 1/2

1/2 0 1/2 0
0 1/2 0 1/2

1/2 0 1/2 0

 .

The corresponding transition graph is illustrated in Figure 1.1.2.

0 1

23

1/2

1/2 1/2

1/2

1/2

1/21/2

1/2

Figure 1.1.2: Transition graph of the random walk on the corners of the square.

Example 1.1.8 (Example 1.1.4 continued: a jumping flea). The transition matrix
of this Markov chain is

P =

 1/2 1/4 1/4
1/4 1/2 1/4
1/4 1/4 1/2

 .
The corresponding transition graph is illustrated in Figure 1.1.3.
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Figure 1.1.3: Transition graph of the Markov chain describing the flea hopping
from dog to dog.

Using a transition matrix, we are able to describe the dynamics of a Markov
chain (i.e. how it moves at each step). There is one more piece of information we
need, however, in order to completely characterize a discrete-time Markov chain
{Xn}n∈N: we need to describe how it begins.

Definition 1.1.9 (Measure (on a countable space)). We say a |X |-dimensional
(row) vector, λ, is a measure on a countable state space X if

(λ)i ≥ 0 for all i ∈ X .

Given a set A ⊂ X and a measure λ, we can calculate the measure of the set
by

λ(A) =
∑
i∈A

(λ)i.

Definition 1.1.10 (Distribution (on a countable space)). We say a measure, µ,
on a countable state space X , is a distribution if∑

i∈X

(µ)i = 1.

We will say a discrete-time Markov chain, {Xn}n∈N is Markov(µ, P ) if it has
transition matrix P and X0 ∼ µ (i.e. P(X0 = i) = (µ)i). In particular, we will
often want to start the Markov chain at a specific value (with probability 1). In
order to do this, we define the |X |-dimensional vector δi, where

(δi)j =

{
1 if j = i,

0 otherwise.

If X0 ∼ δi then P(X0 = i) = 1.

In these notes, we will write Pµ and Eµ for probabilities and expectations
given the Markov chain starts from µ. We will write Pi and Ei for probabilities
and expectations given the Markov chain starts from state i (i.e. X0 ∼ δi).



1.1. DISCRETE-TIME MARKOV CHAINS 9

Theorem 1.1.11. A discrete-time stochastic process, {Xn}n∈N is Markov(µ, P )
if and only if

P(X0 = i0, X1 = i1, . . . , Xn = in) = (µ)i0(P )i0,i1 · · · (P )in−1,in

for all i0, . . . , in ∈ X such that P(X0 = i0, . . . , Xn = in−1) > 0.

Proof. Assuming that {Xn}n∈N is Markov (µ, P ), observe that

P(X0 = i0, X1 = i1, . . . , Xn = in)

= P(X0 = i0)P(X1 |X0 = i0)× · · ·
× P(Xn−1 |X0 = i0, . . . , Xn−2 = in−2)P(Xn |X0 = i0, . . . , Xn−1 = in−1).

Because the chain is Markov (µ, P ), the first probability is an entry in µ and all
the conditional probabilities are just entries in the transition matrix. Thus, we
can write

P(X0 = i0, X1 = i1, . . . , Xn = in) = (µ)i0(P )i0,i1 · · · (P )in−1,in

In the converse direction, we recall that (because P is a stochastic matrix)
∑

j∈X (P )i,j =
1 for all i ∈ X . Thus, we have

P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

=
∑
in∈X

(µ)i0(P )i0,i1 · · · (P )in−1,in

= (µ)i0(P )i0,i1 · · · (P )in−2,in−1

We can continue in this way to recover all the probabilities up to

P(X0 = i0) = (µ)i0 ,

which proves that X0 ∼ µ. In order to demonstrate that {Xn}n∈N is Markov with
transition matrix P , observe that

P(Xn = in |X0 = i0, . . . , Xn−1 = in−1)

=
P(X0 = i0, X1 = i1, . . . , Xn = in)

P(X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

=
(µ)i0(P )i0,i1 · · · (P )in−1,in

(µ)i0(P )i0,i1 · · · (P )in−2,in−1

= (P )in−1,in .

Note that this implies that

P(Xn = in |X0 = i0, . . . , Xn−1 = in−1) = P(Xn = in |Xn−1 = in−1),



10 CHAPTER 1. DISCRETE-TIME MARKOV CHAINS

because

P(Xn = in |Xn−1 = in−1)

=
∑

i0,...,in−2∈X

[
P(Xn = in |X0 = i0, . . . , Xn−1 = in−1)

× P(X0 = i0, . . . Xn−2 = in−2 |Xn−1 = in−1)

]
= (P )in−1,in

∑
i0,...,in−2∈X

P(X0 = i0, . . . Xn−2 = in−2 |Xn−1 = in−1)

= (P )in−1,in .

Theorem 1.1.12 (Markov property). Let {Xn}n∈N be Markov (µ, P ). Then,
conditional on {Xm = i}, {Xm+n}n≥0 is Markov (δi, P ) and is independent of the
random variables X0, . . . , Xm.

Proof. If we show that, for any event A determined by X0, . . . , Xm,

P({Xm = im, . . . , Xm+n = im+n} ∩ A |Xm = i)

= (δi)im(P )im,im+1 , . . . , (P )im+n−1,im+nP(A |Xm = i), (1.1)

then we have shown the result as Theorem 1.1.11 shows that {Xm+n}n∈N is Markov
(δi, P ) and the fact that the probability is a product demonstrates the indepen-
dence.

In order to show (1.1) is true, we first show it for simple events of the form
Ak = {X0 = i0k , . . . , Xm = imk

}. In such cases, repeatedly using the definition of
a Markov chain, we have that

P(X0 = i0k , . . . Xm = imk
, Xm+1 = im+1, . . . , Xm+n = im+n |Xm = im)

= P(Xm = im, . . . , Xm+n = im+n |X0 = i0k , . . . , Xm−1 = im−1, Xm = i)

× P(X0 = i0k , . . . Xm = imk
|Xm = i)

= P(Xm = im |X0 = i0k , . . . , Xm−1 = im−1, Xm = i)

× P(Xm+1 = im+1 |X0 = i0k , . . . , Xm−1 = im−1, Xm = i)

× · · · × P(Xm+n = im+n |X0 = i0k , . . . , Xm = i, . . . Xm+n−1 = im+n−1)

× P(X0 = i0k , . . . Xm = imk
|Xm = i)

= (δi)im(P )im,im+1 · · · (P )im+n−1,im+nP(Ak |Xm = i),

As any event A that only depends on X0, . . . , Xm can be written as a union of
disjoint Ak, the result follows.

1.2 Random Mappings and Simulation

1.2.1 Random Mapping Representations

The key to simulating a Markov chain is (usually) to find a suitable random
mapping representation. This is a representation of a Markov chain that allows



1.2. RANDOM MAPPINGS AND SIMULATION 11

us to simulate it using a stream of independent and identically distributed (iid)
random variables.

Definition 1.2.1 (Random mapping representation). A random mapping repre-
sentation of a transition matrix P on state space X is a function f : X × Λ→ X
and a Λ-valued random variable Z such that

P(f(i, Z) = j) = (P )i,j for all i, j ∈ X .

The following theorem shows that we can construct a Markov chain with the
desired transition matrix and initial distribution using a random mapping repre-
sentation.

Theorem 1.2.2. Let f and Z be a random mapping representation of the tran-
sition matrix P . Then, given a sequence of iid random variables {Zn}n≥1 with

Zn
D
= Z, the sequence {Xn}n∈N defined by X0 ∼ µ, where X0 is independent of

the {Zn}n≥1, and
Xn = f(Xn−1, Zn) for all n ≥ 1,

is Markov (µ, P ).

Proof. That {Xn}n∈N has initial distribution µ follows from the definition. Now,
observe that

P(Xn = in |X0 = i0, . . . , Xn−1 = in−1)

= P(f(Xn−1, Zn) = in |X0 = i0, . . . , Xn−1 = in−1)

= P(f(in−1, Zn) = in |X0 = i0, . . . , Xn−1 = in−1)

= P(f(in−1, Zn) = in)

= P(f(in−1, Z) = in)

= (P )in−1,in ,

where we use the fact that Zn is independent of X0, . . . , Xn−1 and that the {Zn}n≥1

are iid with the same distribution as Z.

The next theorem tell us that given a transition matrix, P , on a countable
state space X , we can always find a random mapping representation.

Theorem 1.2.3. Every transition matrix has a random mapping representation.

Proof. Consider an arbitrary transition matrix P on a countable state space X .
Let Λ = (0, 1) and Z ∼ U(0, 1). Define the values {Fi,j}i,j∈X by

Fi,j =

j∑
k=1

(P )i,k.

Observe that 0 ≤ Fi,j ≤ 1 for all i, j ∈ X and that Fi,j ≤ Fi,j+1 for all i ∈ X and
j such that j, j + 1 ∈ X . Define the function f : X × (0, 1)→ X by

f(i, z) = j such that Fi,j−1 < z ≤ Fi,j.

Then
P(f(i, Z) = j) = P(Fi,j−1 < Z ≤ Fi,j) = Fi,j − Fi,j−1 = (P )i,j.
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Theorem 1.2.3 is in some sense a proof that for any transition matrix, P , a
Markov chain with the specified transition probabilities exists (after all, we can
easily cook up a space of iid uniform random variables).

It is important to note that random mapping representations are not unique.
Consider the following example.

Example 1.2.4 (A random mapping representation of a random walk on the
integers). Consider the random walk defined in Example 1.1.5. We can construct
a random mapping representation of it using the random variable Z ∼ Ber(1/2)
and the function

f(i, z) =


i+ 1 if z = 1,

i− 1 if z = 0,

0 otherwise.

1.2.2 Simulation

The proof of Theorem 1.2.3 gives a generic recipe for simulating Markov chains
on finite spaces (on infinite spaces another random mapping representation is
usually needed – see, e.g., Example 1.2.4). The basic algorithm is as follows:

Algorithm 1.2.1 (Simulating a Markov chain on a finite state space).

(i) Draw X0 ∼ µ.

(ii) Draw U ∼ U(0, 1). Set Xn+1 = j where j is such that

j−1∑
k=1

(P )i,k < U ≤
j∑

k=1

(P )i,k.

(iii) Set n = n+ 1 and repeat from step 2.

The code below demonstrates how to implement this in Matlab.

Example 1.2.5 (Example 1.1.3 continued: random walk on the corners of a
square). We can simulate the random walk on the corners of a square as follows.

Listing 1.1: Simulating a random walk on the corners of a square

1 n = 10

2 X= c()

3 P= rbind(c(0,0.5,0,0.5),c(0.5,0,0.5,0),c(0,0.5,0,0.5),c(0.5,0,0.5,0))

4 mu=rep(1/4, 4)

5 X_0= sample(1:4, size=1, prob= mu)

6 Z=runif(n=1, min=0, max=1)

7 X[1]=min(which(Z<=cumsum(P[X_0,]) ))

8 for(i in 1:(n-1))

9 {

10 Z= runif(n=1, min=0, max=1)

11 X[i+1]= min(which(Z<=cumsum(P[X[i],]) ))

12 }

13
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14 # plot of sample

15 par(mfrow=c(1,1))

16 plot(1:n, X , xlim=c(0, n), type="n", ylim=c(0, 4), xlab="n",

17 ylab=expression(X[n]))

18 segments(x0=0, y0= X_0, x1=1, y1=X_0, lwd=3)

19 for(i in 1:(n-1))

20 {

21 segments(x0=i, y0= X[i], x1=i+1, y1=X[i], lwd=3)

22 }

Example 1.2.6 (Example 1.1.5 continued: random walk on the integers). Using
the random mapping representation given in Example 1.2.4, we can simulate a
random walk on the integers as follows.

Listing 1.2: Simulating a random walk on the integers

1 n=20

2 X=c()

3 p=0.5 # transition probability

4 X_0 = 0 # starting point

5 Z= rbinom(n=1,size=1, prob=p) # sample of bernoulli distributed variable

6 X[1]= X_0 + 1*Z + 1*(Z-1) # X= i+1 if Z=1 and X=i-1 if Z=0

7 for(i in 1:(n-1)) # continue for i=2, ... , n

8 {

9 Z= rbinom(n=1, size=1, prob=0.5)

10 X[i+1]= X[i] + 1*Z + 1*(Z-1)

11 }

12 # plot

13 par(mfrow=c(1,1))

14 plot(1:n, X , xlim=c(0, n), type="n", ylim=c(min(X), max(X)), xlab="n",

15 ylab=expression(X[n]))

16 segments(x0=0, y0= X_0, x1=1, y1=X_0, lwd=3)

17 for(i in 1:(n-1))

18 {

19 segments(x0=i, y0= X[i], x1=i+1, y1=X[i], lwd=3)

20 }

1.3 The distribution of Xn

We now know how to calculate a number of probabilities. In particular,

(i) P(X0 = i)

(ii) P(Xn = in |X0 = i0, . . . , Xn−1 = in−1)

(iii) P(Xn = in |Xn−1 = in−1)

(iv) P(X0 = i0, . . . , Xn = in).
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Finding the distribution of Xn for a fixed n ∈ N is a little bit more work.
To answer this we first consider the n-step probability

(P (n))i,j = P(Xn = j|X0 = i)

if P(X0 = i) > 0.
P (n) = (P (n))i,j∈X is called the n-step transition matrix of the Markov chain
{Xn}n∈N.

Theorem 1.3.1. The equation P (n) = P n holds for arbitrary n = 0, 1, 2, . . . and
thus for arbitrary n,m = 0, 1, 2, . . .

P (n+m) = P (n)P (m).

Corollary 1.3.2. For arbitrary n,m, r = 0, 1, 2, . . . and i, j, k ∈ X

P
(n+m)
i,i ≥ P

(n)
i,j P

(m)
j,i

P
(n+m+r)
i,i ≥ P

(n)
i,j P

(m)
j,k P

(r)
k,i

Theorem 1.3.3. Let {Xn}n∈N be Markov (µ, P ). Then, for n ∈ N,

P(Xn = j) = (µP n)j.

Proof. Use the n-step probability matrix.

P(Xn = j) =
∑
i∈X

P(X0 = i)P(Xn = j |X0 = i)

=
∑
i∈X

P
(n)
i,j (µ)i

= (µP (n))j.

Thus, when {Xn}n∈N is Markov(µ, P ), the distribution of Xn is given by

Xn ∼ µP n.

Note that this is not always so nice to work out by hand but, so long as |X | is
not too big, it can be easily computed on a computer.

Example 1.3.4 (Calculating the distribution ofXn for Example 1.1.3). In Matlab,
it is straightforward to take powers of matrices. The following code does it for
Example 1.1.3 with an initial distribtuion µ = (1, 0, 0, 0).

Listing 1.3: Calculating the distribution of Xn for a random walk on the corners
of a square

1 matpot= function(M, n)

2 {

3 result= diag(rep(1,nrow(M)))

4 for(i in 1:n)

5 {
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6 result= result %*% M

7 }

8 return(result)

9 }

10 P= rbind(c(0,0.5,0,0.5),c(0.5,0,0.5,0),c(0,0.5,0,0.5),c(0.5,0,0.5,0))

11 n= c(2, 5, 100, 101, 102)

12

13 mu1=c(1, 0, 0, 0) # starting in corner 1

14 DIST1 = matrix(0, nrow=length(n), ncol= nrow(P))

15 for(i in 1:length(n))

16 {

17 DIST1[i,]= mu1%*% matpot(M=P, n=n[i])

18 }

19 DIST1=cbind(n, DIST1)

20

21 mu2= c(0, 1, 0, 0) # starting in corner 2

22 DIST2= matrix(0, nrow=length(n), ncol= nrow(P))

23 for(i in 1:length(n))

24 {

25 DIST2[i,]= mu2%*% matpot(M=P, n=n[i])

26 }

27 DIST2=cbind(n, DIST2)

28

29 mu3= c(1/2, 1/2, 0, 0) # starting in corner 1 or 2

30 DIST3= matrix(0, nrow=length(n), ncol= nrow(P))

31 for(i in 1:length(n))

32 {

33 DIST3[i,]= mu3%*% matpot(M=P, n=n[i])

34 }

35 DIST3=cbind(n, DIST3)

36

37 mu4= c(1/4, 1/4, 1/4, 1/4) # starting randomly in one corner

38 DIST4= matrix(0, nrow=length(n), ncol= nrow(P))

39 for(i in 1:length(n))

40 {

41 DIST4[i,]= mu4%*% matpot(M=P, n=n[i])

42 }

43 DIST4=cbind(n, DIST4)

Let us look at the output of this code for a number of different choices of the
initial distribution µ. For µ = (1, 0, 0, 0) we have

X2 ∼ (1/2, 0, 1/2, 0)

X5 ∼ (0, 1/2, 0, 1/2)

X100 ∼ (1/2, 0, 1/2, 0)

X101 ∼ (0, 1/2, 0, 1/2)

X102 ∼ (1/2, 0, 1/2, 0).
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For µ = (0, 1, 0, 0) we have

X2 ∼ (0, 1/2, 0, 1/2)

X5 ∼ (1/2, 0, 1/2, 0)

X100 ∼ (0, 1/2, 0, 1/2)

X101 ∼ (1/2, 0, 1/2, 0)

X102 ∼ (0, 1/2, 0, 1/2).

For µ = (1/2, 1/2, 0, 0) we have

X2 ∼ (1/4, 1/4, 1/4, 1/4)

X5 ∼ (1/4, 1/4, 1/4, 1/4)

X100 ∼ (1/4, 1/4, 1/4, 1/4)

X101 ∼ (1/4, 1/4, 1/4, 1/4)

X102 ∼ (1/4, 1/4, 1/4, 1/4).

Lastly, for µ = (1/4, 1/4, 1/4, 1/4) we have

X2 ∼ (1/4, 1/4, 1/4, 1/4)

X5 ∼ (1/4, 1/4, 1/4, 1/4)

X100 ∼ (1/4, 1/4, 1/4, 1/4)

X101 ∼ (1/4, 1/4, 1/4, 1/4)

X102 ∼ (1/4, 1/4, 1/4, 1/4).

Example 1.3.5 (Calculating the distribution of Xn for Example 1.1.4). The fol-
lowing code calculates the distribution of Xn for Example 1.1.4.

Listing 1.4: Calculating the distribution of Xn for a jumping flea

1 P= rbind(c(0.5,0.25,0.25),c(0.25,0.5,0.25),c(0.25,0.25,0.5))

2 n= c(2, 5, 100, 101, 102)

3

4 mu1=c(1, 0, 0) # starting on dog 1

5 DIST1 = matrix(0, nrow=length(n), ncol= nrow(P))

6 for(i in 1:length(n))

7 {

8 DIST1[i,]= mu1%*% matpot(M=P, n=n[i])

9 }

10 DIST1=cbind(n, DIST1)

11

12 mu2= c(0, 1, 0) # starting on dog 2

13 DIST2= matrix(0, nrow=length(n), ncol= nrow(P))

14 for(i in 1:length(n))

15 {

16 DIST2[i,]= mu2%*% matpot(M=P, n=n[i])

17 }

18 DIST2=cbind(n, DIST2)

19
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20 mu3= c(0,1/3,2/3) # starting on dog 2 or 3

21 DIST3= matrix(0, nrow=length(n), ncol= nrow(P))

22 for(i in 1:length(n))

23 {

24 DIST3[i,]= mu3%*% matpot(M=P, n=n[i])

25 }

26 DIST3=cbind(n, DIST3)

27

28 mu4= c(1/3,1/3,1/3) # starting on dog 1, 2, 3

29 DIST4= matrix(0, nrow=length(n), ncol= nrow(P))

30 for(i in 1:length(n))

31 {

32 DIST4[i,]= mu4%*% matpot(M=P, n=n[i])

33 }

34 DIST4=cbind(n, DIST4)

Let us again look at the output of this code for a number of different choices
of the initial distribution µ. For µ = (1, 0, 0) we have (at least approximately)

X2 ∼ (3/8, 5/16, 5/16)

X5 ∼ (171/512, 341/1024, 341/1024)

X100 ∼ (1/3, 1/3, 1/3)

X101 ∼ (1/3, 1/3, 1/3)

X102 ∼ (1/3, 1/3, 1/3).

For µ = (0, 1, 0) we have (at least approximately)

X2 ∼ (5/16, 3/8, 5/16)

X5 ∼ (341/1024, 171/512, 341/1024)

X100 ∼ (1/3, 1/3, 1/3)

X101 ∼ (1/3, 1/3, 1/3)

X102 ∼ (1/3, 1/3, 1/3).

For µ = (0, 1/3, 2/3) we have (at least approximately)

X2 ∼ (5/16, 1/3, 17/48)

X5 ∼ (341/1024, 1/3, 342/1025)

X100 ∼ (1/3, 1/3, 1/3)

X101 ∼ (1/3, 1/3, 1/3)

X102 ∼ (1/3, 1/3, 1/3).

And lastly, for µ = (1/3, 1/3, 1/3),we have

X2 ∼ (1/3, 1/3, 1/3)

X5 ∼ (1/3, 1/3, 1/3)

X100 ∼ (1/3, 1/3, 1/3)

X101 ∼ (1/3, 1/3, 1/3)

X102 ∼ (1/3, 1/3, 1/3).
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Looking at the distributions computed in Examples 1.3.4 and 1.3.5, we can
observe a number of things.

(i) In Example 1.3.4, if one starts with probability 1 in either {0} or {2}, then
the distribution of Xn is (1/2, 0, 1/2, 0) for even times and (0, 1/2, 0, 1/2)
for odd times. If one starts with probability 1 in either {1} or {3}, the
distribution of Xn is (0, 1/2, 0, 1/2) for even times and(1/2, 0, 1/2, 0) for odd
times. Thus, the distribution of Xn seems to be periodic for certain choices
of initial distribution.

(ii) In both examples, there are distributions — (1/4, 1/4, 1/4, 1/4) and (1/3, 1/3, 1/3)
— where, if the chain is started in this distribution, Xn has the same distri-
bution for all n ≥ 0.

(iii) In Example 1.3.5 there is a distribution — (1/3, 1/3, 1/3) — to which {Xn}n∈N
seems to converge, no matter what its initial distribution is.

This leads to a number of natural questions:

(i) When does a Markov chain have an initial distribution, π, that does not
change as n increases (in other words, when can we find a π such that
π = πP )?

(ii) If such a π exists, when is it unique?

(iii) Given a unique π, when does a Markov chain converge to it (if it starts from
an initial distribution that is not π?

In order to answer these questions, we need to be able to classify a number of
different types of Markov chains.

1.4 Class Structure

An important question to ask, when dealing with a Markov chain, is if it is
possible to move from any state to any other state.

Definition 1.4.1. We say i ∈ X leads to j ∈ X (i → j) if there exists an n ∈ N
with

P n
i,j = Pi(Xn = j|X0 = i) > 0.

We say i ∈ X communicates with j ∈ X (i↔ j) if i→ j and j → i.

The relation ↔ is an equivalence relation because it is

(i) reflexive: i↔ i (set n = 0),

(ii) symmetric: i↔ j if and only if j ↔ i (by definition),

(iii) transitive: i↔ j and j ↔ k implies i↔ k, use extension of Corollary 1.3.2.
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Using the equivalence relation ↔ we can partition X into disjoint equivalence
classes, called communicating classes. Note that the communicating classes of a
Markov chain are determined by its transition matrix, P , and do not depend on
the initial distribution µ.

Example 1.4.2. Consider the Markov chain with transition matrix

P =

0 1/2 1/2
0 1/2 1/2
0 1 0


Its transition graph is given in Figure 1.4.1.

1

23

1/2
1/2

1/2

1/2
1

Figure 1.4.1: Transition graph of a Markov chain with two communicating classes.

The transition matrix P has two communicating classes C1 = {1} and C2 =
{2, 3}. This is because 2↔ 3 but 1 does not communicate with the other two.

Theorem 1.4.3. For i, j ∈ X with i 6= j the following are equivalent

(i) i→ j,

(ii) (P )i0,i1(P )i1,i2 · · · (P )in−1,in > 0 for some i0, i1, . . . , in ∈ X with i0 = i and
in = j.

Proof. We have i→ j, then there exists an n ∈ N such that

(P n)i,j > 0.

We also have that
(P n)i,j =

∑
i1,...,in−1∈X

Pi,i1 · . . . Pin−1,in

so that (i)⇔ (ii).

Definition 1.4.4. A communicating class, C, is closed if i ∈ C and i→ j implies
that j ∈ C. In other words, if the chain is in C, it cannot leave C.

In Example 1.4.2, C2 is a closed class and C1 is not.

Definition 1.4.5 (Irreducibility). A transition matrix, P , is called irreducible if
X is a single communicating class.
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Example 1.4.6 (An irreducible Markov chain). Consider the Markov chain with
transition matrix

P =

1/4 3/4 0
1/2 0 1/2
1 0 0


Its transition graph is given in Figure 1.4.2.

1

23

1/4

3/4

1/2

1/2

1

Figure 1.4.2: Transition graph of an irreducible Markov chain.

The transition matrix P is irreducible, as it is possible to get from any state
to any other state (though not always in a single step).

Example 1.4.7 (A Markov chain that is not irreducible). Consider the Markov
chain with transition matrix

P =

0 1 0
0 1/2 1/2
0 1/2 1/2


Its transition graph is given in Figure 1.4.3.

1
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Figure 1.4.3: Transition graph of a Markov chain that is not irreducible.

The transition matrix P is not irreducible, as it is not possible to get from {2}
to {1} (i.e., there is more than one communicating class).



1.5. STOPPING TIMES AND THE STRONG MARKOV PROPERTY 21

1.5 Stopping Times and the Strong Markov Prop-

erty

It is often useful to consider the times at which various events involving a
discrete-time stochastic process {Xn}n∈N occur. For example, we might like to
know the first time that {Xn} hits a certain state. Because {Xn}n∈N is random
process, such times will also be random. We usually require that the random
times we consider satisfy certain technical conditions. Such random times are
called stopping times.

Definition 1.5.1 ((Discrete-time) Stopping Time). A N-valued random variable,
τ , is a (discrete-time) stopping time if and only if for all n ≥ 0 there is a set
An ∈ X n+1 such that {τ = n} = {(X0, . . . , Xn) ∈ An}. In other words, τ is a
stopping time if and only if I(τ = n) is a function of (X0, . . . , Xn)

Intuitively, a random time τ is a stopping time if and only if we can determine
at time n whether τ = n or not. Two important stopping times are the following:

(i) The hitting time of a set A ⊂ X is given by

τHA = inf{n ≥ 0 : Xn ∈ A}.

(ii) The first passage time into state i is given by

τFi = inf{n ≥ 1 : Xn = i}.

Note that, in both cases, we will take inf{∅} =∞.

Note that, if the chain starts in a state i then the hitting time τH{i} will be 0,
while the first passage time will be strictly large than 0.

Example 1.5.2 (Random times that are not stopping times). The random time
τ = inf{n ≥ 0 : Xn+1 = i} is not a stopping time, because the event {τ = n}
depends on (X0, . . . , Xn+1) rather than just (X0, . . . , Xn). Likewise, the last exit
time of a set A ⊂ X , τLA = sup{n ≥ 0 : Xn ∈ A}, is not, in general, a stopping
time. This is because we may not have any way of knowing at time n whether
{Xn}n∈N will return to A or not.

The following theorem is an analogue of the Markov property for times that
are random (rather than the deterministic times considered in Theorem 1.1.12).

Theorem 1.5.3. Let i ∈ X be such that P(X0 = i) > 0. i → j if and only if
P(τFj <∞|X0 = i) > 0.

Proof. 1. Let i→ j that means that there exists n ∈ N: P n
i,j > 0.

It is:
{Xn = j} ⊂ {τFj ≤ n} ⊂ {τFj <∞}

and thus
P(τFj <∞|X0 = i) ≥ P(Xn = j|X0 = i) = P n

i,j > 0.
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2. Let i9 j that means for all n ≥ 0 P n
i,j = 0.

P(τFj <∞|X0 = i) = lim
n→∞

P(τFj < n|X0 = i)

= lim
n→∞

P(∪n−1
k=1{Xk = j}|X0 = i)

≤ lim
n→∞

n−1∑
k=1

P(Xk = j|X0 = i)

= lim
n→∞

n−1∑
k=1

P k
i,j = 0

Theorem 1.5.4 (Strong Markov Property). Let {Xn}n∈N be Markov (µ, P ) and
τ be a stopping time of {Xn}n∈N. Then, conditional on {τ < ∞} and {Xτ = i},
{Xτ+n}n∈N is Markov(δi, P ) and independent of X0, X1, . . . , Xτ .

Proof. Let A be an event determined by X0, . . . , Xτ . Then A ∩ {τ = m} is
determined by X0, . . . , Xm. By the Markov property (Theorem 1.1.12), we have
that

P({Xτ = j0, . . . , Xτ+n = jn} ∩ A ∩ {τ = m} ∩ {Xτ = i})
= Pi({X0 = j0, . . . , Xn = jn})P(A ∩ {τ = m} ∩ {Xτ = i})

Then, summing over m, we have

P({Xτ = j0, . . . , Xτ+n = jn} ∩ A ∩ {Xτ = i})
= Pi({X0 = j0, . . . , Xn = jn})P(A ∩ {Xτ = i})

Dividing by P({τ <∞} ∩ {Xτ = i}) we have

P({Xτ = j0, . . . , Xτ+n = jn} ∩ A | τ <∞, Xτ = i)

= Pi({X0 = j0, . . . , Xn = jn})P(A ∩ {Xτ = i})

1.6 Recurrence

We have already seen that Markov chains can be divided into those that are
irreducible and those that are not. Another important property is what is called
recurrence.

Definition 1.6.1. Let {Xn}n∈N be a Markov chain with transition matrix P . A
state i ∈ X is recurrent if

Pi(Xn = i for infinitely many n) = 1.

We say a state i ∈ X is transient if

Pi(Xn = i for infinitely many n) = 0.
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Notation
Vi =

∑∞
n=0 1(Xn = i) is the number of visits to i.

fi = P(τFi <∞|X0 = i) is the probability to return to i.
Thus: i ∈ X is recurrent if and only if P(Vi = ∞|X0 = i) = 1 and (i ∈ X is
transient if P(Vi =∞|X0 = i) < 1).

Lemma 1.6.2. For all k ≥ 0 P(Vi ≥ k + 1|X0 = i) = (fi)
k.

Proof. Induction principle:
Basis: k = 0 X
Inductive hypothesis: For 0, 1, . . . , k − 1 it is P(Vi ≥ k|X0 = i) = fk−1

i

Inductive step: k − 1→ k

P(Vi ≥ k + 1|X0 = i) = P(Vi ≥ k + 1|Vi ≥ k,X0 = i)P(Vi ≥ k|X0 = i)

= P(τFi <∞|X0 = i)(fi)
k−1

= fi(fi)
k−1 = (fi)

k.

Theorem 1.6.3. We have that:

(i) i ∈ X is recurrent if and only if fi = 1.

(ii) i ∈ X is transient if and only if fi < 1.

Proof. Observe

P(Vi <∞|X0 = i) = P(∪k≥1{Vi = k}|X0 = i)

=
∞∑
k=1

P(Vi = k|X0 = i)

=
∞∑
k=1

(1− fi)fk−1
i

=

{
0 fi = 1

1 fi < 1

where we use that Vi is geometrically distributed with probability fi.
So i ∈ X is recurrent if fi = 1 and transient if fi < 1.

Theorem 1.6.4. For a given i ∈ X , we have

(i) i is recurrent if and only if
∑∞

n=0(P n)i,i =∞.

(ii) i is transient if and only if
∑∞

n=0(P n)i,i <∞.
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Proof. 1. i ∈ X is recurrent ↔ P(Vi =∞|X0 = i) = 1.

∞∑
n=0

P n
i,j =

∞∑
n=0

E[1(Xn = i)|X0 = i] (1.2)

= E[
∞∑
n=0

1(Xn = i)|X0 = i] (1.3)

= E[Vi|X0 = i] =∞ (1.4)

2. i ∈ X is transient ↔ fi <∞.

∞∑
n=0

P n
i,j = E[Vi|X0 = i] (1.5)

=
∞∑
r=0

P(Vi > r|X0 = i) (1.6)

=
∞∑
r=0

f ri =
1

1− fi
<∞ (1.7)

where we again use that Vi is geometrically distributed with probability fi.

The following theorem shows that recurrence (or transience) is a class property.
That is, the states in a communicating class are either all recurrent or all transient.

Theorem 1.6.5. For a transition matrix P , we have the following:

(i) Let C be a communicating class. Then, either all states in C are transient
or all states are recurrent.

(ii) Every recurrent class is closed.

(iii) Every finite closed class is recurrent.

Proof. Only (i), transient. For the rest see J. Norris (1997) Markov Chains.
Take any pair of states i, j ∈ C and suppose i ∈ C is transient.
Since C is a communicating class there exists n,m ≥ 0 with (P n)i,j) > 0 and
(Pm)j,i) > 0. With Corollary 1.3.2 for r ≥ 0 we get:

(P n+m+r)i,i ≥ (P n)i,j(P
r)j,j(P

m)j,i

so that
∞∑
r=0

P r
j,j ≤

1

P n
i,jP

m
j,i

∞∑
r=0

P n+m+r
i,i <∞

since i is transient.

Theorem 1.6.6. Let P be irreducible and recurrent. Then, for all j ∈ X , P(τFj <
∞) = 1.
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Proof. We have that

P(τFj <∞) =
∑
i∈X

P(X0 = i, τFj <∞) =
∑
i∈X

P(X0 = i)Pi(τFj <∞).

Because
∑

i∈X P(X0 = i) = 1, the result follows if we can show

Pi(τFj <∞) = 1

for all i, j ∈ X .
Choosing m such that (Pm)i,j > 0, we have that

1 = Pj(Xn = j for infinitely many n)

≤ Pj(Xn = j for some n ≥ m+ 1)

=
∑
k∈X

Pj(Xn = j for some n ≥ m+ 1 |Xm = k)Pj(Xm = k)

=
∑
k∈X

Pk(τFj <∞)(Pm)j,k

Since
∑

k∈X P
m
j,k = 1 it follows: Pk(τFj <∞) = 1 for all j, k ∈ mathcalX.

Note that Pi(τi <∞) = 1 does not guarantee that EiτFi <∞. For this reason,
we distinguish between two types of recurrence.

Definition 1.6.7. We say a recurrent state i ∈ X is positive recurrent if EτFi <∞.
If, instead, EτFi =∞, we say i is null recurrent.

Example 1.6.8 (The simple random walk on Z is null recurrent). It is possible
to show that the simple random walk on Z is recurrent (i.e. it returns to 0 with
probability 1). However, the expected time it takes to return to zero is infinite.

1.7 Interlude: Estimating Expected Stopping Times

and Related Probabilities

There are not always closed-form formulas for the expected values of stopping
times. For that reason, it is often necessary to estimate such expected values using
Monte Carlo methods.

The fundamental theorem that justifies the use of Monte Carlo methods is the
Strong Law of Large Numbers.

Theorem 1.7.1 (Strong Law of Large Numbers (SLLN)). Let {Yn}n∈N\{0} be a
sequence of iid random variables with E|Y1| <∞. Then

Sn
n
→ EY1 almost surely,

as n→∞, where Sn = Y1 + . . .+ Yn.
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This theorem tells us that we can estimate the expectation of a random variable
Y by generating a sequence of N iid replicates of it, {Yn}Nn=1, and taking their
sample average. As N grows larger, this sample average will converge almost
surely to EY . We will talk a lot more about the properties of such estimators
(and their errors) later in this course.

We can use these results to estimate the expected return time to a state i (that
is, EiτFi ). We will see later that it is often easy to calculate this value exactly, but
it is a good place to start learning about how to estimate things. In order to be
able to use the SLLN, we need to make sure that Ei|τFi | < ∞. Because τFi ≥ 0,
this is equivalent to the condition that EτFi < ∞. In other words, we need to
make sure that the state i is positive recurrent. If i is positive recurrent, when
then simply need to find a way to generate independent realizations of τFi . We
can do this by repeatedly starting the Markov chain at state i (i.e. with initial
distribution δi) and recording the time taken until it returns of i. The average of
these values will be a (hopefully quite good) estimate of EτFi .

Example 1.7.2 (Estimating an expected return time). Consider a Markov chain
with transition matrix

P =


0 3/4 0 1/4
0 1/2 1/2 0

1/8 5/8 0 2/8
0 0 3/4 1/4


The corresponding transition graph is illustrated in Figure 1.7.1.

1
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Figure 1.7.1: Transition graph of the Markov chain.

We wish to estimate the expected time it takes to return to state 1 when we
start in state 1. We do this using the following Matlab code.

Listing 1.5: Estimating EiτFi
1 N=10000

2 Y=c()

3 P=rbind(c(0,3/4,0,1/4), c(0,1/2,1/2,0), c(1/8,5/8,0,2/8), c(0,0,3/4,1/4))

4 i=1

5

6 for(j in 1:N)
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7 {

8 t=0

9 X=i

10 Z=runif(1, min=0, max=1)

11 X=min(which(Z<=cumsum(P[X,])))

12 t=t+1

13 while(X!=i)

14 {

15 Z=runif(1, min=0, max=1)

16 X=min(which(Z<=cumsum(P[X,])))

17 t=t+1

18 }

19 Y[j]=t

20 }

21 mean(Y)

As well as estimating the expected value of stopping times, it is often useful
to estimate probabilities concerning stopping times. For example, imagine that
{Xn}n∈N represents the daily price of a share in Apple. We might want to know
the probability it reaches $200, say, before it falls to 50. We can write this in
terms of stopping times as

P(τF200 < τF50).

In order to estimate such probabilities (using the idea from the SLLN) we need
to be able to write them as expectations of random variables. Thankfully, this is
very straightforward, as we have

P(A) = E1(A),

where A is some event and I(A) is the indicator function which takes the value
1 when the event occurs and 0 otherwise. In other words, we can estimate this
probability by repeatedly running a Markov chain starting at say X0 = 100 until
τ = min{τF200, τ

F
50} and recording a 1 if Xτ = 200 and a 0 if Xτ = 50.

Example 1.7.3. The probability a simple random walk hits 10 before −7 We can
use this approach to estimate the probability a simple random walk, {Xn}n∈N,
starting at 0 hits 10 before it hits −7. That is,

` = P0(τF10 < τF−7).

Listing 1.6: Estimating P0(τF10 < τF−7).

1 N=10^6

2 Y=c()

3 A=10

4 B=-7

5 p= 0.5

6

7 for(j in 1:n)

8 {
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9 X=0

10 Z= rbinom(n=1,size=1, prob=p)

11 X= X + 1*Z + 1*(Z-1)

12 while(X!=A & X!=B)

13 {

14 Z= rbinom(n=1,size=1, prob=p)

15 X= X + 1*Z + 1*(Z-1)

16 }

17 Y[j]= X==A

18 }

19 mean(Y)

1.8 Reminder: Eigenvalues

It is perhaps now a good time to start thinking about eigenvalues. We will not
start to use these straight away, but we will see that they are very important later
when we begin to analyze finite state Markov chains a bit more closely.

Definition 1.8.1 (Left eigenvectors and eigenvalues). A non-negative row vector
vL is a left eigenvector of a square matrix A if and only if there exists a λL ∈ C
such that

vLA = λLvL.

The corresponding λL is called a (left) eigenvalue of A.

Definition 1.8.2 (Right eigenvectors and eigenvalues). A non-negative column
vector vR is a right eigenvector of a square matrix A if and only if there exists a
λR ∈ C such that

AvR = λRvR.

The corresponding λR is called a (right) eigenvalue of A.

In order to find the (left) eigenvalues of A we need to find the λ such that

vLA = λvL → vL(A− λI) = 0.

Note that this says we need to choose λ so that it is possible to take a linear
combination of the rows of A − λI and get 0. This is only possible if A − λI is
not of full rank (i.e., det(A − λI) = 0). Thus, the eigenvalues of A are given by
the so-called characteristic equation

det(A− λI) = 0.

Likewise, in order to find the (right) eigenvalues of A we need to find the λ such
that

AvR = λvR → (A− λI)vR = 0.

This implies we need to choose λ so that it is possible to take a linear combination
of the columns of A− λI and get 0. Again, this means that λ must be a solution
of the characteristic equation

det(A− λI) = 0.

It follows from this that the left and right eigenvalues of a matrix are the same.
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1.9 Invariant Measures and Invariant Distribu-

tions

We saw in Examples 1.3.4 and 1.3.5 that, when the Markov chains started
from certain distributions, their distributions did not change as n increased. This
lead naturally to a few questions. We will focus on two in this section:

(i) Given a Markov chain, {Xn}n∈N, when does there exist a distribution π such
that if X0 ∼ π then Xn ∼ π for all n ≥ 1?

(ii) If such a π exists, when is it unique?

In order to answer these questions, we need a name for such distributions.

Definition 1.9.1 (Invariant measure). We say a non-trivial (i.e., not all 0s) mea-
sure, λ, is an invariant measure of the matrix P if

λP = λ.

Note that, if λ is an invariant measure, then so is αλ for all α > 0.

Definition 1.9.2 (Invariant distribution). We say a distribution, π, is an invari-
ant distribution of the matrix P if

πP = π.

An invariant distribution is also called a stationary distribution and an equi-
librium distribution. The following lemma explains why we call π a stationary
distribution (once a Markov chain has distribution π it will never stop having
distribution π).

Lemma 1.9.3. If π is a stationary distribution of the transition matrix P and
{Xn}n∈N is Markov(π,P ), then Xn ∼ π for all n ≥ 1.

Proof. We have, by Theorem 1.3.3, that Xn ∼ πP n. But,

πP n = πPP n−1 = πP n−1 = · · · = πP = π.

When X is finite, we know that a stochastic matrix P has a right eigenvector
of 1s, with corresponding eigenvalue 1 as

P (1, . . . , 1)ᵀ = (1, . . . , 1)ᵀ.

This implies that there must exist a corresponding left eigenvector for the eigen-
value 1. That is, a row vector v such that

vP = v.

Unfortunately, this result does not help us too much. This is because we have
no guarantee that the elements of v are non-negative, which is what we need in
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order for v to be a measure. However, with a little bit more theory from linear
algebra we can in fact establish when an invariant measure (and even a stationary
distribution) exist. We will come back to this later, but first we will see that
we can establish conditions for the existence and uniqueness of invariant measures
and distributions using purely probabilistic tools (and without the restriction that
the state space is finite). We will not give the proofs of all these theorems, but
you can find them all in the book by Norris [6].

Definition 1.9.4. For a fixed k ∈ X define γk by

(γk)i = Ek
τFk −1∑
n=0

I({Xn = i}).

Notation/Reminder:

Vi(n) =
n−1∑
l=0

1{Xl = i} number of visits to i before time n

V k
i = Vi(τ

F
k ) number of visits to i before first return to k

(γk)i = E[V k
i ] mean number of visits to i between successive visits to k

If you think about it, you should be able to see that γk is a vector where, for
i 6= k, the ith element corresponds to the expected number of visits to state i in
between visits to state k. Also, (γk)k = 1. The following theorem says that, when
P is irreducible and recurrent, γk is an invariant measure (i.e., it is invariant, not
all 0s, and has non-negative elements).

Theorem 1.9.5. Let P be irreducible and recurrent. Then,

(i) (γk)k = 1.

(ii) γk satisfies γkP = γk.

(iii) 0 < (γk)i <∞ for all i ∈ X .

Proof. (i) obvious (see Remark).
(ii) For n = 1, 2, . . . the event {τFk ≥ n} only depends on X0, . . . , Xn−1. So by the
strong Markov property we have:

Pk(Xn−1 = i,Xn = j, τFk ≥ n) = Pi,jPk(Xn−1 = i, τFk ≥ n). (1.8)

Since P is recurrent, we have (proof 1.6.6)

Pk(τFk <∞) = 1.
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Moreover with probability 1 it is: XτFk
= X0 = k.

So for all j ∈ X (including j = k):

γkj = E[V k
i ]

= Ek[
τFk∑
n=1

1{Xn = j}]

=
∞∑
n=1

Ek[1{Xn = j}1{τFk ≥ n}]

=
∑
i∈X

∞∑
n=1

Pk(Xn = j,Xn−1 = i, τFk ≥ n)

=
∑
i∈X

∞∑
n=1

Pi,jPk(Xn−1 = i, τFk ≥ n)

=
∑
i∈X

Pi,j

∞∑
m=0

Pk(Xm = i, τFk − 1 ≥ m)

=
∑
i∈X

Pi,jEk[
τFk −1∑
m=0

1{Xm = j}]

=
∑
i∈X

Pi,jγ
k
i ,

where the fourth equality follows by (1.8).
(iii) P is irreducible, so for all i ∈ X there exist m,n ≥ 0 with Pm

i,k > 0 and
P n
k , i > 0. It follows that:

γki ≥ γkkP
n
k,i = P n

k,i > 0

and

γki P
m
i,k ≤ γkk = 1.

The next theorem gives the conditions (irreducibility and recurrence) under
which γk is a unique invariant measure (up to scaling by a constant).

Theorem 1.9.6. Let P be irreducible and λ an invariant measure for P with
(λ)k = 1. Then λ ≥ γk (element-wise). If, in addition, P is recurrent then
λ = γk.
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Proof. For each j ∈ X we have that

λj =
∑
i0∈X

λi0Pi0,j

= Pk,j +
∑
i0 6=k

λi0Pi0,j

= ... = Pk,j +
∑
i0 6=k

Pk,i0Pi0,j + . . .
∑

i0,i1,...,in 6=k

λinPin,in−1 . . . Pi1,i0

≥ Pk(X1 = j, τFk ≥ 1) + Pk(X2 = j, τFk ≥ 2) + . . .+ Pk(Xn = j, τFk ≥ n)

→ Ek[
τFk −1∑
n=0

1{Xn = j}] = γkj .

as n→∞.
So λ ≥ γk (element-wise).
If P is recurrent, then γk is invariant by 1.9.5(ii). So µ = λ− γk is invariant and
µ ≥ 0. Since P is irreducible for arbitrary (fixed) i ∈ X there exists an n ≥ 0
with P n

i,k > 0 and therefore:

0 = λk − γkk = µk =
∑
j∈X

µjP
n
j,k ≥ µiP

n
i,k

which results in µi = 0.

The existence of a unique invariant measure, λ, does not guarantee that
we have a stationary distribution. In order for that to be true, we also need∑

j∈X (λ)j <∞. Then, we can define a stationary distribution by

(π)i =
(λ)i∑
j∈X (λ)j

for all i ∈ X .

In order for this to be true, we need P to satisfy one last condition: positive
recurrence.

Theorem 1.9.7. Let P be irreducible. Then the following are equivalent:

(i) Every state is positive recurrent.

(ii) Some state i ∈ X is positive recurrent.

(iii) P has an invariant distribution π.

Furthermore, (π)i = 1/EiτFi for all i ∈ X .

Proof.

Part 1. It is clear that (i) implies (ii).
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Part 2. Assuming (ii) holds, we have that some i ∈ X is positive recurrent. If i is
positive recurrent then it is recurrent. Thus, P is recurrent (as it is irreducible).
Theorem 1.9.5 then implies that γi is invariant. Thus, if we can show∑

j∈X

(γi)j <∞,

then we have established that P has an invariant distribution. Now, again swap-
ping sums, we have

∑
j∈X

(γi)j =
∑
j∈X

Ei
τFi −1∑
n=0

I({Xn = j})

= Ei
∑
j∈X

∞∑
n=0

I({Xn = j})I({n ≤ τFi })

= Ei
∞∑
n=0

∑
j∈X

I({Xn = j})I({n ≤ τFi })

= Ei
∞∑
n=0

I({n ≤ τFi })

= EiτFi <∞,

where the inequality follows from the fact that i is positive recurrent. Thus, we
have a stationary distribution π defined by

(π)j =
(γi)j∑
k∈X (γi)k

for all j ∈ X ,

so (ii) implies (iii).

Part 3. Assuming (iii) holds, we have an invariant distribution π for P . In
addition, as P is irreducible, for a given k ∈ X we can find an n such that

(π)k =
∑
i∈X

(π)i(P
n)i,k > 0.

So, we know that (π)k > 0 for all k ∈ X . Thus, choosing an arbitrary but fixed
k ∈ X , we can define a measure λ by

(λ)i =
(π)i
(π)k

for all i ∈ X .

We know that λ is invariant because it is a scalar multiple of π (an invariant
measure). In addition, we have (λ)k = 1. So, using Theorem 1.9.6, we have that
λ ≥ γk (element-wise). Thus,∑

i∈X

(γk)i ≤
∑
i∈X

(λ)i =
∑
i∈X

(π)i
(π)k

=
1

(π)k
<∞. (1.9)

As
∑

i∈X (γk)i = EkτFk , this implies EkτFk < ∞. That is, k is positive recurrent.
As k was arbitrary, this implies all states are positive recurrent. That is, (iii)
implies (ii).
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Part 4. As P is recurrent, we have by Theorem 1.9.6 that λ = γk and the
inequality in (1.9) is actually an equality. Thus EkτFk = 1/(π)k.

In summary, if we have an irreducible and positive recurrent P matrix, we have
a unique stationary distribution π.

Example 1.9.8 (Finding the stationary distribution of a chain). Say we have a
Markov chain with the following transition matrix

P =

1/3 2/3 0
0 1/4 3/4

1/3 1/3 1/3

 .

The corresponding transition graph is illustrated in Figure 1.9.1.

1

2

3

1/3

2/3

3/4

1/4

1/3

1/3

1/3

Figure 1.9.1: Transition graph of the Markov chain.

This chain is clearly irreducible and positive recurrent. We can solve for the
stationary distribution by solving πP = π. That is, we have the following three
equations

1/3(π)1 + 1/3(π)3 = (π)1

2/3(π)1 + 1/4(π)2 + 1/3(π)3 = (π)2

3/4(π)2 + 1/3(π)3 = (π)3.

Solving these, we find (π)2 = 16/9(π)1 and (π)3 = 2(π)1. We need (π)1 + (π)2 +
(π)3 = 1, so we choose

(π)1 =
1

1 + 16/9 + 2
=

9

43
.

This gives π = (9/43, 16/43, 18/43).
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1.10 Markov Chains and Reversibility

What happens if instead of thinking about a Markov chain starting at time 0
and running forward, we think about a Markov chain starting at time N and run-
ning backwards? In general, this might not be a Markov chain. However, it turns
out that if we start an irreducible Markov chain from a stationary distribution at
time N , then the reversed process is also a Markov chain.

First, let us think about what the transition probabilities of a Markov chain
running backwards would look like:

P(Xn−1 = in−1 |Xn = in) =
P(Xn−1 = in−1, Xn = in)

P(Xn = in)

=
P(Xn = in |Xn−1 = in−1)P(Xn−1 = in−1)

P(Xn = in)
.

If the Markov chain starts from a stationary distribution π then we have a good
idea what P(Xn = in) and P(Xn−1 = in−1) should look like. This motivates the
following theorem.

Theorem 1.10.1. Let P be irreducible with invariant distribution π Let {Xn}Nn=0

be Markov(π, P ) and set Yn = XN−n. Then {Yn}Nn=0 is Markov (π, P̂ ), where P̂
is given by

(π)j(P̂ )j,i = (π)i(P )i,j for all i, j ∈ X ,

with P̂ irreducible with stationary distribution π. We call {Yn}Nn=0 the time re-
versal of {Xn}Nn=0.

Proof. Note that we have

(P̂ )j,i =
(π)i
(π)j

(P )i,j for all i, j ∈ X ,

and

(P )i,j =
(π)j
(π)i

(P̂ )j,i for all i, j ∈ X ,

Part 1. First, we show P̂ is a stochastic matrix. As it clearly has non-negative
entries, this reduces to showing that its row sums are 1. Observe that, using the
fact that π is invariant for P ,

∑
i∈X

(P̂ )j,i =
1

(π)j

∑
i∈X

(π)i(P )i,j =
1

(π)j
(piP )j =

(π)j
(π)j

= 1.

Part 2. Next, we show π is invariant for P̂ . We have

(πP̂ )i =
∑
j∈X

(π)j(P̂ )j,i =
∑
j∈X

(π)j
(π)i
(π)j

(P )i,j = (π)i
∑
j∈X

(P )i,j = (π)i.
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Part 3. We now need to show {Yn}Nn=0 is Markov(π, P ). We can use Theorem
1.1.11 and the fact that {Xn}Nn=0 is Markov(π, P ) to do this. Observe that, for all
paths with non-zero probability,

P(Y0 = i0, Y1 = i1, . . . , Yn = in)

= P(XN−n = in, . . . , XN−1 = i1, XN = i0)

= (π)in(P )in,in−1 · · · (P )i1,i0

= (π)in
(π)in−1

(π)in
(P̂ )in−1,in · · ·

(π)i0
(π)i1

(P̂ )i0,i1

= (π)i0(P̂ )i0,i1 · · · (P̂ )in−1,in

Part 4. Finally, we need to show that P̂ is irreducible. To do this, for arbitrary
i and j in X we need to be able to find an n and path {i1, . . . , in−1} such that

(P̂ )i,i1 . . . (P̂ )in−2,in−1(P̂ )in−1,j > 0.

We know P is irreducible, so we can find a path from j to i such that

(P )j,in−1(P )in−1,in−2 . . . (P )i1,i > 0.

Writing this in terms of P̂ we have

(π)in−1

(π)j
(P̂ )in−1,j

(π)in−2

(π)in−1

(P̂ )in−2,in−1 . . .
(π)i

(π)i−1

(P̂ )i,i1 > 0,

which implies
(P̂ )i,i1 · · · (P̂ )in−2,in−1(P̂ )in−1,j > 0.

That is, we can find a path with non-zero probability from i to j (so P̂ is irre-
ducible).

We have seen that the transition matrix of the time-reversal of a Markov chain
starting from stationarity is determined by the equations

(π)j(P̂ )j,i = (π)i(P )i,j for all i, j ∈ X .

If P̂ = P (i.e., the reverse chain behaves exactly the same as the chain running
forward) then these equations could be written as

(π)j(P )j,i = (π)i(P )i,j for all i, j ∈ X .

This motivates the following definition.

Definition 1.10.2 (Detailed Balance). A stochastic matrix, P , and a measure,
λ, are said to be in detailed balance if

(λ)j(P )j,i = (λ)i(P )i,j for all i, j ∈ X .
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If we can find a measure, λ such that P and λ satisfy the detailed balance
equations, then the following result shows that this measure will be invariant.

Theorem 1.10.3. If P and λ are in detailed balance then λ is invariant for P .

Proof. We have

(λP )i =
∑
j∈X

(λ)j(P )j,i =
∑
j∈X

(λ)iPi,j = (λ)i.

A Markov chain that, when started from a certain distribution, looks the same
running forwards and backwards is said to be reversible.

Definition 1.10.4 (Reversible Markov chain). A Markov chain {Xn}n∈N with
initial distribution µ and transition matrix P is said to be reversible if {XN−n}Nn=0

is Markov(µ, P ) for all N ≥ 1.

The following theorem summarizes what is (hopefully) already clear: if a
Markov chain and a distribution satisfy the detailed balance equations, then the
Markov chain will be reversible when started from the distribution.

Theorem 1.10.5. Let P be an irreducible stochastic matrix and let µ be a dis-
tribution. Suppose {Xn}n∈N is Markov(µ, P ). Then, the following are equivalent.

(i) {Xn}n∈N is reversible.

(ii) P and π are in detailed balance.

When it is possible, solving the detailed balance equations is often a very nice
way to solve for the stationary distribution of a Markov chain. This can be seen
in the following examples.

Example 1.10.6 (Reflected random walk). Consider a biased random walk on
{0, . . . , N} with state space X = {0, . . . , N} and the following transition proba-
bilities. For all 1 ≤ i ≤ N − 1, we have

P(Xn+1 = j |Xn = i) =


p if j = i+ 1,

q if j = i− 1,

0 otherwise.

For the boundaries, we have

P(Xn+1 = j |Xn = 0) =


p if j = 1,

q if j = 0,

0 otherwise,

and

P(Xn+1 = j |Xn = N) =


p if j = N,

q if j = N − 1,

0 otherwise.
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That is, the walker moves up with probability p, down with probability q. When
it tries to jump below 0 or above N it, instead, stays where it is. We can solve for
the stationary distribution of this process, for arbitrary N by solving the detailed
balance equations. Observe that

(π)i(P )i,j = (π)jPj,i ⇒ (π)ip = (π)i+1q for all 0 ≤ i ≤ N − 1.

That is,

(π)i+1 =
p

q
(π)i for all 0 ≤ i ≤ N − 1.

If p = q then all the elements of π are identically equal to 1/N . Otherwise, assume
without loss of generality (w.l.o.g.) that p < q (just flip things to get the opposite
case). Iterating from i = 1, this gives

(π)i =

(
p

q

)i
(π)0 for all 1 ≤ i ≤ N.

In order for π to be a distribution, we need its elements to sum to 1. That is, we
need

N∑
i=0

(π)i = 1⇒
N∑
i=0

(
p

q

)i
(π)0 = 1⇒ (π)0 =

1∑N
i=0

(
p
q

)i
As p < q we have p/q < 1 and

∑N
i=0(p/q)i is just a geometric series. So, we have

(π)0 =
1− (p/q)

1− (p/q)N+1
.

Example 1.10.7 (Example 1.10.6 with numbers). Consider the simple case of
the reflected random walk described above where N = 2 and p = 1− q = 1/3 (so
p/q = 1/2). We have the following transition matrix

P =

2/3 1/3 0
0 2/3 1/3

1/3 2/3 1/3

 .

The transition graph is given in Figure 1.10.1.

10 22/3

1/3

2/3

1/3

1/3

2/3

Figure 1.10.1: Transition graph of a reflected random walk with N = 2.

According to the result in Example 1.10.6 we have

(π)0 =
1− 1/2

1− (1/2)3
=

1/2

7/8
= 8/14 = 4/7.

Then (π)1 = 1/2(π)1 = (1/2)(4/7) = 2/7 and (π)2 = 1/2(π)2 = 1/7.
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Note that, as we can solve the detailed balance equations, the Markov chain in
Example 1.10.6 is reversible (with respect to the stationary distribution). However,
this does not mean that if we started the chain in state 3 and ran it forward for
10 steps that this would (in a statistical sense) look like the chain started in X10

and run backwards for 10 steps. Reversibility is a property that only makes sense
when things are in stationarity.

Example 1.10.8 (Random walks on graphs). Consider an undirected graph G =
(V,E) with at most one edge between any two vertices. For any two vertices
i, j ∈ V , we will write i ∼ j if (i, j) ∈ E and i 6∼ j if (i, j) /∈ E. Note that we
do not distinguish between the edge (i, j) and the edge (j, i). If i ∼ j, we say j is
a neighbor of i. The number of neighbors of a vertex is its degree. For a vertex
i ∈ V we will write deg(i).

We can define a random walk on a connected graph (one where it is possible to
find a path from any vertex to any other vertex) as follows. The random walker
moves from vertex to vertex. At each time step he or she chooses a neighboring
vertex uniformly at random and moves to it. The probability of choosing a given
one of the neighboring vertices will be 1 divided by the number of neighboring
vertices (i.e., the degree of the current vertex). Thus, the transition probabilities
are as follows:

P(Xn+1 = j |Xn = i) =

{
1

deg(i)
if i ∼ j,

0 otherwise.

If |V | <∞, what is the stationary of such a random walk?
We can use the detailed balance equations to solve for this. For each pair

i, j ∈ V , with i 6= j we have two possible cases. If i 6∼ j we have

(π)i0 = (π)j0,

which trivially holds. If i ∼ j we have

(π)i
1

deg(i)
= (π)j

1

deg(j)
.

This would be satisfied if, for each i ∈ V , (π)i ∝ deg(i). We can check this. In
order for everything to sum to one, we normalize π to get

(π)i =
deg(i)∑
k∈V deg(k)

for all i ∈ V.

Plugging this into the detailed balance equations, we get

deg(i)∑
k∈V deg(k)

· 1

deg(i)
=

deg(j)∑
k∈V deg(k)

· 1

deg(j)
,

which clearly holds.

Example 1.10.9 (Caution: not all Markov chains with stationary distributions
are reversible). It is important to remember that many irreducible and positive
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recurrent Markov chains (i.e., those with unique stationary distributions) are not
reversible. Consider, for example, the Markov chain with transition matrix

P =

 0 2/3 1/3
1/3 0 2/3
2/3 1/3 0


The transition graph is given in Figure 1.10.2.

1

23

1/3

2/3

1/3

2/3

2/3

1/3

Figure 1.10.2: A Markov chain that is not reversible.

The stationary distribution of this chain is π = (1/3, 1/3, 1/3). However,
trying to solve the detailed balance equations we have

(π)1(P )1,2 = (π)2(P )2,1 ⇒ (1/3)(2/3) = (1/3)(2/3),

which is definitely not true! Thus, this Markov chain is not reversible.

Lemma 1.10.10. Let P be the transition matrix of a finite Markov chain and π
the stationary distribution of P . Then the following statements hold:

(i) If λ is an eigenvalue of P then |λ| ≤.

(ii) If P is irreducible, the vectorspace corresponding to the eigenvalue 1 is the
one-dimensional vectorspace generated by the column-vector 1 = (1, . . . , 1)T .

(iii) If P and π are in detailed balance the eigenvalues of P are real-valued.



Chapter 2

Markov Chain Monte Carlo

2.1 Inversion method and motivating example

We will now introduce different procedures that can be used to draw samples of
random objects. For simple discrete distributions we can use the discrete inversion
method (c.f. problem 1-4 for the continuous case):
Let X be a random variable on the countable space X . W.L.O.G. we assume
that X = {1, . . . , K}, K ∈ N, or X = N. We now deduce the method for
X = {1, . . . , K}, K ∈ N (this deduction can easily extended to the case X = N).
Let π define the distribution on X , i. e.

πk = P(X = k) ∀k ∈ X .

Then the distribution function F of X is given by

F (x) =
K∑
k=1

πk1(−∞,x](k) ∀x ∈ R

and for m ∈ X it holds

F (m) =
m∑
k=1

πk.

We now calculate the generalized inverse of F for r ∈ [0, 1]:

F−1(r) = min{x ∈ R : F (x) =
K∑
k=1

πk1(−∞,x](k) ≥ r}

= min{m ∈ X : F (x) =
m∑
k=1

πk ≥ r}.

We now can use a random generator which draws a uniform distributed random
sample and the generalized inverse of F to draw a random sample which has π as
distribution.

Example 2.1.1. We consider a binomial distribution with n = 5 and p = 1
2

and
draw samples using the inversion method. The program code is given by

41
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Listing 2.1: Simulating a binomial distributed variable using the inversion method

1 ### The inversion method

2 ### binomial distribution

3 n=5

4 p0= 1/2

5 lambda = dbinom(0:n, size=n, prob=p0)

6 ### using a while-loop

7 m=0

8 F=0

9 Z=runif(n=1, min=0, max=1)

10 while(F <Z)

11 {

12 m=m+1

13 F=F+lambda[m] ### F is the distribution function F(m)

14 }

15 m

16

17 ### using cumsum

18 m= min(which(Z<=cumsum(lambda)))

19 m

20 plot(pbinom(0:n, size=n, prob=p0))

21 abline(h=Z)

22 abline(v=m)

One of the main things we will focus on in this course is how we go about
producing samples of interesting and complicated random objects. We will
consider many such objects, arising not just in maths but also in physics, computer
science, finance and image processing. Let us start with the following example
problem.

Example 2.1.2 (Coloring the vertices of a graph). Consider a graph G = (V,E)
and fix a set of colors K = {1, . . . , k}. Being curious, we might ask if it possible
to assign one of the colors in K to each vertex in G so that no two neighboring
vertices have the same color. Such a coloring is called a (proper) k-coloring. The
smallest k such that such a coloring is possible is called the chromatic number
of the graph G. Finding this number is a very hard problem (it is NP hard!).
However, it can be shown that it is possible to find a k-coloring for a graph when
k ≥ ∆(G) + 1, where ∆(G) is the maximum degree of a vertex in G. Although
this might seem like an abstract problem, it has lots of real-world applications.
Among other things, we can think of lots of scheduling and timetabling problems
as graph coloring problems. For example, each vertex might be a lecture and edges
between lectures could indicate lectures that cannot take place at the same time.
A coloring would then give a way for the lectures to be scheduled so that there
are no clashes between lectures. Another example of a graph coloring problem is
Sudoku. Suppose we want to generate a k-coloring of a graph at random (such
that, all k-colorings are equally likely). How would we go about doing this?
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2.2 Acceptance-Rejection

Problems like that in Example 2.1.2 arise frequently. We want to generate a
sample uniformly from some (complicated) set Ω or, more generally, draw from a
complicated distribution that we know very little about. Fortunately, there is a
generic method that can produce such samples (called the acceptance-rejection al-
gorithm). Unfortunately, it is not always a very good way to generate complicated
objects.

The setup is as follows. We want to generate samples from a distribution

λ̃ =
λ∑

i∈X (λ)i

on X . We know the denominator,
∑

i∈X (λ)i, is finite but we do not necessarily
know its exact value. That is, we have a finite measure λ but might not be able
to calculate the sum of its components. Now, suppose we can have a method
for drawing from another distribution, µ, on X that satisfies the condition that
(λ)i > 0⇒ (µ)i > 0 for all i ∈ X . We can draw from λ̃ as follows.

Algorithm 2.2.1 (Acceptance-Rejection). Let C ≥ maxi∈X
(λ)i
(µ)i

.

(i) Draw Ỹ ∼ µ.

(ii) Draw U ∼ U(0, 1).

(iii) If U <
(λ)

Ỹ

C(µ)
Ỹ

return Y = Ỹ . Otherwise, repeat from step (i).

Before showing that this algorithm works, lets look at an example to make
sure we understand what it tells us to do.

Example 2.2.1 (Drawing from a distribution using acceptance-rejection). This
example is artificial (we certainly do not need to use acceptance-rejection here)
but illustrates the basic idea. Suppose four horse are running in a race. The
probabilities of the various horses winning are proportional to λ = (4, 3, 2, 1). So,
for example, the probability the first horse wins is given by

(λ)1∑4
i=1(λ)i

=
4

10
=

2

5
.

We can generate samples from λ̃, the normalized version of λ, using, for example,
the distribution µ = (1/4, 1/4, 1/4, 1/4). Observe that, in this case,

C =
4

1/4
= 16,

so
(λ)Ỹ
C(µ)Ỹ

=
(λ)Ỹ

16 · (1/4)
=

(λ)Ỹ
4

.

The following Matlab code implements the acceptance-rejection algorithm, draw-
ing a sample of size N from λ̃ and plotting a histogram of the sample.
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Listing 2.2: Drawing the winning horse using acceptance-rejection

1 N= 10^5

2 Y=c() ### vector to be filled with the sample

3 lambda=c(4, 3, 2, 1)

4 mu= rep(1/4, 4) # we know to sample according to the discrete uniform distribution

5

6 for (i in 1:N)

7 {

8 accept=FALSE

9 while(accept==FALSE)

10 {

11 Y_tilde= sample(x=1:4, size=1, prob=mu) ## step one of algorithm 2.1.1

12 U= runif(1, min=0, max=1) ## step two of algorithm 2.1.1

13 if(U < lambda[Y_tilde]/4)

14 ## check whether U < lambda_(Y_tilde)/(C*mu_(Y_tilde))

15 {

16 accept=TRUE

17 }

18 }

19 Y[i]=Y_tilde ## If accept=TRUE set Y=Y_tilde

20 }

The resulting histogram looks is shown in Figure 2.2.1. Note that the proportions
are correct!

1 2 3 4

Y

Figure 2.2.1: Histogram of the sample of winning horses generated using
acceptance-rejection.

Of course, an example is not enough to prove that the acceptance-rejection
algorithm works. For that, we need the following theorem.

Theorem 2.2.2. Given a finite measure, λ, on X and a distribution, µ, on X
that satisfies the condition (λ)i > 0 ⇒ (µ)i > 0 for all i ∈ X , Algorithm 2.2.1
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produces samples from the distribution

λ̃ =
λ∑

i∈X (λ)i

Proof. To keep things simple, let us assume (µ)i > 0 for all i ∈ X (everything
works anyway, just replace X in the sums with the set on which µ is positive).
Now, in order to prove the theorem, observe that the acceptance-rejection algo-
rithm outputs a random variable, Ỹ , with distribution µ, conditional on the event
{U ≤ (λ)Ỹ /(C(µ)Ỹ )}, where U is uniformly distributed on (0, 1) and independent

of Ỹ . If (λ)i = 0 we clearly have P(Y = i) = 0 = (λ̃)i. Otherwise,

P(Y = i) = P
(
Ỹ = i

∣∣∣∣U ≤ (λ)Ỹ
C(µ)Ỹ

)
=

P
(
Ỹ = i, U ≤ (λ)

Ỹ

C(µ)
Ỹ

)
P
(
U ≤ (λ)

Ỹ

C(µ)
Ỹ

) .

Now, for the numerator, we can write

P
(
Ỹ = i, U ≤

(λ)Ỹ
C(µ)Ỹ

)
= P

(
U ≤

(λ)Ỹ
C(µ)Ỹ

∣∣∣∣ Ỹ = i

)
P
(
Ỹ = i

)
= P

(
U ≤ (λ)i

C(µ)i

)
P
(
Ỹ = i

)
=

(λ)i
C(µ)i

(µ)i =
(λ)i
C

,

where we use the fact that 0 ≤ (λ)i/(C(µ)i) ≤ 1 for all i ∈ X to calculate the
cumulative probability for the uniform random variable. For the denominator,
using the arguments from above, we can write

P
(
U ≤

(λ)Ỹ
C(µ)Ỹ

)
=
∑
j∈X

P
(
U ≤ (λ)j

C(µ)i

)
P
(
Ỹ = j

)
=
∑
j∈X

(λ)j
C(µ)j

(µ)j =

∑
j∈X (λ)j

C
.

Putting everything together, we have

P(Y = i) =
(λ)i∑
j∈X (λ)j

= (λ̃)i.

2.2.1 Sampling uniformly from a complicated set

It is often the case that we want to draw uniformly from some complicated set,
Ω, as in Example 2.1.2. It turns out that we can do this using acceptance-rejection
(though we will also see that it is usually not a very good way to do things).
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The idea is to think of Ω as a subset of a larger set X (with |X | < ∞), from
which it is easy to sample uniformly (Example 2.2.3 gives an example of such a

set). Observe, then, that we want to draw from the distribution λ̃ defined by

(λ̃)i =
I(i ∈ Ω)

|Ω|
for all i ∈ X .

Unfortunately, we usually do not know |Ω|, the number of elements in Ω. However,
we will see this is not a problem for the acceptance-rejection method. We draw
our proposal variable from µ, defined by

(µ)i =
I(i ∈ X )

|X |

Again, it turns out that we will not need to know |X | (though this is usually not
too difficult to calculate). In order to use acceptance-rejection, we need to find

some C ≥ maxi∈X
(λ̃)i
(µ)i

. As λ̃ can only take one non-zero value and µ is constant,
we can choose

C = max
i∈X

(λ̃)i
(µ)i

=
1/|Ω|
1/|X |

=
|X |
|Ω|

.

Of course, we do not know what this is (but we will see it does not matter).

Remember that we only accept a draw, Ỹ , from µ if U <
(λ̃)

Ỹ

C(µ)
Ỹ

. Let us think

about what the term on the right looks like. We have

(λ̃)Ỹ
C(µ)Ỹ

=
I(Ỹ ∈ Ω)/|Ω|
|X |C

=
I(Ỹ ∈ Ω)

|Ω||X | |Ω||X |
= I(Ỹ ∈ Ω).

Thus

P

(
U <

(λ̃)Ỹ
C(µ)Ỹ

)
=

{
1 if Ỹ ∈ Ω,

0 otherwise.

Putting everything together, we have the following, very simple, algorithm for
sampling uniformly from a complicated set.

Algorithm 2.2.2 (Acceptance-Rejection for drawing uniformly from Ω ⊂ X ).
Let µ be the uniform distribution on X .

(i) Draw Ỹ ∼ µ.

(ii) If Ỹ ∈ Ω, return Y = Ỹ . Otherwise, repeat from step (i).

Example 2.2.3 (Sampling random colorings using acceptance-rejection). We are
now in a position to generate the (proper) k-colorings described in Example 2.1.2.
In order to do this, we need a set, X , from which we can easily generate uniform
samples. Denoting the set of all possible k-colorings by Ω, we see that Ω ⊂ X =
{1, . . . , k}|V |. We can draw from X by simply assigning each vertex an independent
random number, drawn uniformly from {1, . . . , k}. We then just need to check if
the coloring we produce is a proper coloring or not.
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More concretely, consider the graph in Figure 2.2.2. We wish to sample uni-
formly from all possible 3-colorings of it. We know it is possible to find at least one
such coloring (consider, for example, the coloring (1, 2, 3, 2)). In order to represent
this graph, we use an adjacency matrix, E, where the entry (E)i,j = 1 if there is
an edge between vertices i and j. The code given below produces uniform samples
as desired.

1 2

34

Figure 2.2.2: The graph we wish to color.

Listing 2.3: Sampling a random k-coloring

1 E=rbind(c(0, 1, 1, 1), c(1,0, 1, 0), c(1, 1, 0, 1), c(1, 0, 1, 0))

2 k=3 ### number of different colors

3 number_of_vertices=4

4 proper_coloring=FALSE

5

6 while(proper_coloring==FALSE)

7 {

8 coloring = sample(1:k, size=number_of_vertices, replace=TRUE, prob=NULL)

9 proper_coloring=TRUE

10 for(i in 1:(number_of_vertices-1)) ### check if adjacency matrix and

11 ### coloring fit

12 {

13 for(j in (i+1):number_of_vertices)

14 {

15 if(E[i,j]==1 & coloring[i]==coloring[j])

16 {

17 proper_coloring=FALSE

18 }

19 }

20 }

21 }

22 coloring

2.2.2 The performance quality of the acceptance-rejection
algorithm

One way to measure the efficiency of the acceptance-rejection algorithm, is to
consider the amount of work we need to do to get a successful draw from the target
distribution, λ and the probability that the algorithm will accept the draw.
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Theorem 2.2.4. Let λ̃ be a distribution, µ be the distribution and C the constant
used in the Acceptance-Rejection algorithm. Let (Zn)n∈N be a sequence of random
variables defined by

Zn =

1 U ≤ λ̃Ỹn
CµỸn

0 otherwise

and T be a random variable with

T = min{n ≥ 1 : Zn = 1}.

Then it holds:

(i) (Zn)n∈N is an i.i.d. sequence with pi = P(Zn = i) = 1
C

.

(ii) E[T ] = C.

(iii) XT ∼ λ̃.

Proof. ad (i) p = P(Zn = 1) = P(Un ≤
λỸn
CµỸn

) = 1/C. Since (Un, Ỹn)n∈N are i.i.d.,

it follows that (Zn)n∈N are i.i.d.
ad (ii) P(T = k) = P(Z1 = 0, . . . , Zk−1 = 0, Zk = 1) = (1− p)k−1p.
Thus, T is geometrically distributed with expected value E[T ] = 1

p
= C.

In the case where we use the uniform distribution on X to draw uniformly
from Ω, we have

P(Accept) =
|Ω|
|X |

.

In situations where we need to use acceptance-rejection, it is often the case that
|Ω| << |X |, so many samples need to be generated before one is accepted. Usually,
it is difficult to know the size of |Ω| (or the optimal value of C) a priori. However,
it might be possible to get bounds on them. In some simple situations, we can
calculate the acceptance probability directly.

Example 2.2.5 (Example 2.2.3 continued). The acceptance probability for the
algorithm in Example 2.2.3 is simply

P(Accept) =
# of 3-colorings of G

|{1, 2, 3}4|
=

6

34
=

6

81
,

where the 3-colorings are (1, 2, 3, 2), (1, 3, 2, 3), (2, 1, 3, 1), (2, 3, 1, 3), (3, 1, 2, 1) and
(3, 2, 1, 2).

The following example helps illustrate a phenomenon called the curse of di-
mensionality, where the efficiency of numerical methods grows small very quickly
as the dimension of the problem gets large.
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Example 2.2.6 (The limitations of acceptance-rejection). Using a continuous
state space version of the acceptance-rejection algorithm, it is possible to generate
samples uniformly from the n-dimensional unit ball. We can do this by drawing
samples uniformly from the n-dimensional box [−1, 1]n and only accepting those
which fall inside the ball. The success probability of this methods is quite high for
low values of n (for n = 2 it is approximately 0.785). However, as n grows larger,
it goes very quickly to zero. Observe that

P(Accept) =
volume of the n-dimensional ball

volume of [−1, 1]n

=
πn/2/Γ(n/2 + 1)

2n
=

(
√
π/2)n

Γ(n/2 + 1)
,

which goes to zero incredibly quickly in n, as the numerator gets smaller as n
increases and the denominator grows very quickly. This gives a simple picture of
what happens when using acceptance-rejection in high dimensions.

2.3 The Metropolis and Metropolis-Hastings Al-

gorithms

2.3.1 The Metropolis algorithm

Instead of sampling ‘blindly’ using acceptance-rejection, we will try to develop
smarter ways to produce samples of complicated objects. Many of these techniques
are based on Markov chains and are known, collectively, as Markov Chain Monte
Carlo (MCMC). In considering Markov chains, we have so far started with a
transition matrix, P , and tried to find a stationary distribution, π. In MCMC
we instead start with a distribution, π, and try to find a transition matrix, P ,
that has π as a stationary distribution. Note that, although a given P often has
a unique stationary distribution, the opposite is not true: there are many choices
of P that will produce a given π.

One way to find a P with stationary distribution π is to find a solution to the
detailed balance equations

(π)i(P )i,j = (π)jPj,i for all i ∈ X .

This is the idea of the Metropolis algorithm.

Algorithm 2.3.1 (Metropolis Algorithm). Given a distribution, π, on X , a sym-
metric |X | × |X | transition matrix, Q, and an initial distribution µ:

(i) Draw X0 ∼ µ. Set n = 0.

(ii) Draw Y ∼ (Q)Xn,·.

(iii) Calculate

α(Xn, Y ) = min

{
1,

(π)Y
(π)Xn

}
.
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(iv) With probability α(Xn, Y ), set Xn+1 = Y . Otherwise, set Xn+1 = Xn.

(v) Set n = n+ 1 and repeat from (ii).

Note that, in order to use the Metropolis algorithm, we do not need to know
the normalizing constant of π = λ/

∑
k∈X (λ)k, because

(π)Y
(π)Xn

=
(λ)Y /

∑
k∈X (λ)

(λ)Xn/
∑

k∈X (λ)
.

So, how do we know the algorithm works? The first thing to do is check the
detailed-balance algorithms are satisfied.

Theorem 2.3.1. The Metropolis algorithm results produces a Markov chain,
{Xn}n∈N, whose transition matrix, P , is in detailed balance with π.

Proof. First, we need to establish what P , the transition matrix of {Xn}n∈N, looks
like. We have that, for all i, j ∈ X ,

(P )i,j =

min
{

1,
(π)j
(π)i

}
(Q)i,j if i 6= j,

1−
∑

j∈X min
{

1,
(π)j
(π)i

}
(Q)i,j if i = j.

(2.1)

In order to see (2.1) let A be the event that we accept in step (iv) of the algorithm.
Let i 6= j, then we have:

P(Xn+1 = j|Xn = i)

= P(Y = j, A|Xn = i)

= P(A|Y = j,Xn = i)P(Y = j|Xn = i)

= min{1, πj
πi
}Qi,j.

Let i = j, then we have:

P(Xn+1 = i|Xn = i)

= P(Y = i, A|Xn = i) + P(Ac|Xn = i)

= min{1, πi
πi
}Qi,i +

∑
j∈X

P(Ac|Y = j,Xn = i)P(Y = j|Xn = i)

= Qi,i +
∑
j 6=i

(1−min{1, πj
πi
})Qi,j

= 1−
∑
j∈X

min{1, πj
πi
}Qi,j.

In order to show P satisfies detailed balance, we consider separate cases. First,
note that if (π)i = 0 or (π)j = 0, the detailed balance equations are trivially
satisfied. Otherwise, we first consider the case where (π)j ≥ (π)i. We then have

(π)i(P )i,j = (π)i min

{
1,

(π)j
(π)i

}
(Q)i,j = (π)i(Q)i,j

= (π)i(Q)j,i
(π)j
(π)j

= (π)j(Q)j,i
(π)i
(π)j

= (π)j min

{
1,

(π)i
(π)j

}
(Q)j,i = (π)j(P )j,i.
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where we use the fact Q is symmetric, so (Q)i,j = (Q)j,i. Alternatively, in the case
where (π)j < (π)i,

(π)i(P )i,j = (π)i min

{
1,

(π)j
(π)i

}
(Q)i,j = (π)i(Q)i,j

(π)j
(π)i

= (π)j(Q)j,i = (π)j min

{
1,

(π)i
(π)j

}
(Q)j,i

= (π)j(P )j,i.

Thus, P and π are in detailed balance for all i, j ∈ X .

Of course, the mere fact that P and π are in detailed balance does not guaran-
tee that π is the unique stationary distribution of P (Markov chains that are not
irreducible can have more than one π that satisfies the detailed balance equations).
However, the following ensures we have a Markov chain with unique stationary
distribution π. Let Ω = {i ∈ X : (π)i > 0}. A Metropolis chain with transition
matrix, P , will have unique stationary distribution π if it satisfies the conditions

(i) Pµ(X0 ∈ Ω) = 1.

(ii) P is irreducible on Ω.

This follows from results we already have.
A more serious issue is how we know that our chain will converge to distribution

π if we do not start with X0 ∼ π. This will be the subject of the next section of
our notes.

Example 2.3.2 (Example 2.2.1 continued.). Let us use the Metropolis algorithm
to sample from the distribution described in Example 2.2.1, which is given by
λ = (4, 3, 2, 1). We use the proposal matrix

Q =


1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4
1/4 1/4 1/4 1/4

 .

This results in a P matrix that is clearly irreducible. We use the initial distribution
µ = δ1 = (1, 0, 0, 0). The Matlab code is as follows.

Listing 2.4: Drawing the winning horse using the Metropolis algorithm

1 N = 10^5;

2 X=c()

3 X[1]=1

4 lambda= c(4, 3, 2, 1)

5 for (i in 2:N)

6 {

7 Y= sample(1:4, size=1, prob=NULL)

8 alpha=lambda[Y]/lambda[X[i-1]]

9 U = runif(1, min=0, max=1)

10 if(U < alpha) # with prob alpha set X[i]=Y
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Figure 2.3.1: Histogram of the sample of winning horses generated using the
Metropolis algorithm.

11 {

12 X[i]=Y

13 }

14 else X[i]=X[i-1]

15 }

16 hist(X, 4)

The resulting histogram is shown in Figure 2.3.1. Note that the proportions seem
to be right!

The above example is quite artificial. It is straightforward to sample the win-
ning horses without using the Metropolis algorithm. However, in the next example,
where we again consider colorings of graphs, it is not clear how to sample using
a simpler method (other than acceptance-rejection, which does not work well for
large numbers of vertices).

Example 2.3.3 (Sampling random colorings using the Metropolis algorithm). We
can come up with some quite clever Markov chains that allow us to sample from
the k-colorings of a graph G = (V,E). We use the following simple (but quite
elegant) approach. Starting from a coloring, we make a new proposal as follows:

(i) Choose a vertex of G uniformly at random.

(ii) Change the value of the current coloring at the vertex by drawing a color
uniformly from {1, . . . , k}.

Remember that we can write the uniform distribution on Ω, the set of proper
k-colorings, in terms of indicator functions, so (π)i = I(i ∈ Ω)/|Ω| for all i ∈ Ω.
Then, given the current value of the Metropolis chain is the coloring x (which
is a proper k-coloring) and we propose the changed coloring y, the acceptance
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probability is given by

α(x, y) = min{1, (π)y
(π)x

} = min

{
1,

I(i ∈ Ω)/|Ω|
1/|Ω|

}
=

{
1 if y ∈ Ω,

0 otherwise.

Note that, if x is a proper coloring, we can check if y is a proper coloring simply
by making sure that the changed color does not cause any clashes.

We also need to check that, provided we start with a proper k-coloring, the
resulting chain is irreducible. This is not, in general, the case. But if we make
sure k ≥ ∆(G) + 2, where ∆(G) is the maximum degree of a vertex in G, the
Metropolis chain will be irreducible on Ω. To see this, observe that the condition
k ≥ ∆(G) + 2 ensures that any vertex can be given at least two colors without
clashing with neighboring vertices. We can then move to any proper coloring as
follows. We first fix one vertex (call it v1). We then ‘flip’ vertices around this
v1 until we can give v1 the color we want. Then holding v1 constant, we choose
another vertex v2 and ‘flip’ colors until we get the one we want. Continuing in
this manner, we can achieve any proper coloring.

Lets consider the concrete example shown in Figure 2.3.2.

1 2

3 4

5

6

Figure 2.3.2: The graph we wish to color.

If we consider 5-colorings of this graph, we are guaranteed the Metropolis chain
will be irreducible. This is because the maximum degree in the graph is 3 and
5 ≥ 3+2. We use the initial coloring (1, 4, 4, 3, 5, 2). The Matlab code for sampling
is as follows.

Listing 2.5: R-code for coloring a graph using the Metropolis algorithm

1 N=10

2 number_of_vertices= 6

3 k= 4

4 E= rbind(c(0, 1, 1, 0, 0, 0),

5 c(1, 0, 0, 1, 1, 0),

6 c(1, 0, 0, 1, 0, 1),



54 CHAPTER 2. MARKOV CHAIN MONTE CARLO

7 c(0, 1, 1, 0, 1, 0),

8 c(0, 1, 0, 1, 0, 1),

9 c(0, 0, 1, 0, 1, 0))

10

11 X=matrix(0, nrow=N, ncol=number_of_vertices)

12 X[1,]=c(1, 4, 4, 3, 1, 2)

13 for(i in 1:(N-1))

14 {

15 random_vertex= sample(1:number_of_vertices, size=1)

16 random_color= sample(1:k, size=1)

17 proper_coloring= TRUE

18 for (j in 1:number_of_vertices)

19 {

20 if(E[random_vertex, j]==1 & X[i, j]==random_color)

21 {

22 proper_coloring=FALSE

23 }

24 }

25 X[i+1, ]=X[i,]

26 if(proper_coloring==TRUE)

27 {

28 X[i+1, random_vertex]= random_color

29 }

30 }

31 X

A nice property of the algorithm we have implemented is that, even if we do not
start with a proper k-coloring, the algorithm will eventually reach one and will
then only produce proper k-colorings.

2.3.2 The Metropolis-Hastings algorithm

The requirement that Q be symmetric in the Metropolis algorithm is a bit
limiting. Fortunately, an extension to the Metropolis algorithm allows us to drop
this assumption.

Algorithm 2.3.2 (Metropolis-Hastings Algorithm). Given a distribution, π, on
X , a (not necessarily symmetric) |X | × |X | transition matrix, Q, and an initial
distribution µ:

(i) Draw X0 ∼ µ. Set n = 0.

(ii) Draw Y ∼ (Q)Xn,·.

(iii) Calculate

α(Xn, Y ) = min

{
1,

(π)Y
(π)Xn

(Q)Y,Xn

(Q)Xn,Y

}
.

(iv) With probability α(Xn, Y ), set Xn+1 = Y . Otherwise, set Xn+1 = Xn.

(v) Set n = n+ 1 and repeat from (ii).
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2.4 Convergence of Markov Chains

We know the Metropolis algorithm (or the Metropolis-Hastings algorithm)
produces a Markov chain, {Xn}n∈N, with a transition matrix, P , that is in detailed
balance with π. This means that, if X0 ∼ π, then Xn ∼ π for all n ≥ 0. We
also know that, defining Ω = {i ∈ X : (π)i > 0}, if P(X0 ∈ Ω) = 1 and P is
irreducible on Ω, then π will be the unique stationary distribution of {Xn}n∈N.
A problem in practice, however, is that we usually do not know how to start the
chain from the initial distribution π (after all, if it was easy to sample from π
we would not be using Markov Chain Monte Carlo). What we need to know is
that Pµ(Xn = i) = (µP n)i → (π)i as n→∞ for distributions, µ, other than the
stationary distribution, π. We will see that this will be true provided the Markov
chain satisfies a number of conditions.

2.4.1 Total variation distance

In order to talk about convergence, we need to be able to measure the distance
between two probability distributions. There are lots of ways to measure such a
distance. The one that will be most useful for us is called total variation distance.

Definition 2.4.1 (Total variation distance). The total variation distance between
two probability distributions, µ and ν, on X is given by

‖µ− ν‖TV = sup
A⊂X
|µ(A)− ν(A)|.

There are lots of equivalent ways to define total variation distance. One of the
most useful is given in the following lemma.

Lemma 2.4.2. For two probability distributions, µ and ν, defined on X , we have

‖µ− ν‖TV =
1

2

∑
i∈X

|(µ)i − (ν)i| =
1

2
‖µ− ν‖1.

Proof. First, define the set B = {i ∈ X : (µ)i ≥ (ν)i}. Let A ⊂ X be an event.
Then,

µ(A)− ν(A) ≤ µ(A ∩B)− ν(A ∩B) ≤ µ(B)− ν(B).

The first inequality is because, by taking the intersection of A with B, we exclude
any state, j ∈ A, such that (µ)j − (ν)j < 0. The second inequality follows
because, by considering all of B rather than just its intersection with A, we are
adding states, k ∈ B \A, such that (µ)k− (ν)k ≥ 0. Using a symmetric argument,
we have

ν(A)− µ(A) ≤ ν(BC)− µ(BC).

Observe, also, that, as µ and ν are probability distributions,

µ(B)− ν(B) = µ(BC)− ν(BC)
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Thus, for all A ⊂ X

|µ(A)− ν(A)| ≤ µ(B)− ν(B) = µ(BC)− ν(BC)

=
1

2

[
µ(B)− ν(B) + µ(BC)− ν(BC)

]
Furthermore, for A = B (or A = BC) we have

|µ(A)− ν(A)| = 1

2

[
µ(B)− ν(B) + µ(BC)− ν(BC)

]
=

1

2

∑
i∈B

[(µ)i − (ν)i] +
∑
i∈BC

[(ν)i − (µ)i]

=
1

2

∑
i∈X

|(µ)i − (ν)i|

As a direct consequence of the proof of Lemma 2.4.2, we have the following
lemma.

Lemma 2.4.3. For two probability distributions, µ and ν, defined on X , we have

‖µ− ν‖TV =
∑

{i∈X :(µ)i≥(ν)i}

[(µ)i − (ν)i].

Now that we have a way to measure the distance between two distributions,
we can be a bit more specific about what type of convergence we want to show.
That is, we wish to show that

lim
n→∞

‖µP n − π‖TV = 0,

for all distributions, µ, on X .

2.4.2 Periodic and aperiodic states

We know that a Markov chain has a unique stationary distribution if it is
irreducible and positive recurrent. In order to show that the distribution of an
irreducible and positive recurrent Markov chain, started from an arbitrary distri-
bution, converges to its stationary distribution, we will need one more assumption.
To see this, consider the following.

Example 2.4.4 (A positive recurrent and irreducible chain that does not converge
for all µ). In Example 1.3.4, we looked at the distribution of a random walk on a
square for a number of initial distributions. In particular, we saw that if X0 ∼ δ0

(i.e., if P(X0 = 0) = 1), that

Xn ∼

{
(1/2, 0, 1/2, 0), if n even,

(0, 1/2, 0, 1/2), if n odd.
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Conversely, for X0 ∼ δ1, we had

Xn ∼

{
(0, 1/2, 0, 1/2, 0), if n even,

(1/2, 0, 1/2, 0), if n odd.

Now, the unique stationary distribution of this chain is

π = (1/4, 1/4, 1/4, 1/4).

For an arbitrary n ≥ 1, however, it is easy to see that

‖δ0P
n − π‖ =

1

2

∑
i∈X

|(δ0P
n)i − (π)i| = 1/2.

The value 1/2 does not depend on n, so the distance between the distribution
of Xn (when X0 = 0) and the stationary distribution does not get any smaller,
no matter how long the chain runs for. In other words, for this chain and initial
distribution, we do not have convergence to the stationary distribution. Thus, in
order to have a situation where convergence to stationarity happens for any initial
distribution, we will need to exclude Markov chains such as the above.

Definition 2.4.5 (Period). The period, d(i), of a state i ∈ X is given by

d(i) = gcd{n ≥ 0 : (P n)i,i > 0},

where gcd is the greatest common divisor.

Thus, for example, if it is only possible to reach a state in multiples of two
steps, we say the state has period 2.

Example 2.4.6. Every state of the chain in Example 2.4.4 has period 2.

Definition 2.4.7 (Aperiodic). A state, i ∈ X , is said to be aperiodic if d(i) = 1.

It would be cumbersome if we would have to check the period of every single
state in a Markov chain. Fortunately, however, this is not the case. This is because
periodicity is a class property (that is, all states in a communicating class have
the same period), as the following theorem makes clear.

Theorem 2.4.8. If i, j ∈ X communicate (i.e., i ↔ j), then they have the same
period (i.e., d(i) = d(j)).

Proof. As i and j communicate, we know there exist M > 0 and N > 0 such that
(PM)i,j > 0 and (PN)j,i > 0. Thus, we know,

(PM+N)i,i ≥ (PM)i,j(P
N)j,i > 0,

We have the inequality because the path that goes from i to j in M steps, then j
to i in N steps, is just one possibility of going from i to i in N + M steps (other
paths might also have non-zero probability). Note that the fact that (PM+N)i,i > 0
implies that d(i) divides M +N . Now, for all k ≥ 0, we have

(PM+k+N)i,i ≥ (PM)i,j(P
k)j,j(P

N)j,i,
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as the path from i to j in M steps, from j back to j in k steps, and from j
to i in N steps is just one way of going from i to i in M + k + N steps (note,
however, that it might have 0 probability). For any k such that (P k)j,j > 0, we
have that (PM+k+N)i,i > 0 as (PM)i,j > 0 and (PN)j,i > 0. Thus, d(i) must
divide M + k + N , which means d(i) must divide k. As this holds for all k such
that (P k)j,j > 0, d(i) divides d(j). Repeating the whole argument in the opposite
direction, we have that d(j) also divides d(i). Thus d(i) = d(j).

Definition 2.4.9. Let P = (Pi,j) a matrix.

(i) P is called non-negative if all entries of P are non-negative.

(ii) A non-negative matrix P is called quasi-positive if there is a natural number
n0 ≥ 1 such that for n ≥ n0 all entries of P n are positive.

A result in number theory is that if a set of natural numbers is closed under
addition and has greatest common divisor 1 then it contains all but a finite number
of natural numbers.

Lemma 2.4.10. Let k = 1, 2, . . . be an arbitrary but fixed natural number. Then
there is a natural number n0 ≥ n such that

{n0, n0 + 1, n0 + 2, . . .} ⊂ {n1k + n2(k + 1) : n1, n2 ∈ N}.

Proof. Let n ≥ k2. Then there exist m, d ≥ 0 such that

n− k2 = mk + d d < k

(euclidean division). Consequently, we can rewrite n by

n = k2 +mk + d = k(k − d+m) + (k + 1)d

which results in the fact that

n ∈ {n1k + n2(k + 1) : n1, n2 ∈ N}

where n0 = k2 is the desired number.

This leads to the following lemma.

Lemma 2.4.11. If P is an irreducible and aperiodic transition matrix if and only
if for arbitrary i, j ∈ X

(P n)i,j > 0,

for all sufficiently large n.

Proof. ⇒ is easy beacuase of the definitions of aperiodicity and irreducibility.
⇐ P is aperiodic and irreducible i.e. for i ∈ X we denote

J(i) = {n ≥ 1|P n
i,i > 0}

with gcd d(i) = 1. With Corollary 1.3.2 we have

Pm+n
i,i ≥ Pm

i,iP
n
i,i
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and consequently if n,m ∈ J(i) it follows that m+ n ∈ J(i).
We now assume that J(i) contains two successive numbers k, k+ 1 (we will prove
this assumption in the end). Then it follows that

n1k + n2(k + 1) ∈ J(i)∀n1, n2 ∈ N

and by 2.4.10 there exists n0 = n0(i) ∈ N such that

{n0, n0 + 1, n0 + 2, . . .} ∈ J(i).

Because of the irreducibility of P we know that for arbitrary j, l ∈ X there exist
m, r ∈ N such that

P
m+n0(i)+r
j,l ≥ Pm

j,iP
n0(i)
i,i P r

i,l > 0

⇒ P
m+n0(i)+1+r
j,l ≥ Pm

j,iP
n0(i)+1
i,i P r

i,l > 0

With n(jl) = m+ n0(i) + 1 + r it follows

{n(jl), n(jl) + 1, . . .} ∈ J(jl) = {n ≥ 1|P n
j,l > 0}.

Since this was shown for arbitrary j, l and i we get that P is quasi positive.
Now we prove the assumption. Therefore assume that J(i) does not contain two
successive numbers and all elements of J(i) have a minimal distance d ≥ 2, i.e.:

n, n+ d ∈ J(i) gcd(i) = 1.

Then d does not divide n otherwise it would exist m ∈ N∪{0} with n = md which
would result in gcd(i) = d > 1 and which is a contradiction to the fact that P is
aperiodic. Consequently there exist m ∈ N ∪ {0} amd k = 1, . . . , d− 1 such that

n = md+ k.

Moreover, we get by Corollary 1.3.2 that a(n + d), (b + 1)n ∈ J(i) for arbitrary
a, b ∈ N.
We now prove: There exist a, b ∈ N such that the difference between the resulting
elements is less than d which is a contradiction to the assumption that the minimal
distance between two elements of J(i) is greater or equal to d.

a(n+ d)− (b+ 1)n

= a(n+ d)− n− bn
= (a− b)n+ ad−md− k
= (a− b)n+ (a−m)d− k
= d− k < d

where we choose a = b = m+ 1 in the last equality.

The class of Markov chains which are irreducible, positive recurrent and ape-
riodic are the nicest to work with. We call them ergodic.

Definition 2.4.12. A transition matrix, P , is called ergodic if it is aperiodic,
positive recurrent and irreducible.
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2.4.3 Coupling

In general it is a bit tricky to talk about the distance between two arbitrary
distributions (given we know almost nothing about them). However, there are a
number of very useful tools that allow us to bound (and in some cases calculate
exactly) total variation distance. One of the most beautiful is the use of coupling
method.

Definition 2.4.13 (Coupling). A coupling of two distributions, µ and ν, on X is
a pair of random variables, (X, Y ), defined on a common probability space such
that the marginal distribution of X is µ (i.e., P(X = i) = (µ)i) and the marginal
distribution of Y is ν (i.e., P(Y = j) = (ν)j).

In other words, we can think of the coupling as a joint distribution on X ×X
with marginal distributions µ and ν.

Example 2.4.14 (Coupling two Bernoulli distributions). Consider X = {0, 1}
with µ = (1/2, 1/2) and ν = (1/2, 1/2). We can couple µ and ν in a number of
ways:

(i) Take X and Y to be independent Ber(1/2) random variables. Then

P(X = i, Y = j) = 1/4 for all i, j ∈ {0, 1}.

We have P(X = i) =
∑

j∈{0,1} 1/4 = 1/2 = (µ)i and P(Y = j) = (ν)j.

(ii) Take X to be Ber(1/2) and set Y = X. Then, clearly, P(X = i) = (µ)i and
P(Y = j) = (ν)j. But now

P(X = i, Y = j) =


1/2 if i = j = 1,

1/2 if i = j = 0,

0 otherwise.

(iii) Take X to be Ber(1/2) and set Y = 1−X. Then, clearly, P(X = i) = (µ)i
and P(Y = j) = (ν)j. But now

P(X = i, Y = j) =


1/2 if i = 1, j = 0,

1/2 if i = 0, j = 1,

0 otherwise.

Couplings will be very useful to us because they give us a way to bound total
variation distance. This is a result of the following theorem.

Theorem 2.4.15. Let µ and ν be two probability measures on X . Then,

‖µ− ν‖TV = inf{P(X 6= Y ) : (X, Y ) is a coupling of µ and ν}.
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Proof. For any coupling, (X, Y ), of µ and ν, and any event A ⊂ X , we have

µ(A)− ν(A) = P(X ∈ A)− P(Y ∈ A)

= P(X ∈ A, Y /∈ A)− P(X /∈ A, Y ∈ A)

≤ P(X ∈ A, Y /∈ A)

≤ P(X 6= Y ).

So

‖µ− ν‖TV ≤ inf{P(X 6= Y ) : (X, Y ) is a coupling of µ and ν}.

In order to show the inequality, we explicitly construct a coupling such that P(X 6=
Y ) = ‖µ− ν‖TV. Now, define

p =
∑
i∈X

min{(µ)i, (ν)i}.

Observe that

p =
∑

{i∈X :(µ)i≤(ν)i}

(µ)i +
∑

{i∈X :(µ)i>(ν)i}

(ν)i

=
∑

{i∈X :(µ)i≤(ν)i}

(µ)i +
∑

{i∈X :(µ)i>(ν)i}

(ν)i +
∑

{i∈X :(µ)i>(ν)i}

(µ)i −
∑

{i∈X :(µ)i>(ν)i}

(µ)i

= 1 +
∑

{i∈X :(µ)i>(ν)i}

[(µ)i − (ν)i] = 1− ‖µ− ν‖TV.

We then construct the coupling as follows:

(i) Draw C ∼ Ber(p).

(ii) If C = 1, draw Z ∼ λ, where

(λ)i =
min{(µ)i, (ν)i}

p
for all i ∈ X .

Set X = Y = Z. (Note that λ is a distribution because it is normalized by
p).

(iii) If C = 0 draw X from λX , where

(λX)i =

{
(µ)i−(ν)i
‖µ−ν‖TV

if (µ)i > (ν)i,

0 otherwise,

and Y from λY , where

(λY )i =

{
(ν)i−(µ)i
‖ν−µ‖TV

if (ν)i > (µ)i,

0 otherwise.
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It is easy to check that if X and Y are generated in this way, they have the correct
marginals. For X, we have

P(X = i) = p
min{(µ)i, (ν)i}

p
+ (1− p)(µ)i − (ν)i

‖µ− ν‖TV
I ((µ)i > (ν)i)

= min{(µ)i, (ν)i}+ [(µ)i > (ν)i] I ((µ)i > (ν)i) = (µ)i.

A similar proof shows P(Y = j) = (ν)j. It is clear that if C = 1 then P(X = Y ) =
1. If C = 0, P(X = Y ) = 0 (because the distributions λX and λY are positive on
disjoint sets). Thus,

P(X 6= Y ) = P(C = 0) = 1− p = ‖µ− ν‖TV.

Example 2.4.16 (A coupling that gives the total variation distance). Let X =
{1, 2} and consider the distributions µ = (1/4, 3/4) and ν = (1/2, 1/2). It is easy
to check that ‖µ− ν‖TV = 1/4. Thus p = 3/4. We can construct the coupling as
follows.

(i) Draw C ∼ Ber(3/4).

(ii) If C = 1, set X = Y = Z, where

P(Z = k) =

{
1/3 if k = 1,

2/3 if k = 2.

(iii) If C = 0, set X = 2 and Y = 1.

If it easy to check the marginals are correct. For example

P(X = i) =

{
p · 1/3 = 3/4 · 1/3 = 1/4 if i = 1,

p · 2/3 + (1− p) = 3/4 · 2/3 + 1/4 = 3/4 if i = 2.

It is also clear (by construction) that P(X 6= Y ) = 1− 3/4 = ‖µ− ν‖TV.

Although this version of total variation distance might seem very abstract it
is actually extremely useful. This is because we usually just need to get an upper
bound on total variation distance rather than to calculate it exactly. This means
we just need to find a coupling that is ‘good enough’ (not the one that achieves
the infimum).

Example 2.4.17. Consider the two distributions in Example 2.4.14. These two
distributions are identical, so the total variation distance is clearly 0. We have
three possible bounds, which come from the choice of the different bounds. Using
(i), we get an upper bound of ‖µ−ν‖TV ≤ 1/2. Using (ii), we get an upper bound
of ‖µ− ν‖TV ≤ 0. Using (iii), we get an upper bound of ‖µ− ν‖TV ≤ 1. Clearly,
the bound from (ii) is the best possible (as the total variation distance cannot be
negative).
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2.4.4 Coupling Markov chains

We can extend the very simple idea of coupling to stochastic processes in
general. In particular, we can couple Markov chains. In doing this, we will usually
think of two Markov chains with the same transition matrix, P , but different
initial distributions. More precisely, we will consider the Markov chain {Xµ

n }n∈N,
which is Markov (µ, P ), and the Markov chain {Xν

n}n∈N, which is Markov (ν, P ).
In order to couple these chains, we define a process, {(Xµ

n , X
ν
n )}n∈N, taking

values in the space X ×X that satisfies the following: if we look at the first coor-
dinate of this process, it behaves like {Xµ

n }n∈N; if we look at the second coordinate,
it behaves like {Xν

n}n∈N. The next two couplings are canonical examples.

Example 2.4.18 (Independent Coupling). In this coupling, Xν
n ) and {Xµ

n }n∈N
are allowed to run independently of one another on the same probability space.
To do this, we define a Markov chain, {Yn}n∈N, on X ×X . Its initial distribution,
γ, is given by (γ)i,j = (µ)i(ν)j for all (i, j) ∈ X × X . Its transition matrix is
given by Q, where

(Q)(i,j),(k,l) = (P )(i,k)(P )(j,l) for all i, j, k, l ∈ X .

Example 2.4.19 (The Random Mapping Coupling). Another way to couple two
chains is to use their random mapping representations. Recall from Section ??
that a Markov chain with transition matrix P and initial distribution µ can be
constructed by first drawing X0 ∼ µ and then defining the subsequent values by

Xn+1 = f(Xn, Zn) for all n ≥ 1,

where {Zn}n∈N is a sequence of iid random variables and f : X×Λ→ X (remember
these need to be chosen so that P(f(i, Z) = j) = (P )i,j for all i, j ∈ X ). We
construct {Xµ

n }n∈N by drawing Xµ ∼ µ and setting

Xµ
n+1 = f(Xµ

n , Zn) for all n ≥ 1,

Likewise, we draw Xν ∼ ν and set

Xν
n+1 = f(Xν

n , Zn) for all n ≥ 1.

Note that we use the same function, f , and same sequence of iid random variables,
{Zn}n∈N, in both constructions. An important feature of this coupling is that if
the two chains meet, they will then always move together afterward.

In fact, taking advantage of the strong Markov property, we can always modify
a coupling so that once two chains meet they always run together: we run the
chains using the original coupling until they meet, then use the random mapping
coupling.

Definition 2.4.20. Given a coupling of {Xµ
n }n∈N and Xν ∼ ν such that Xµ

n = Xν
n

for all n ≥ m, where m is the first time the chains meet, we define the coupling
time by

τcouple = inf{n : Xµ
n = Xν

n},
where, as usual, we take inf{∅} =∞.
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Using the coupling time, we can bound the total variation distance between
the distribution of Xµ

n and Xν
n by a function of n.

Theorem 2.4.21. Given a coupling of {Xµ
n }n∈N and {Xν

n}n∈N such that Xµ
n = Xν

n

for all n ≥ m, where m is the first time the chains meet, it holds that

‖µP n − νP n‖TV ≤ P(τcouple > n).

Proof. We know that (νP n)i = P(Xµ
n = i) and (νP n)j = P(Xν

n = j), so (Xµ
n , X

ν
n )

is a coupling of µP n and νP n. Thus, by Theorem 2.4.15, we have

‖µP n − νP n‖TV ≤ P(Xµ
n 6= Xν

n ).

The proof is thus complete as, by construction, P(Xµ
n 6= Xν

n ) = P(τcouple > n).

Now that we have these tools, there is a clear method by which we can show
the convergence theorem (which is our final goal):

(i) Construct a coupling of {Xµ
n }n∈N and {Xν

n}n∈N.

(ii) Show P(τcouple <∞) = 1 (in other words, P(τcouple > n)→ 0.

Theorem 2.4.22 (Convergence to Equilibrium). Let P be an ergodic transition
matrix on X . For all probability distributions, µ and ν, on X

lim
n→∞

‖µP n − νP n‖TV = 0.

In particular, choosing ν = π, where π is the stationary distribution, we have

lim
n→∞

‖µP n − π‖TV = 0.

Proof. We couple {Xµ
n }n∈N and {Xν

n}n∈N by using the independent coupling until
they meet, then using the random mapping coupling. Thus, in order to show the
proof, we simply need to show that P(τcouple <∞) = 1.

Recall that we can think of the independent coupling as a Markov chain,
{Yn}n∈N, on the state space X × X , with transition matrix

(Q)(i,j),(k,l) = (P )(i,k)(P )(j,l) for all i, j, k, l ∈ X

and initial distribution given by (γ)i,j = (µ)i(ν)j for all (i, j) ∈ X × X . The two
chains, {Xµ

n }n∈N and {Xν
n}n∈N, will meet when {Yn}n∈N enters the diagonal set

D = {(i, i) : i ∈ X}. Thus, we simply need to show the first passage time into D
is almost surely finite.

Now, because P is aperiodic, we can find an n such that (P n)i,k > 0 and
(P n)j,l > 0 and, thus, (Qn)(i,j),(k,l) > 0 for any i, j, k, l ∈ X . This means that
Q is irreducible. In addition, Q has a stationary distribution given by (π̃)(i,j) =
(π)i(π)j. By Theorem 1.9.7, this implies that Q is positive recurrent (and, thus,
recurrent). By Theorem 1.6.6, this implies that P(τFi,j < ∞) = 1 for all (i, j) ∈
X × X (and, in particular, for all (i, i) ∈ D. Thus P(τFD <∞) = 1, which implies
P(τcouple <∞) = 1. Thus

lim
n→∞

‖µP n − νP n‖TV ≤ P(τcouple > n)→ 0.
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Example 2.4.23 (Why the proof does not hold for periodic chains). In under-
standing why the proof works, it is helpful to consider why it does not work when
we drop the assumption of aperiodicity. Consider, again, the random walk on
the corners of the square introduced in Example 1.1.3. We saw that this chain is
periodic with period 2. Now think about what happens if {Xµ

n }n∈N states in state
0 and {Xν

n}n∈N starts in state 1. They never meet!!! Thus, P(τcouple <∞) < 1, so
it is not true that P(τcouple > n)→ 0.

2.5 The Ergodic Theorem

In the exercises, you have used sample averages to estimate expected values
on a number of occasions. When the random variables being considered are iid,
this is justified by the Strong Law of Large Numbers (Theorem ??). However,
when dealing with Markov chains, the strong law of large numbers does not apply.
This is because the random variables are no longer independent or identically
distributed. Fortunately, there is a version of the SLLN for Markov chains. This
is called the ergodic theorem. In order to introduce this theorem, we need the
following definition.

Definition 2.5.1. We denote by Vi(n) the number of visits to i ∈ X before time
n. That is,

Vi(n) =
n−1∑
k=0

I(Xk = i).

We denote by τ
(n)
i the n-th passage time to i. It is τ

(0)
i = 0 and τFi = τ

(1)
i and

τ
(n+1)
i = inf{n > τ

(n)
i : Xn = i}.

We denote by S
(n)
i the length of the n-th excursion to i:

S
(n)
i =

{
τ

(n)
i − τ

(n−1)
i τ (n−1) <∞

0 otherwise
.

Lemma 2.5.2. For n = 2, 3, . . . conditionally on τ
(n−1)
i <∞, S

(n)
i is independent

of {Xm : m ≤ τ
(n−1)
i } and it holds:

P(S
(n)
i = r|τ (n−1)

i <∞) = P(τFi = r|X0 = i)

and therefore
E[S

(n)
i |X0 = i] = E[τFi |X0 = i] = mi.

Proof. Apply the Strong Markov property for the stopping time τ = τ
(n−1)
i .

It is Xτ = i for τ < ∞ and consequently is (Xτ+m)m∈N Mar(δi, P ) and indepen-
dent of X0, . . . , Xτ .
Moreover, S

(n)
i can be rewritten by

S
(n)
i = inf{m ≥ 1|Xτ+m = i}

so that S
(n)
i is the first passage time of (Xτ+m)m∈N to state i. The fact follows by

the fact that the considered Markvo chains are homogeneous.
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n

X
n

τ(0) τ(1) τ(2) τ(3) τ(4) τ(5)

1
2

3
4

S(1) S(2) S(3) S(4) S(5)

Figure 2.5.1: Illustration of terms defined in Definition 2.5.1 for n = 15 i = 2 and
V2(n) = 6.

Theorem 2.5.3 (Ergodic Theorem). Let P be irreducible and µ be an arbitrary
distribution. Then, if {Xn}n∈N is Markov(µ, P ),

P
(
Vi(n)

n
→ 1

mi

as n→∞
)

= 1,

where i ∈ X and mi = EiτFi . If P is also positive recurrent with stationary
distribution ~π, then, for any bounded function f : X → R,

P

(
1

n

n−1∑
k=0

f(Xk)→ f̄ as n→∞

)
= 1,

where f̄ =
∑

i∈X f(i)(π)i.

Vi(n)/n is the proportion of time spent in i before time n.

Proof.

Part 1. P is either transient or recurrent. If P is transient, then the number of
visits to i is (by the definition of transience) almost surely finite. So,

Vi(n)

n
→ 0 =

1

mi

.

Suppose, then, that P is recurrent. Then, by the strong Markov property, {XτFi +n}n∈N
is Markov(δi, P ) and independent of X0, . . . , XτFi

. Furthermore, the asymptotic
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proportion of time spent in i is the same for {Xn}n∈N and {XτFi +n}n∈N, so we
can assume (without altering our statements about asymptotic proportions) that
µ = δi.

Now, let τ
(n)
i be the time of the nth passage into i. That is, we define τ

(0)
i = 0

and τ (n+1) = inf{n > τ
(n)
i : Xn = i} for all n ≥ 0. Then define Si(n) to be the

length of the nth excursion to i. That is,

S
(n)
i =

{
τ

(n)
i − τ

(n−1)
i if τn−1

i <∞,
0 otherwise.

We then have the following inequalities (draw a picture to help understand
them)

S
(1)
i + · · ·+ S

(Vi(n)−1)
i ≤ n− 1,

and

S
(1)
i + · · ·+ S

(Vi(n))
i ≥ n.

So,

S
(1)
i + · · ·+ S

(Vi(n)−1)
i

Vi(n)
≤ n

Vi(n)
≤ S

(1)
i + · · ·+ S

(Vi(n))
i

Vi(n)
. (2.2)

Now, by the strong Markov property, the {Si(n)}n≥1 is clearly an iid sequence.
Thus, by the SLLN,

P

(
S

(1)
i + · · ·+ S

(n)
i

n
→ mi as n→∞

)
= 1,

as ES(1)
i = mi. As P is recurrent,

P(Vi(n)→∞ as n→∞) = 1.

So,

S
(1)
i + · · ·+ S

(Vi(n))
i

Vi(n)
→ mi

almost surely, and

S
(1)
i + · · ·+ S

(Vi(n)−1)
i

Vi(n)
=
S

(1)
i + · · ·+ S

(Vi(n))
i

Vi(n)
− S

Vi(n)
i

Vi(n)
→ mi

almost surely. Thus, using the squeeze theorem in (2.2), we have

n

Vi(n)
→ mi

almost surely, which implies
Vi(n)

n
→ 1

mi

almost surely.
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Part 2. As P is assumed to be irreducible and positive recurrent, we know P has
a unique stationary distribution π. To simplify things, we assume without loss of
generality that |f | < 1. Now, for any J ⊆ X , we have∣∣∣∣∣ 1n

n−1∑
k=0

f(Xk)− f̄

∣∣∣∣∣ =

∣∣∣∣∣∑
i∈X

(
Vi(n)

n
− (π)i

)
f(i)

∣∣∣∣∣
≤
∑
i∈X

∣∣∣∣Vi(n)

n
− (π)i

∣∣∣∣
≤
∑
i∈J

∣∣∣∣Vi(n)

n
− (π)i

∣∣∣∣+
∑
i∈X\J

∣∣∣∣Vi(n)

n
− (π)i

∣∣∣∣
≤
∑
i∈J

∣∣∣∣Vi(n)

n
− (π)i

∣∣∣∣+
∑
i∈X\J

(
Vi(n)

n
+ (π)i

)

≤ 2
∑
i∈J

∣∣∣∣Vi(n)

n
− (π)i

∣∣∣∣+ 2
∑
i∈X\J

(π)i,

Given ε > 0, we can choose J finite so that∑
i∈X\J

(π)i <
ε

4
.

We know that Vi(n)/n → 1/mi = (π)i almost surely for any i ∈ X . Thus, for a
given i ∈ J , we can almost surely find an Ni (which is random) so that, for all
n ≥ Ni, ∣∣∣∣Vi(n)

n
− (π)i

∣∣∣∣ < ε

4|J |
.

Choosing N = maxi∈J Ni, we have∑
i∈J

∣∣∣∣Vi(n)

n
− (π)i

∣∣∣∣ < ε

4
.

for all n ≥ N . Thus, for any ε > 0, there almost surely exists N and J such that∣∣∣∣∣ 1n
n−1∑
k=0

f(Xk)− f̄

∣∣∣∣∣ < ε.

The ergodic theorem is very important for us. In particular, it shows that if
we have a Markov chain {Xn}n∈N with stationary distribution π, then

1

n

n−1∑
k=0

f(Xk)

is a consistent estimator of Ef(X), where X ∼ π. However, it is very important
to note that the Ergodic theorem is an asymptotic theorem — as the sample
size increases to infinity, everything will work well, but for finite sampling sizes
estimators might still not be very accurate.
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Example 2.5.4 (Estimators behaving badly). Consider the Markov chain illus-
trated in Figure 4.0.1.

1

2 3

4

5

1

0.9999

0.0001

0.499999

0.5

0.000001

1

0.5

0.5

Figure 2.5.2: The transition graph of the Markov chain.

Let f(·) = I(· ∈ {3, 4, 5}) and suppose that we want to estimate

f̄ = Ef(X) = P(X ∈ {3, 4, 5}),

where X ∼ π with π the stationary distribution of the chain. Using the ergodic
theorem, we know that

f̂ =
1

n

n−1∑
k=0

I(Xk ∈ {3, 4, 5})

is a consistent estimator of f̄ . Thus, we can estimate f̄ using the following code.

Listing 2.6: Estimating f̄

1 n= 10^6

2 rho=0.1 # for burn-in

3 X=rep(0, n)

4 f= rep(0, n)

5

6 P=rbind(c(0,1,0,0,0),

7 c(0.9999,0,0.0001,0,0),

8 c(0,0.000001,0,0.499999,0.5),

9 c(0,0,0,0,1),

10 c(0,0,0.5,0.5,0))

11 X0= 3 # starting point of markov chain

12 X=c() # store values of markov chain

13 f= c()# store the values of f evaluated in components of X

14 Z=runif(1, min=0, max=1)

15 X[1]=min(which(Z<=cumsum(P[X0,]) ))

16 f[1]= (X[1]==3) + (X[1]==4) + (X[1]==5)

17 for(i in 1:(n-1))

18 {

19 Z=runif(1, min=0, max=1)

20 X[i+1]=min(which(Z<=cumsum(P[X[i],]) ))

21 f[i+1]= (X[i+1]==3) + (X[i+1]==4) + (X[i+1]==5)
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22 }

23 mean(f)

24 mean(f[(rho*n):n]) # burn in estimator

25 i

The stationary distribution of the Markov chain is given by

π ≈ (0.0028, 0.0028, 0.2841, 0.1420, 0.5682),

so we know f̄ ≈ 0.9943. However, starting the chain with X0 = 1, I got an
estimate of f̂ = 0 using a sample of size n = 103. For n = 105, I got an estimate of
f̂ = 0.72 and, for n = 106, I got f̂ = 0.9758. In contrast, for X0 = 3, an estimate
of f̂ = 1 was obtained using a sample size of n = 106. Note that none of these
estimators are even remotely accurate.

The reason why the estimator does not work well is that the Markov chain
simply does not move around enough. If it starts in {1, 2}, it takes a long time on
average before it reaches {3, 4, 5}. If it starts in {3, 4, 5}, it takes an even longer
time on average before it moves to {1, 2}. As a result, the chain takes too long to
sample enough values from both parts of the state space.

Situations where a Markov chain spends too much time sampling from one
high probability region of a state space (at the expense of other high probability
regions) often occur in MCMC sampling. We will discuss a number of methods
for avoiding such situations in Section 4.



Chapter 3

Markov and Gibb’s Random
Fields

3.1 Markov Random Fields

Markov chains (and stochastic processes in general) are, in some sense, just a
collection of ordered random variables. In this chapter, we think about extending
the idea of random variables arranged on a line to random variables arranged spa-
tially. Such arrangements of random variables are called random fields. To remove
a lot of technical difficulties, we will only consider special cases of random fields:
those with a finite number of random variables, which each take only countable
values.

Definition 3.1.1 ((Discrete) Random Field). Let S be a finite set and Λ be a
countable set (called the phase space). A random field on S with phases in Λ is
a collection of random variables X = {Xs}s∈S, indexed by S and taking values in
Λ.

Alternatively (and often usefully) we can think of such a random field as a
random variable taking values in the configuration space ΛS.

Example 3.1.2 (Temperature in Germany). Suppose we want to model the max-
imum temperature in a number of southern German cities on a given day. We
measure only the number of degrees (Celsius), so the temperature in a given city
is a discrete random variable taking values in Λ = {−50,−49, . . . , 60} (hopefully,
we do not see temperature outside this range!). The set S is here given by, say,

S = {Stuttgart, Ulm, Freiburg, Memmingen, Augsburg, Munich, Nuremberg}
= {1, 2, . . . , 7},

where we label everything with numbers to simplify notation. The temperatures
are then given by seven random variables, X1, . . . , X7. Now, clearly, the tem-
perature in Ulm, X2, is related to the temperatures of nearby cities. However,
this relationship cannot be modeled by arranging the random variables on a line.
Instead, we need spatial structure and thus model things using a random field.

It is often convenient to consider only a subset, A ⊂ S, of the random variables
in the random field.

71
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Definition 3.1.3 (Restriction of X to A). For A ⊂ S, we define

XA = {Xs}s∈A

to be the restriction of X to A.

As was the case with stochastic processes, we need some form of structure in
order to carry out mathematical analysis of random fields. In particular, we will
consider random fields with a spatial analogue of the Markov property. In order
to define this property, we need to clarify the notion of conditional independence.

Definition 3.1.4 (Conditional Independence). Given events A,B and C, we say
that A and B are conditionally independent given C if

P(A ∩B |C) = P(A |C)P(B |C),

or, equivalently,

P(A |B,C) = P(A |C).

Example 3.1.5. Consider a Markov chain {Xn}n∈N. Then, by the Markov prop-
erty, XN+1 is conditionally independent of {Xn}N−1

n=0 given XN .

In the spatial context, we will define an analogue of the Markov property by
considering random fields where the component random variables are condition-
ally independent of the Markov random field given the values of nearby random
variables. In order to be clear what we mean by nearby random variables, we
define a neighborhood system on S.

Definition 3.1.6. A neighborhood system on S is a family N = {Ns}s∈S of
subsets of S such that

(i) s /∈ Ns for all s ∈ S,

(ii) t ∈ Ns ⇒ s ∈ Nt for all s, t ∈ S.

We can represent the tuple (S,N ) using an undirected graph, G = (V,E),
where V = S and edges are placed between all pairs s, t ∈ S such that t ∈ Ns.

Example 3.1.7 (Example 3.1.2 cont.). When considering temperatures in south-
ern German cities, it makes sense to define a neighborhood system based on geog-
raphy. We do this by drawing a graph (here this is easier than trying to specify the
neighborhood system directly). Figure 3.1.1 shows one such neighborhood system
for the cities in southern Germany.
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Stuttgart

Ulm

Freiburg

Memmingen

Augsburg Munich

Nuremberg

Figure 3.1.1: Graph showing a neighborhood system for a random field describing
the maximum temperature in southern German cities.

Often, instead of thinking in the abstract terms of a neighborhood system, we
will simply think of the equivalent graph. Using the neighborhood system, we can
be precise about what we mean by a spatial Markov property.

Definition 3.1.8 (Markov Random Field). A random field, X, is a Markov ran-
dom field (MRF) with respect to the neighborhood system N if Xs and XS\(Ns∪{s})
are conditionally independent given XNs . That is, for all s ∈ S,

P(Xs = xs |XS\{s} = xS\{s}) = P(Xs = xs |XNs = xNs).

Example 3.1.9 (Example 3.1.2 cont.). Let us treat the temperatures in the Ger-
man cities as an MRF. Then, for example, we see that the temperature in Ulm is
conditionally independent of the temperature in Munich given the temperatures
in Stuttgart, Freiburg, Memmingen and Augsburg. Suppose we did not know the
temperature in Ulm, but we did know the temperatures in the other six cities. If
the temperatures form an MRF, then all the information about the temperature
in Ulm is encapsulated in the temperatures in Stuttgart, Freiburg, Memmingen
and Augsburg. The temperatures in Munich and Nuremberg do not give us any
additional information. In other words, if we know the temperature in a ‘neigh-
borhood’ of Ulm, then we do not need to know the temperatures further away.

When talking about random fields, we consider a number of different distribu-
tions.

Definition 3.1.10. Consider a random field X = {Xs}s∈S and enumerate S so
that S = {1, . . . , K}. We then consider the distribution of the whole field (the
joint distribution)

π(x) = P(X1 = x1, . . . , XK = xK),
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this is (equivalently) the distribution of the random variable X taking values in
ΛS. Note the notation is a little strange here: the x is actually a vector of the form
x = (x1, . . . , xK). We also consider the marginal distributions of the components
of X. For these, we write

πs(xs) = P(Xs = xs).

Lastly, we consider the conditional distributions of the form

πLs (xs |xS\{s}) = P(Xs = xs |X1 = x1, . . . , Xs−1 = xs−1, Xs+1 = xs+1, . . . , XK = xK),

In the case of the MRFs, the conditional distributions have a particular im-
portance. This is because, for an MRF

πLs (xs |xS\{s}) = P(Xs = xs |X1 = x1, . . . , Xs−1 = xs−1, Xs+1 = xs+1, . . . , XK = xK)

= P(Xs = xs |XNs = xNs).

Definition 3.1.11. Given an MRF on S, πLs (xs |XS\s) is called the local charac-
teristic of the MRF at site s. The family of local characteristics, {πLs }s∈S is called
the local specification of the MRF.

As we will see later, the local specification will give us a powerful method for
simulating MRFs. This is based on the fact that, under a technical condition,
the local specification of an MRF completely determines its distribution, π. To
show this, we essentially just need to show that if we know P(X = x |Y = y) and
P(Y = y |X = x), we can work out P(X = x, Y = y).

Theorem 3.1.12. The distribution of an MRF, X, is completely determined by
its local specification so long as π(x) > 0 for all x ∈ ΛS.

Proof. We see this via the identity

π(x) =
K∏
i=1

πL(xi |x1, . . . , xi−1, yi+1, . . . , yK)

πL(yi |x1, . . . , xi−1, yi+1, . . . , yK)
π(y) ∝

K∏
i=1

πL(xi |x1, . . . , xi−1, yi+1, . . . , yK)

πL(yi |x1, . . . , xi−1, yi+1, . . . , yK)
,

for all x, y ∈ ΛS. This identify seems a bit strange, but what it says is that if we
know {πLs (xs |xS\s)}s∈S then we can calculate π(x) for all x ∈ ΛS by first fixing
some point y ∈ ΛS (it could be anything), then calculating these products of
ratios of conditional distributions. Afterward we can normalize everything to get
probability distributions.

To show the identity, observe that

π(x) = P(X1 = x1, . . . , XK = xK)

= P(XK = xK |X1 = x1, . . . , XK−1 = xK−1)P(X1 = x1, . . . , XK−1 = xK−1)

= P(XK = xK |X1 = x1, . . . , XK−1 = xK−1)
P(X1 = x1, . . . , XK−1 = xK−1, XK = yk)

P(XK = yk |X1 = x1, . . . , XK−1 = xK−1)

=
πL(xK |x1, . . . , xK−1)

πL(yK |x1, . . . , xK−1)
π(x1, . . . , xK−1, yK).

Repeating the procedure for π(x1, . . . , xK−1, yK) and pulling out xK−1 we get

π(x) =
πL(xK−1 |x1, . . . , xK−2, yK)

πL(yK−1 |x1, . . . , xK−2, yK)

πL(xK |x1, . . . , xK−1)

πL(yK |x1, . . . , xK−1)
π(x1, . . . , yK−1, yK).

Continuing on, we get the identity.
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3.2 Gibb’s Random Fields

Many random fields that we wish to consider will have distributions, π, of the
form

πT (x) =
1

ZT
exp

{
− 1

T
E(x)

}
, (3.1)

where T > 0 is called the temperature, E(x) is the energy of configuration x ∈ ΛS

and

ZT =
∑
x∈ΛS

exp

{
− 1

T
E(x)

}
,

is called the partition function. These distributions come from statistical physics,
where they are often called Boltzmann distributions after the great physicist who
studied them. Actually, the distribution of any random field can be written in
the form (3.1) (with T = 1), but we will just consider cases where this is natural.
Note that the terminology and notation in area varies a fair bit from author to
author (in particular, mathematicians are not quite true to the original physical
meanings of many of these terms). However, once you understand things, it is
not too hard to adapt notation or notice and understand differences in various
treatments.

It is worth thinking a little bit about how E(x) and T shape the value of
π(x). First, observe that there is a minus sign in front of E(x), so increasing
values of E(x) will decrease the value of π. This is in accordance with the basic
physical principle that low energy configurations are more likely. Second, note
that as T increases, the value of E(x) becomes less important. Indeed, as T →∞,
E(x)/T → 0, so π will converge to a uniform distribution on ΛS.

3.2.1 The Form of the Energy Function

In order to say anything meaningful, we need to consider restrictions on the
energy function E(x). In particular, we will consider energy functions that are
calculated by considering cliques of the graph defined by (S,N ).

Definition 3.2.1. A clique is a complete subgraph of a graph.

The energy functions we consider work by assigning values to each clique of
(S,N ). The functions which assign these values are called a Gibb’s potential.

Definition 3.2.2 (Gibb’s Potential). A Gibb’s potential on ΛS relative to the
neighborhood system N is a collection {VC}C⊂S of functions VC : ΛS → R∪{+∞}
such that

(i) VC = 0 if C is not a clique.

(ii) For all x, x′ ∈ ΛS and all C ⊂ S

xC = x′C ⇒ VC(x) = VC(x′).

Definition 3.2.3. The energy function E : ΛS → R∪{+∞} is said to derive from
the potential {VC}C⊂S if

E(x) =
∑
C⊂S

VC(x).
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3.2.2 The Ising Model

One of the most famous models in statistical physics (and theoretical proba-
bility) is the Ising model. This is a very simple model of magnetization. Here, we
take S = Z2

m, where Z2
m = {(i, j) ∈ Z2 : i, j ∈ [1,m]}. The neighborhood system

is given by

Ns = {(i, j) : Z2
m : |i− s1|+ |j − s2| = 1} for all s = (s1, s2) ∈ Z2

m

The graph of (N , S) is a square lattice. Figure 3.2.1 shows the neighborhood
system for m = 3.

1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

Figure 3.2.1: Graph showing the neighborhood system of the Ising model on Z2
3.

The {Xs}s∈S each take values in Λ = {−1, 1}. The cliques of this graph are
the individual nodes and adjacent pairs. The Gibb’s potential is given by

V{s} = −H · xs for all s ∈ S,

where H ∈ R represents an external magnetic field, and

V{(s,t)} = −J · xsxt for all (s, t) ∈ E,

where J ∈ R controls the strength of interaction between neighbors and E is the
edges in the graph induced by the neighborhood system. If J > 0 the model is
said to be ferromagnetic and if J < 0 the model is said to be anti-ferromagnetic.
The energy function is thus given by

E(x) = −J
∑
(s,t)

xsxt −H
∑
s∈S

xs.

We will, in general, consider very simple cases where H = 0 and J = 1 (or,
sometimes J = −1). Then we have a distribution of the form

π(x) =
1

ZT
exp

 1

T

∑
(s,t)

xsxt


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In this model, if xs = xt = 1 or xs = xt = −1 then xsxt = 1. Otherwise, xsxt = −1.
Thus, the configurations with the lower energy / highest probability are those
where adjacent variables have the same value (spin). In the case where J = −1,
the opposite is true: configurations where adjacent variables have opposite spins
are more probable.

How do we simulate from the Ising model? The only method we know at the
moment is the Metropolis algorithm. One way to implement this is to choose, at
each step, a vertex of the current configuration and ‘flip it’ (replace 1 with −1
and replace −1 with 1). This gives a proposal configuration y. The acceptance
probability for this proposal is given by

α(x, y) =
exp

{
− 1
T
E(y)

}
exp

{
− 1
T
E(x)

} = exp

{
− 1

T
E(y) +

1

T
E(x)

}
.

Using the latter form of the energy function avoids problems associated with calcu-
lating exponentials of large numbers. To implement this, we first make a function
in Matlab that calculates the energy (according to the Ising model) of a configura-
tion. This function is a little long (because edges and corners need to be considered
separately), but is not too complicated.

Listing 3.1: R code for calculating the energy function in the Ising model

1 ising_energy=function(J, H, X)

2 {

3 m= ncol(X)

4

5 single_energies=0

6 pair_energies= 0

7 for (i in 1:m)

8 {

9 for(j in 1:m)

10 {

11 single_energies=single_energies - H*X[i,j]

12 }

13 }

14 for(i in 1:m)

15 {

16 for(j in 1:m)

17 {

18 if(i<m & j < m)

19 {

20 # pair to the right vertex

21 pair_energies= pair_energies - J*X[i, j]*X[i, j+1]

22 # pair to the below vertex

23 pair_energies= pair_energies - J*X[i,j]*X[i+1, j]

24 }

25 else if (i==m & j < m)

26 {

27 # pair to the right vertex

28 pair_energies= pair_energies - J*X[i, j]*X[i, j+1]

29 }
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30

31 else if (i<m & j==m)

32 {

33 # pair to the below vertex

34 pair_energies= pair_energies - J*X[i,j]*X[i+1, j]

35 }

36 else

37 {

38 pair_energies=pair_energies

39 }

40 }

41 }

42 energy= single_energies + pair_energies

43 return(energy)

44 }

45 X0=matrix(c(-1, -1 , 1 ,-1 ,-1 , 1, 1 , 1 ,-1), ncol=3)

46 X01=matrix(c(-1, 1, 1, -1), ncol=2)

47 H0= 0.5

48 J0= 1

49 ising_energy(J=J0, H=H0, X=X0)

50 ising_energy(J=J0, H=H0, X=X01)

Using this function, the Metropolis algorithm itself is quite straightforward.

Listing 3.2: R code for simulating the Ising model via the Metropolis algorithm

1 N= 10^3

2 J0=1

3 H0=0

4 T0=2

5 m=50

6

7 X=matrix(rbinom(m^2, size=1, prob=0.5)*2-1, ncol=m, nrow=m)

8 system.time(

9 for(k in 1:N)

10 {

11 # choose randomly a coordinate (i,j)

12 i= sample(1:m, size=1, replace=TRUE)

13 j= sample(1:m, size=1, replace=TRUE)

14

15 Y=X

16 Y[i, j]= -1 *Y[i,j] # flip this energy

17

18 alpha= exp(1/T0*(ising_energy(J=J0, H=H0, X=X)- ising_energy(J=J0, H=H0, X=Y)))

19 Z= runif(1, 0, 1)

20

21 if(Z< alpha){X=Y}

22 }

23 )

24 library(gplots)

25 library(RColorBrewer)
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26 my_palette <- colorRampPalette(c("red", "yellow"))(n = 2)

27 col_breaks = c(-1, 0, 1)

28 heatmap.2(X,

29 #cellnote = X, # same data set for cell labels

30 Rowv=FALSE,

31 main = "Ising", # heat map title

32 #notecol="black", # change font color of cell labels to black

33 density.info="none", # turns off density plot inside color legend

34 trace="none", # turns off trace lines inside the heat map # "none"

35 tracecol="black",

36 margins =c(12,9), # widens margins around plot

37 col=my_palette, # use on color palette defined earlier

38 breaks=col_breaks, # enable color transition at specified limits

39 symbreaks=TRUE,

40 dendrogram="none", # only draw a row dendrogram

41 Colv="NA")

3.2.3 The Relation Between Markov and Gibb’s Random
Fields

As it turns out, so long as we impose some technical conditions, Markov random
fields and Gibb’s random fields are actually the same things. This theorem is
a celebrated result known as the Hammersley-Clifford theorem. We break this
theorem up into a number of separate results. The first shows that Gibb’s fields
are Markov random fields.

Theorem 3.2.4. If X is a random field with distribution, π(x), given by

π(x) =
1

ZT
exp

{
− 1

T
E(x)

}
,

where E(·) derives from a Gibb’s potential, {VC}C⊂S, relative to the neighborhood
system N , then X is Markovian with respect to the same neighborhood system.
Moreover, its local specification is given by

πLs (xs |xS\{s}) =
exp

{
− 1
T

∑
{C⊂S:s∈C} VC(x)

}
∑

λ∈Λ exp
{

1
T

∑
{C⊂S:s∈C} VC(λ, xS\{s})

} , (3.2)

where the notation λ, xS\s means that we change the sth element of x to λ.

Proof. Recall that πLs (xs |xS\{s}) = P(Xs = xs |XS\{s} = xS\{s}). Now if (3.2)
holds, then we have

P(Xs = xs |XS\{s} = xS\{s}) =
exp

{
− 1
T

∑
{C⊂S:s∈C} VC(x)

}
∑

λ∈Λ exp
{

1
T

∑
{C⊂S:s∈C} VC(λ, xS\{s})

} .
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This only depends on the cliques, C, such that s ∈ C. Now, if t ∈ C and s ∈ C
then, either t = s or t ∈ Ns. In other words, the only elements of {xs}s∈S that
are considered are xs and xNs . Thus,

P(Xs = xs |XS\{s} = xS\{s}) = P(Xs = xs |XNs = xNs).

As a result, in order to prove the theorem it is sufficient to prove (3.2) holds.
Observe that we have

P(Xs = xs |XS\{s} = xS\{s}) =
P(Xs = xs, XS\{s} = xS\{s})

P(XS\{s} = xS\{s})
=

π(x)∑
λ∈Λ π(λ, xS\{s})

.

Now,

π(x) =
1

ZT
exp

− 1

T

∑
{C⊂S:s∈C}

VC(x)− 1

T

∑
{C⊂S:s/∈C}

VC(x)

 ,

and

∑
λ∈Λ

π(λ,XS∈{s}) =
∑
λ∈Λ

1

ZT
exp

− 1

T

∑
{C⊂S:s∈C}

VC(λ, xS\{s})−
1

T

∑
{C⊂S:s/∈C}

VC(x)

 ,

where we use the fact that VC(x) does not depend on λ if λ /∈ C. We then cancel
out the

exp

− 1

T

∑
{C⊂S:s/∈C}

VC(x)


to get the result.

As we will see, it is much easier to work with Gibb’s fields if we work with
the local specification given above. We can further simplify the expression by
introducing the local energy.

Definition 3.2.5 (Local energy). The local energy of configuration x at site s ∈ S
is given by

Es(x) =
∑

C⊂S:s∈C

VC(x).

Using the local energy, we can write the local specification as

πLs (xs |xS\{s}) =
exp

{
− 1
T
Es(x)

}∑
λ∈Λ exp

{
− 1
T
Es(λ, xS\{s})

} .
Example 3.2.6 (The simplified Ising model). Consider the simplified Ising model,
where E(x) = −

∑
(s,t) xsxt. In this case, we have

πLs (xs |xS\{s}) =
exp

{
1
T

∑
{t:s∼t} xsxt

}
∑

λ∈Λ exp
{

1
T

∑
{t:s∼t} λxt

} .
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Using the fact that λ only takes the values −1 and 1, we have

πLs (xs |xS\{s}) =
exp

{
1
T

∑
{t:s∼t} xsxt

}
exp

{
− 1
T

∑
{t:s∼t} xt

}
+ exp

{
1
T

∑
{t:s∼t} xt

} .
Thus we can write the probability Xs is 1 as

P(Xs = 1 |XS\{s} = xS\{s}) =
exp

{
1
T

∑
{t:s∼t} xsxt

}
exp

{
− 1
T

∑
{t:s∼t} xt

}
+ exp

{
1
T

∑
{t:s∼t} xt

}
=

1 + tanh
(

1
T

∑
{t:s∼t} xt

)
2

.

The next theorem shows that, under a technical condition, an MRF is also a
Gibb’s field.

Theorem 3.2.7. Let π be the distribution of an MRF with respect to (S,N )
(where π(x) > 0 for all x ∈ ΛS). Then,

π(x) =
1

Z
exp{−E(x)},

for some energy function E(·) derived from a Gibb’s potential, {VC}C⊂S, associated
with (S,N ).

Proof. See [1].

The above theorem shows that an MRF can always be written as a Gibb’s field.
However, it gives no guarantee that this representation will be unique. Indeed,
unless another condition is imposed, the representation will not be unique. To see
this, observe that, for α ∈ R,

π(x) =
1

ZT
exp

{
− 1

T
E(x)

}
=

1

ZT
exp

{
− 1

T
E(x)

}
exp

{
− 1
T
α
}

exp
{
− 1
T
α
}

=
1

ZT exp
{
− 1
T
α
}exp

{
− 1

T
[E(x) + α]

}
=

1

Z̃T
exp

{
− 1

T
Ẽ(x)

}
.

In other words, we can always add a constant to the energy function and renor-
malize accordingly. However, it turns out that if we normalize the potential we
get a unique representation.

Definition 3.2.8 (Normalized Potential). A Gibb’s potential is normalized with
respect to a phase λ∗ ∈ Λ if VC(x) = 0 when there exists an s ∈ C such that
xs = λ∗.

Theorem 3.2.9. There exists one and only one potential normalized with respect
to a given λ∗ ∈ Λ corresponding to a Gibb’s distribution.

Proof. See [1] Theorem 2.2 and its proof.
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3.3 The Gibb’s Sampler

We can use the local specifications of Markov random fields as the basis for an
MCMC sampler. This sampler is called the Gibb’s sampler.

Algorithm 3.3.1 (The Gibb’s Sampler). Given an initial distribution µ,

(i) Draw X0 ∼ µ. Set n = 0.

(ii) Draw s∗ uniformly from S.

(iii) Set Y = Xn.

(iv) Draw Ys∗ ∼ πLs∗(· |YS\{s∗}).

(v) Set Xn+1 = Y .

(vi) Set n = n+ 1 and repeat from step 2.

This version of the Gibb’s sampler (where s∗ is drawn uniformly from S) is
sometimes called the Glauber dynamics.

Example 3.3.1 (Simplified Ising model on a square lattice with periodic boundary
conditions). Consider the simplified Ising model with E(x) =

∑
(s,t) xsxt on Z2

m

with a neighborhood system given by

Ns = {(i, j) ∈ Z2
m : (i− s1) mod m+ (j − s2) mod m = 1}.

Note that this neighborhood system produces a square lattice, as before, but the
edges are ‘glued’ together so that the vertices on the far right are connected to those
on the far left and the vertices on the top are connected to those on the bottom.
A good way to think of this is like pac-man - if a walker on the graph goes too
far to the right, it appears on the left. The following code generates realizations
of this model using the conditional distribution derived in Example 3.2.6.

Listing 3.3: R code for calculating the energy function in the Ising model

1 N=10^6

2 T=3

3 m=500

4 X=matrix(0, nrow=m, ncol=m)

5

6 for(i in 1:N)

7 {

8 i=sample(1:m) ## choose random i

9 j=sample(1:m) ## choose random j

10

11 above=X[(i-2)%%m + 1, j]

12 below=X[i%%m +1 , j]

13 left=X[i, (j-2)%%m +1]

14 right=X[i, j%%m + 1]

15 prob_X_is_one=( 1 + tanh(1/T * (above+below+left+right)))/2

16
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17 U=runif(1, min=0, max=1)

18 if(U < prob_X_is_one)

19 {

20 X[i, j]=1

21 }

22 else

23 {

24 X[i,j]=-1

25 }

26 }

27 my_palette <- colorRampPalette(c("red", "yellow"))(n = 2)

28 col_breaks = c(-1, 0, 1)

29 heatmap.2(X,

30 #cellnote = X, # same data set for cell labels

31 Rowv=FALSE,

32 main = "Ising", # heat map title

33 #notecol="black", # change font color of cell labels to black

34 density.info="none", # turns off density plot inside color legend

35 trace="none", # turns off trace lines inside the heat map # "none"

36 tracecol="black",

37 margins =c(12,9), # widens margins around plot

38 col=my_palette, # use on color palette defined earlier

39 breaks=col_breaks, # enable color transition at specified limits

40 symbreaks=TRUE,

41 dendrogram="none", # only draw a row dendrogram

42 Colv="NA")

Figures 3.3.1 and 3.3.2 show how the temperature parameter changes the out-
put of the Ising model.

Figure 3.3.1: The Ising model on the 50 × 50 square lattice simulated from an
initial configuration of all ones for 106 steps. Left to right: T = 1, T = 5, T = 15.

In order to show that the Gibb’s sampler works as desired, we first need to
show that it has π as a stationary distribution. This is true if the detailed balance
equations are satisfied.

Theorem 3.3.2. The Markov chain, {Xn}n∈N, generated by the Gibb’s sampler
is in detailed balance with π.

Proof. To show this, we need to show that

Px,yπ(x) = Py,xπ(y),



84 CHAPTER 3. MARKOV AND GIBB’S RANDOM FIELDS

Figure 3.3.2: The Ising model on the 200 × 200 square lattice simulated from an
initial configuration of all ones for 106 steps. Left: T = 2; right: T = 3.

for all x, y ∈ ΛS, where Px,y = P(Xn+1 = y |Xn = x). Now, if #{s : ys 6= xs} > 1,
we have Px,y = Py,x = 0. So, we can assume there exists a single s ∈ S, labeled
s∗, such that xs∗ 6= ys∗ . Now, using the fact that xS\{s∗} = yS\{s∗},

π(x)Px,y = π(x)
1

|S|
πLs∗(ys∗ |xS\{s∗})

=
π(x)

|S|
π(ys∗ , xS\{s∗})∑
λ∈Λ π(λ, xS\{s∗})

=
π(x)

|S|
π(y)∑

λ∈Λ π(λ, xS\{s∗})

=
π(y)

|S|
π(xs∗ , yS\{s∗})∑
λ∈Λ π(λ, yS\{s∗})

= π(y)
1

|S|
πLs∗(xs∗ | yS\{s∗}) = π(y)Py,x,

for all x, y ∈ ΛS such that #{s : ys 6= xs} = 1. Thus, the detailed balance
equations are satisfied.

3.4 Simulated Annealing

One very useful application of MCMC techniques is to solve difficult optimiza-
tion problems. A classic example of such a problem is the traveling salesman
problem.

Example 3.4.1 (The Traveling Salesman Problem). Suppose a salesperson has
to visit all M cities in a particular area. He or she wishes to do this in the most
efficient way possible. The distances between the cities are known, with Di,j being
the distance between the ith and jth city. The optimization problem is then to
find an order in which to visit the cities, R = (R1, R2, . . . , RM), that minimizes
the total distance traveled in visiting each city. That is, we wish to find

argmin
R⊂{1,...,M}M

(
M−1∑
i=1

DRi,Ri+1
+DRM ,R1

)
.
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This problem is known to be very difficult to solve as M grows large (it is a
member of a famous class of difficult problems, known as NP hard problems).

The optimization problems we wish to solve have the following general form.
Assume we have a function, H : ΛS → R, where Λ is countable and S is finite. We
wish to find the global minimizer of this function. That is, we wish to find x∗ ∈ ΛS

such that H(x∗) ≤ H(x) for all x ∈ ΛS (this is also denoted argminH(x)).

3.4.1 Method of Steepest Descent

When it is possible to calculate the gradient of the function H, we can use
gradient descent (also called the method of steepest descent) to solve argminH(x)
computationally. The basic idea is to start with an initial guess, x0. This guess
is then updated by moving a small amount in the direction where H(x) gets
smaller fastest (this is −∇H(x0)). This process is continued until the gradient gets
sufficiently close to 0 (or some more sophisticated stopping condition is satisfied).
This approach can be extended to cases (such as those we consider) where a
derivative cannot be calculated. In this case, we can define a neighborhood of the
current guess and search all (or some) of the points in the neighborhood to look
for the direction in which H(x) decreases fastest.

Unfortunately, this method suffers from a very significant limitation: it gets
stuck in local minima. A local minima is a point, xL, such that, for some ε > 0,
we have H(xL) ≤ H(x) for all x such that ‖x − xl‖ < ε, where ‖ · ‖ is the
appropriate norm. You can think of this problem in terms of an analogy. Steepest
descent algorithms start at a particular point on the graph of a function and walk
‘downhill’ in the steepest direction. When they reach the bottom of the hill, they
stop. If the bottom of the hill is not the location of the global minimizer, they
will never reach the global minimizer.

3.4.2 Using Stochastic Methods to Avoid Traps

Simulated annealing is a method that is, in many ways, similar to the steep-
est descent method. However, instead of calculating a gradient or searching all
possible points in the neighborhood of the current point in order to find where to
move, it randomly chooses a possible new point. It then moves to this new point
if the new value of H is lower. However, it also moves, with a certain probability,
to points with higher values of H. In this way, it is able to escape local minima
(by traveling through regions where H is increasing).

Simulated annealing achieves this using a sequence of Boltzmann distributions,
{πT}T∈[0,∞), where

πT (x) =
1

ZT
exp

{
− 1

T
H(x)

}
for all x ∈ ΛS.

Observe that H, which is here acting as an energy function, takes it lowest
values at the global minimizers (there could be more than one) of H. Thus, the
global minimizers are the most likely configurations if we draw from πT (so long
as T < ∞). We have already seen that, as T → ∞, the distributions approach a
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uniform distribution on ΛS. It turns out that, as T → 0, the distributions approach
a distribution that puts all of its probability mass on the global minimizers of H.

Lemma 3.4.2. Let ΛS be finite and H : ΛS → R have a unique minimizer, x∗. If

πT (x) =
1

ZT
exp

{
− 1

T
H(x)

}
,

then limT→0 πT (x∗) = 1.

Proof. We have

πT (x∗) =
exp{− 1

T
H(x∗)}∑

x∈ΛS exp
{
− 1
T
H(x)

} =
exp{− 1

T
a}∑

x∈ΛS exp
{
− 1
T
H(x)

} ,
where a = H(x∗) = minx∈ΛS H(x). We can then write

πT (x∗) =
exp{− 1

T
a}

exp
{
− 1
T
a
}

+
∑

x∈ΛS\{x∗} exp
{
− 1
T
H(x)

} ,
≥

exp{− 1
T
a}

exp
{
− 1
T
a
}

+ (|ΛS| − 1)exp
{
− 1
T
b
} ,

where b = minx∈ΛS\{x∗}H(x). Dividing both the numerator and denominator by
exp{−a/T}, we have

πT (x∗) =
1

1 + (|ΛS| − 1)exp
{

1
T

(a− b)
} .

Because a < b,

exp

{
1

T
(a− b)

}
→ 0

as T → 0. Thus, πT (x∗) → 1 as T → 0. This proof is easily extended to
cases where the global minimizer is not unique (you can try this yourself if you
want).

The above results suggest that if it were possible to sample from a Boltzmann
distribution with a sufficiently small value of T , then we would draw a global
minimizer of H with high probability. In order to sample from such a distribu-
tion, we can use MCMC methods. However, it is usually very difficult to find a
good starting distribution. Thus, the idea is to start by trying to sample from a
Boltzmann distribution with a high temperature. The MCMC algorithm should
quickly approach stationarity at this temperature. We then drop the tempera-
ture, slowly so that the chain stays close to (or at) stationarity. Continuing on in
this manner, we eventually get samples from a distribution that with very high
probability returns a global minimizer of H. This gives the simulated annealing
algorithm.

Algorithm 3.4.1 (Simulated Annealing). Given a sequence, {Tn}n∈N, such that
Tn ∈ [0,∞) for all n ∈ N and T1 ≥ T2 ≥ · · · ,



3.4. SIMULATED ANNEALING 87

(i) Draw X0 ∼ µ. Set n = 0.

(ii) Generate Xn using one step of an MCMC sampler with stationary distribu-
tion πTn .

(iii) If a stopping condition is met (often this is just n = N), stop. Otherwise,
set n = n+ 1 and repeat from step 2.

Note that there are a number of things that are not specified by this algorithm:
the sequence {Tn}n∈N, called the cooling sequence; the initial distribution, µ; and
the MCMC sampler itself.

Choosing the right cooling sequence is very important in order to ensure that
the simulated annealing algorithm converges. The following result gives a criterion
for guaranteed convergence.

Theorem 3.4.3. If ΛS is finite and x∗ is the unique global minimizer of H, then
if

Tn ≥
1

log n
|ΛS|

(
max
x∈ΛS

H(x)− min
x∈ΛS

H(x)

)
,

we have that Xn → x∗ in probability.

Proof. See [1].

Although this cooling schedule gives guaranteed convergence, it is not possible
to use it in practice. This is because 1/ log n goes to zero far too slowly. In actual
applications, people tend to use cooling sequences that go to zero much faster.
One of the most commonly used strategies is geometric cooling.

Definition 3.4.4 (Geometric cooling). A cooling sequence uses geometric cooling
if T0 is given and

Tn+1 = βTn,

for all n ≥ 0 and some given β ∈ (0, 1).

Note that, using such a cooling sequence, it is no longer certain that the sim-
ulated annealing algorithm will converge to the correct answer.

In general, the initial state of the chain is deterministically chosen (so µ is just
a distribution that puts probability 1 on this state). If possible, it is best to choose
the starting position as close as possible to the global minimizer (if there is any
information at all about where it might be).

Choosing the Markov chain is where much of the ‘art’ of simulated annealing
lies. The basic idea is to try and choose a chain that is able to explore the state
space quickly but that does not try to jump too far from its current position in
any one step (as, when the temperature is cooling, it is important the chain takes
lots of small steps). Such a chain works a lot like a steepest descent algorithm,
except that it sometimes climbs up hills.

Example 3.4.5 (Example 3.4.1 cont.). Using simulated annealing, we can now
write a program that tries to solve the Traveling Salesman Problem. The function
we are trying to find the minimizer of is

H(R) =

(
M−1∑
i=1

DRi,Ri+1
+DRM ,R1

)
.
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We will use geometric cooling and a Metropolis MCMC sampler. The states of the
Markov chain will be routes. The proposals will be generated as follows. At the nth
step, the chain will have, as its value, the current route Rcur = (R1, . . . , RM). The
proposal is generated by drawing two numbers, i and j, uniformly from {1, . . . ,M},
subject to the constraint i 6= j. Assuming without loss of generality that i < j,
Rprop is given by

Rprop = (R1, . . . , Ri−1, Rj, Rj−1, . . . , Ri, Rj+1, . . . , RM).

The acceptance probability is then given by

α(Rcur, Rprop) =

1
ZTn

exp
{
− 1
T
H(Rprop)

}
1

ZTn
exp

{
− 1
T
H(Rcur)

} = exp

{
− 1

T
[H(Rprop)−H(Rcur)]

}
In the program, the locations of the cities are generated uniformly in a window
[0, 1]2.

Listing 3.4: R code for a simulated annealing solver of the Traveling Salesman
Problem

1 N=10^5

2 M=15

3 T=10

4 beta=0.99

5

6 # Generate the positions of the cities

7 positions= matrix(runif(2*M, min=0, max=1), ncol=2, nrow=M)

8 # plot of the city allocations

9 plot(positions[,1], positions[,2], xlab="x-coordinate", ylab="y-coordinate")

10

11 # Calculate the distances between the cities (note it is symmetric)

12 D=matrix(0, nrow=M, ncol=M)

13 for(i in 1:M)

14 {

15 for(j in 1:i)

16 {

17 # norm of the difference between city i and j

18 D[i, j]= sum((positions[i,] - positions[j,])^2)

19 }

20 }

21 # the last term is zero in this case,

22 # but generally you can fill a symmetric matrix like this

23 D= D + t(D) - diag(D)

24

25 # Set initial route to be from 1 to 2 to 3 to ... to M to 1

26 route= 1:M

27 # plot of the city allocations

28 plot(positions[,1], positions[,2], xlab="x-coordinate", ylab="y-coordinate")

29 for(i in 1:(M-1))

30 {

31 segments(x0=positions[route[i], 1], y0=positions[route[i], 2],
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32 x1=positions[route[i+1], 1], y1=positions[route[i+1], 2])

33 }

34 segments(x0=positions[route[M], 1], y0=positions[route[M], 2],

35 x1=positions[route[1], 1], y1=positions[route[1], 2])

36

37

38

39 # Define cost function (function H, which has to be minimized)

40 cost_func= function(route)

41 {

42 cost= 0

43 for (i in 1:(M-1))

44 {

45 cost=cost + D[route[i], route[i+1]]

46 }

47 return(cost)

48 }

49

50 ## Calculate initial costs

51 initial_cost= cost_func(route)

52 current_cost= cost_func(route)

53

54 # The actual algorithm

55 for (i in 1:N)

56 {

57 # Generate the proposal

58 # either by

59 #swap_indices=sample(1:M, 2, replace=FALSE)

60

61 # or by

62 swap_indices= c(0, 0)

63 while(swap_indices[1]==swap_indices[2])

64 {

65 swap_indices=sort(ceiling(M*runif(2, min=0, max=1)))

66 }

67 # cut the segment and turn it "upside down"

68 new_route= route

69 for(i in 0:(swap_indices[2]-swap_indices[1]))

70 {

71 new_route[swap_indices[1]+i]=route[swap_indices[2]-i]

72 }

73

74 # calculate the new costs

75 new_cost=cost_func(new_route)

76

77 # calculate the acceptance probability

78 alpha = min(exp(-(new_cost- current_cost)/T),1)

79

80 # Decide to accept or not

81 rand= runif(1, min=0, max=1)
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82 if(rand< alpha)

83 {

84 route= new_route

85 current_cost= new_cost

86 }

87

88 # cool the temperature T

89 T= beta*T

90 }

91

92 plot(positions[,1], positions[,2], xlab="x-coordinate", ylab="y-coordinate")

93 # plot of the city allocations

94 for(i in 1:(M-1))

95 {

96 segments(x0=positions[route[i], 1], y0=positions[route[i], 2],

97 x1=positions[route[i+1], 1], y1=positions[route[i+1], 2])

98 }

99 segments(x0=positions[route[M], 1], y0=positions[route[M], 2],

100 x1=positions[route[1], 1], y1=positions[route[1], 2])

101

102

103 initial_cost

104 current_cost

Two sets of cities, with their solutions are depicted in Figure 3.4.1.
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Figure 3.4.1: Two configurations of cities and the accompanying solutions to the
traveling salesman problem.

3.4.3 Incorporating constraints

Most real-world optimization problems have some form of constraint. In gen-
eral, a constrained optimization problem can be written in the form

argmin
x∈ΛS

H(x) such that x ∈ Ω.
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Here, Ω ⊂ ΛS is a set containing the constraints. For example, if ΛS = {0, 1, . . . ,M}2,
then a possible constraint set could be

Ω = {x = (x1, x2) ∈ {0, 1, . . . ,M}2 : x1 > x2 > 5}

or

Ω = {x = (x1, x2) ∈ {0, 1, . . . ,M}2 : x1 + x2 = 15}.

There are a number of ways to deal with such constraints. One is to rewrite

argmin
x∈ΛS

H(x) such that x ∈ Ω

as

argmin
x∈Ω

H(x).

This works well if Ω is not a complicated set. However, if Ω is quite complicated
— for example, if it is the union of a number of disjoint sets — it may be difficult
to find a good MCMC sampler that is irreducible on Ω (or the subset of it where
H is non-zero). An alternative, is to use a penalty function. That is, we replace
H(x) by

H̃(x) = H(x) + P (x) · I(x /∈ Ω),

where P (x) > 0 for all x ∈ ΛS \ Ω. If P is chosen such that argminx∈Ω H(x) <

H(y) + P (y) for all y /∈ Ω, then a minimizer of H̃ will be a solution of the con-
strained optimization problem. Often, P is simply chosen constant. For example,
suppose we have the optimization problem

argmin
x=(x1,x2)∈{0,1,...,M}2

−
(
x2

1

)
subject to the constraint x1 + x2 = 15. The unconstrained optimization problem
has M distinct solutions, with x∗1 = M and x2 taking any value in {0, 1, . . . ,M}.
The constrained optimization problem has the solution x∗1 = 15 and x2 = 0. If we
choose, say, P (x) = M for all x ∈ ΛS, then the solution to

argmin
x=(x1,x2)∈{0,1,...,M}2

−(x2
1) +M2 · I(x1 + x2 6= 15)

is the solution to the constrained problem. It is often a good idea, when choosing
P , to make it so that slight deviations from the constraints are not punished too
much. In this way, the simulated annealing algorithm is able to travel from local
minima to local minima (and, hopefully, eventually to the global minima) through
parts of ΛS that violate the constraints.

Example 3.4.6 (Dense hardcore packings on graphs). Consider a graph G =
(V,E), where each vertex is given a color in the set {0, 1}, subject to the constraint
that no two adjacent vertices have color 1. The optimization problem is then to
find the maximum number of vertices that can be colored 1 without violating this
constraint. For example, consider the graph in Figure 3.4.2.



92 CHAPTER 3. MARKOV AND GIBB’S RANDOM FIELDS

1

2

3

4

5

6

7

Figure 3.4.2: An example graph.

Note that the optimal solution to this problem is to place 1s on the vertices
2, 3, 5 and 6. However, as you will see, there are a number of local minima where
the simulated annealing algorithm gets stuck — for example, if 1s are placed on
the vertices 1, 4 and 7. One option in approaching the problem is to write the
objective function, H, with the constraint built in. For example, we can aim to
minimize

H(x) = (number of 0s in x) + 2 · (number of edges where both vertices are 1),

where x ∈ {0, 1}7 is a vector assigning colors to each of the vertices. In the code
below, we implement simulated annealing with geometric cooling and a Metropolis
proposal that chooses a vertex uniformly at random and ‘flips’ it.

Listing 3.5: R code for a simulated annealing approach to the dense packing
problem using a penalty function

1 N= 10^5

2 beta=0.99

3 T=10

4 m=7

5 E = rbind(c(0, 1, 1, 0,0, 0, 0), c(1, 0, 0, 1, 0, 0, 0),

6 c(1, 0, 0, 1, 0, 0, 0), c(0, 1, 1, 0, 1, 1, 0),

7 c(0, 0, 0, 1, 0, 0, 1),

8 c(0, 0, 0, 1, 0, 0, 1), c(0, 0, 0, 0, 1, 1, 0))

9 X=rep(0, 7)

10 current_cost= 7

11 for(i in 1:N)

12 {

13 index= ceiling(runif(1)*m)

14 Y=X

15 Y[index]= 1- X[index]

16 new_cost=0

17 for(i in 1:m)

18 {

19 if(Y[i]==0)

20 {

21 new_cost=new_cost+1
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22 }

23 for(j in 1:m)

24 {

25 if(Y[i]==1 & Y[j]==1&&E[i, j]==1)

26 {

27 new_cost=new_cost+3

28 }

29 }

30 }

31 alpha= exp(-(new_cost - current_cost)/T)

32 rand= runif(1, min=0, max=1)

33 if(rand< alpha)

34 {

35 X=Y

36 current_cost=new_cost

37 }

38 T=beta*T

39 }

40 X

An approach that works better in this case, however, is to incorporate the
constraints into the MCMC step. That is, we sample in such a way that adjacent
vertices are never both colored 1. We do this using the following Metropolis
proposal: we choose a vertex at random, set it to 1 and set all adjacent vertices
to 0.

Listing 3.6: R code for a simulated annealing approach to the dense packing
problem that only samples in the constrained set

1 ### Alternative

2 N= 10^5

3 beta=0.99

4 T=10

5 m=7

6 E = rbind(c(0, 1, 1, 0,0, 0, 0), c(1, 0, 0, 1, 0, 0, 0),

7 c(1, 0, 0, 1, 0, 0, 0), c(0, 1, 1, 0, 1, 1, 0),

8 c(0, 0, 0, 1, 0, 0, 1), c(0, 0, 0, 1, 0, 0, 1),

9 c(0, 0, 0, 0, 1, 1, 0))

10 X=rep(0, 7)

11 current_cost= 7

12 for(i in 1:N)

13 {

14 index= ceiling(runif(1)*m)

15 Y=X

16 Y[index]=1

17 for(i in 1:m)

18 {

19 if(E[index, i]==1)

20 {

21 Y[i]=0

22 }
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23 }

24 new_cost=0

25 for(i in 1:m)

26 {

27 new_cost=new_cost + (Y[i]==0)

28 }

29 alpha= exp(-(new_cost - current_cost)/T)

30 rand= runif(1, min=0, max=1)

31 if(rand< alpha)

32 {

33 X=Y

34 current_cost=new_cost

35 }

36 T=beta*T

37 }

38 X



Chapter 4

Improving the Efficiency of
MCMC Samplers

Example 4.0.7 (Estimators behaving badly). Consider the Markov chain illus-
trated in Figure 4.0.1.
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Figure 4.0.1: The transition graph of the Markov chain.

Let f(·) = I(· ∈ {3, 4, 5}) and suppose that we want to estimate

f̄ = Ef(X) = P(X ∈ {3, 4, 5}),

where X ∼ π with π the stationary distribution of the chain. Using the ergodic
theorem, we know that

f̂ =
1

n

n−1∑
k=0

I(Xk ∈ {3, 4, 5})

is a consistent estimator of f̄ . Thus, we can estimate f̄ using the following code.

Listing 4.1: Estimating f̄

1 n= 10^6

2 rho=0.1 # for burn-in

3 X=rep(0, n)

4 f= rep(0, n)

5

95
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6 P=rbind(c(0,1,0,0,0), c(0.9999,0,0.0001,0,0),

7 c(0,0.000001,0,0.499999,0.5), c(0,0,0,0,1), c(0,0,0.5,0.5,0))

8 X0= 3 # starting point of markov chain

9 X=c() # store values of markov chain

10 f= c()# store the values of f evaluated in components of X

11 Z=runif(1, min=0, max=1)

12 X[1]=min(which(Z<=cumsum(P[X0,]) ))

13 f[1]= (X[1]==3) + (X[1]==4) + (X[1]==5)

14 for(i in 1:(n-1))

15 {

16 Z=runif(1, min=0, max=1)

17 X[i+1]=min(which(Z<=cumsum(P[X[i],]) ))

18 f[i+1]= (X[i+1]==3) + (X[i+1]==4) + (X[i+1]==5)

19 }

20 mean(f)

21 mean(f[(rho*n):n]) # burn in estimator

The stationary distribution of the Markov chain is given by

π ≈ (0.0028, 0.0028, 0.2841, 0.1420, 0.5682),

so we know f̄ ≈ 0.9943. However, starting the chain with X0 = 1, I got an
estimate of f̂ = 0 using a sample of size n = 103. For n = 105, I got an estimate of
f̂ = 0.72 and, for n = 106, I got f̂ = 0.9758. In contrast, for X0 = 3, an estimate
of f̂ = 1 was obtained using a sample size of n = 106. Note that none of these
estimators are even remotely accurate.

The reason why the estimator does not work well is that the Markov chain
simply does not move around enough. If it starts in {1, 2}, it takes a long time on
average before it reaches {3, 4, 5}. If it starts in {3, 4, 5}, it takes an even longer
time on average before it moves to {1, 2}. As a result, the chain takes too long to
sample enough values from both parts of the state space.

Situations where a Markov chain spends too much time sampling from one
high probability region of a state space (at the expense of other high probability
regions) often occur in MCMC sampling. We will discuss a number of methods
for avoiding such situations. It is sometimes the case that we do not know a good
starting point for an MCMC algorithm. For example, we may wish to sample
from a conditional distribution, where we do not know what typical samples look
like (but know how to find a point within the support of the distribution). In this
case, we can use what is called a “burn-in” period. That is, we discard / ignore
the first part of our sample. For example, if we run an MCMC sampler for n− 1
steps, we might discard the first m < n steps. Then, our estimator of f̄ would be
of the form

f̂ =
1

k − n

n−1∑
k=m

f(Xk).

4.1 Markov chains and mixing times

In order to be sure that an MCMC-based estimator is accurate, the corre-
sponding Markov chain, {Xn}n∈N, should have the following two properties:
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(i) The distribution of Xn should converge quickly to π as n→∞.

(ii) The chain {Xn}n∈N should rapidly move around the support of π.

Both of these quantities can be measured using a concept called a mixing time.
In order to define this, we first define the following two quantities:

d(n) = max
i∈X
‖δiP n − π‖TV

and
d̄(n) = max

i,j∈X
‖δiP n − δjP n‖TV .

Remember that δiP
n is the distribution of Xn if X0 = i. So, d(n) measures

the furthest a Markov chain can be from stationarity at time n. Likewise, d̄(n)
measures the biggest possible difference in the distributions of two independent
versions of the Markov chain starting in different states.

Lemma 4.1.1. We have d(n) ≤ d̄(n) ≤ 2d(n).

Proof. 1. d̄(n) ≤ 2d(n). This follows by the triangular inequality for the total
variation distance. 2. d(n) ≤ d̄(n). Let A ⊂ X be an arbitrary set and we define

(δiP
n)(A) =

∑
k∈A

(δiP
n)k

π(A) =
∑
k∈A

∑
j∈X

πjP
n
j,k =

∑
j∈X

πj(δjP
n)(A)

Now we get for an arbitrary i ∈ X :

‖(δiP n)− π‖TV = max
A⊂X
|
∑
j∈X

πj[(δiP
n)(A)− (δjP

n)(A)]|

≤
∑
j∈X

πj max
A⊂X

[(δiP
n)(A)− (δjP

n)(A)]

≤ max
j∈X
‖δiP n − δjP n‖

The result follows by taking the maximum over i ∈ X on both sides of the in-
equality.

Definition 4.1.2 (Mixing time). We define the mixing time of a Markov chain
by

nmix(ε) = min{n : d(n) ≤ ε}.

In order for its mixing time to be small, a Markov chain has to quickly approach
stationarity and also move about its state space very rapidly. In other words,
Markov chains with small mixing times are ideal for MCMC simulation. In general,
it is not possible to calculate mixing times exactly. However, it is sometimes
possible to obtain upper and/or lower bounds. The proofs of these inequalities
often make use of coupling (which, as we have seen, is a convenient way to obtain
bounds on total variation distance).
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Example 4.1.3 (Systematic scan Gibb’s sampler for random coloring). The sys-
tematic scan Gibb’s sampler is a modification of the standard Gibb’s sampler,
where instead of updating the sites of an MRF at random, the sites are updated
in order. That is, numbering the sites in S by {1, . . . , K}, we perform the following
‘scan’ in each step:

• Start with X = (X1, . . . , XK).

• Update X1 conditional on X2, . . . , XK .

• Update X2 conditional on Y1, X3, . . . , XK .

• . . .

• Update XK conditional on Y1, . . . , YK−1.

• Return Y = (Y1, . . . , YK).

Now, consider using a systematic scan Gibb’s sampler to sample uniformly from
random q-colorings on some graph G = (V,E). Let k = |V | and ∆(G) be the
maximal degree of a vertex in G. Further suppose that q > 2∆(G)2. Then,

nmix(ε) ≤ k

 log(k) + log(ε−1)− log(∆(G))

log
(

q
2∆(G)2

)
 .

Here n is the number of individual updates, rather than the number of scans. The
proof of this is not too difficult. It uses a coupling between two Markov chains, one
started from the stationary distribution and the other from an arbitrary point. It
then obtains bounds on the probability the two chains differ at a particular vertex
after m scans. This bound is then used to obtain a bound on the chains being
different at at least one vertex. Which, in turn gives the mixing time bound in
terms of the number of updates. The proof can be found in [2]. Also note that
bounds of the same order can be found for less restrictive values of q.

4.1.1 Bounds using eigenvalues

If the transition matrix of a finite state space Markov chain is reversible, it has
real-valued eigenvalues (see [4] for a proof), which can be ordered as

1 = λ1 > λ2 ≥ · · · ≥ λ|X | ≥ −1,

Note that λ1 = 1 is the eigenvalue corresponding to the stationary distribution (in
the sense that the associated left eigenvector is the stationary distribution when
normalized). Furthermore, if P is aperiodic, it can be shown that λ|X | ≥ −1.

As it turns out, the eigenvalues of a reversible transition matrix P can be used
to describe the speed at which the associated Markov chain reaches stationarity.
This provides another avenue for researchers to try to describe the speed with
which a Markov chain converges to stationarity.
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Definition 4.1.4 (Second largest eigenvalue modulus). The second largest eigen-
value modulus (SLEM), λ∗, of a reversible transition matrix P on a finite state
space is given by

λ∗ = max {|λ| : λ is an eigenvalue of P, λ 6= 1} .

Definition 4.1.5 (Absolute spectral gap). The absolute spectral gap of a reversible
Markov chain on a finite state space is given by

γ∗ = 1− λ∗.

Using the eigenvalue approach, we consider relaxation times instead of mixing
times.

Definition 4.1.6 (Relaxation time). The relaxation time of a reversible Markov
chain on a finite state space is given by

nrel =
1

γ∗
.

The smaller the relaxation time of a Markov chain, the faster it mixes. The
following theorem shows that relaxation times can be used to bound mixing times

Theorem 4.1.7. Let P an be irreducible, reversible Markov chain on a finite state
space with stationary distribution π. Let (π)min = mini∈X (π)i. Then,

nmix(ε) ≤ log

(
1

ε(π)min

)
nrel.

If additionally, the Markov chain is aperiodic, then

nmix(ε) ≥ (nrel − 1) log

(
1

2ε

)
Proof. See [4]. Theorem 12.3 and 12.4.

It also possible to get lower bounds on mixing times using relaxation times.
See [4] for more details.

4.2 Speeding things up

In general, Markov chains will mix faster if they explore the state space quickly.
However, most of the algorithms we have considered so far only make local changes
at each step (that is, the samples do not change too much from step to step). For
example, the algorithms for the Ising model only change the value at one site
in each step. It would clearly be better if we could make global changes at each
step (that is, totally change the value of the Markov chain from one step to the
next). The problem, however, is that global changes are very difficult to make.
We certainly cannot just change everything at random and try to accept it using
Metropolis-Hastings (this would be almost as bad as the acceptance rejection
method, which we have seen is very bad). Much more sophisticated techniques
must be used. We will focus on two: parallel tempering and the Swendsen-Wang
algorithm.
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4.2.1 Parallel tempering

A major challenge when designing MCMC algorithms is that many distribu-
tions we are interested in sampling from have regions of high probability sur-
rounded by regions of low probability. For example, in the Ising model the most
likely configurations are all 1s and all −1s. Configurations that are a mixture of
1s and −1s have much lower probabilities.

In general, it is hard to make samplers that can escape from high probabil-
ity regions, travel quickly through low energy regions, and find other high energy
regions. The idea of parallel tempering is to use multiple Markov chains to ac-
complish this.

We have already seen, when considering simulated annealing, that the temper-
ature of a Boltzmann distribution

πT (x) =
1

ZT
exp

{
− 1

T
E(x)

}
can be used to control the shape of the distribution. In particular, as T →∞, πT
converges to a uniform distribution and, as T → 0, πT becomes concentrated at
the configurations with the lowest energy.

In parallel tempering, we suppose we want to sample from some distribution
of the form

πT (x) =
1

ZT
exp

{
− 1

T
E(x)

}
.

With a little bit of work, almost any distribution can be written in this form. The
basic idea is then to run multiple Markov chains, each at a different temperature,
with the Markov chain with the lowest temperature having stationary distribution
πT . The Markov chains running at high temperatures will quickly explore the state
space, while the Markov chains at lower temperatures will mainly move in small
regions of high probability. Periodically, we will switch the values of two of the
Markov chains using a Metropolis move (so that the stationary distributions of
the Markov chains are preserved). In this way, the Markov chains with lower
temperatures can ‘teleport’ from one region of high probability to another.

More formally, the setup is as follows. We consider a sequence of M tempera-
tures

T = T1 < T2 < · · · < TM

and define associated Boltzmann distributions πT1 , . . . , πTM . We then define a

Markov chain, {(X(1)
n , . . . , X

(M)
n )}n∈N on X × · · · × X with stationary distribu-

tion π(x1, . . . , xM) = πT1(x1) · · · πTM (xM). Note that the projection of the first

coordinate of this Markov chain is a Markov chain, {X(1)
n }n∈N, with stationary

distribution πT . We can simulate the Markov chain {(X(1)
n , . . . , X

(M)
n )}n∈N by

running separate MCMC samplers for each of its components.

Now, we wish to add the ability for the Markov chains running at different tem-
peratures to switch places. We decide whether or not to switch two Markov chains
using a Metropolis acceptance probability. This preserves the stationary distri-
bution of {(X(1)

n , . . . , X
(M)
n )}n∈N. Suppose that, at time n, we wish to switch the
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values of the chains {X(i)
n }n∈N and {X(i+1)

n }n∈N. This is the same as a Metropolis
move from the state

X = (X(1)
n , . . . , X(i−1)

n , X(i)
n , X(i+1)

n , X(i+2)
n , . . . , X(M)

n )

to the state

Y = (X(1)
n , . . . , X(i−1)

n , X(i+1)
n , X(i)

n , X(i+2)
n , . . . , X(M)

n ).

The probability of accepting such a move when using a Metropolis MCMC sampler
is

α(X, Y ) =
π(Y )

π(X)

=
πT1(X

(1)
n ) · · · πTi−1

(X
(i−1)
n ) · πTi(X

(i+1)
n ) · πTi+1

(X
(i)
n ) · πTi+1

(X
(i+2)
n ) · · · , πTM (X

(M)
n )

πT1(X
(1)
n ) · · · πTi−1

(X
(i−1)
n ) · πTi(X

(i)
n ) · πTi+1

(X
(i+1)
n ) · πTi+1

(X
(i+2)
n ) · · · , πTM (X

(M)
n )

=
πTi(X

(i+1)
n ) · πTi+1

(X
(i)
n )

πTi(X
(i)
n ) · πTi+1

(X
(i+1)
n )

.

Putting everything together, we have the following algorithm.

Algorithm 4.2.1 (Parallel tempering). Given a temperature sequence T1 < T2 <
· · · < TM and β ∈ (0, 1),

(i) Draw X
(1)
0 ∼ µ0, . . . , X

(M)
0 ∼ µM . Set n = 0.

(ii) With probability β attempt to switch two chains: setX
(1)
n+1 = X

(1)
n , . . . , X

(M)
n+1 =

X
(M)
n , then choose i uniformly from {1, . . . ,M − 1} and, with probability

α =
πTi(X

(i+1)) · πTi+1
(X(i))

πTi(X
(i)) · πTi+1

(X(i+1))
,

set X
(i+1)
n+1 = X

(i)
n and X

(i)
n+1 = X

(i+1)
n .

(iii) Otherwise, generate X
(1)
n+1, . . . , X

(M)
n+1 using MCMC samplers with stationary

distributions πT1 , . . . , πTM .

(iv) Set n = n+ 1 and repeat from step 2.

In order for the parallel tempering algorithm to work well, the temperatures
T1, . . . , TM need to be chosen carefully. Basically, they should be close enough
that the probability of the Markov chains switching is not too low. However,
they should also be chosen far enough apart that they behave differently from one
another.

Example 4.2.1 (Ising model on 2D square lattice). Consider the version of the
Ising model on an m×m lattice considered in Section 3.2.2. In the following code,
we implement a parallel tempering algorithm for simulating from this using three
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chains. To test the effectiveness of the approach, we estimate the average spin per
site. That is, we estimate

f̄ =
1

m2

∑
s∈S

Xs.

Because, for every configuration, there is an equally likely configuration with the
opposite spins, this value should be 0. However, as you will notice, when the
MCMC sample is not mixing properly, estimates of this quantity will be far from
0.

Listing 4.2: Parallel tempering for the Ising model

1 ising_energy=function(J, H, X)

2 {

3 m= ncol(X)

4

5 single_energies=0

6 pair_energies= 0

7 for (i in 1:m)

8 {

9 for(j in 1:m)

10 {

11 single_energies=single_energies - H*X[i,j]

12 }

13 }

14 for(i in 1:m)

15 {

16 for(j in 1:m)

17 {

18 if(i<m & j < m)

19 {

20 # pair to the right vertex

21 pair_energies= pair_energies - J*X[i, j]*X[i, j+1]

22 # pair to the below vertex

23 pair_energies= pair_energies - J*X[i,j]*X[i+1, j]

24 }

25 else if (i==m & j < m)

26 {

27 # pair to the right vertex

28 pair_energies= pair_energies - J*X[i, j]*X[i, j+1]

29 }

30

31 else if (i<m & j==m)

32 {

33 # pair to the below vertex

34 pair_energies= pair_energies - J*X[i,j]*X[i+1, j]

35 }

36 else

37 {

38 pair_energies=pair_energies

39 }
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40 }

41 }

42 energy= single_energies + pair_energies

43 return(energy)

44 }

45

46 N=10^2

47 J0=1

48 H0=0

49 m=20

50 beta= 0.2

51 results= c()

52 change=rep(0, 2)

53 T0= c(1.8, 2.1, 2.35)

54

55 ###step 1

56 X0= array(1, c(m, m, 3))

57 for(i in 1:N)

58 {

59 U= runif(1)

60 if(U< beta) ### step 2

61 {

62 j = sample(1:(3-1), size=1, replace=TRUE) # step 2(b)

63 eps1 =ising_energy(H=H0, J=J0, X=X0[,,j]) # step 2(c)

64 eps2= ising_energy(H=H0, J=J0, X=X0[,,(j+1)])

65 alpha= exp(-(1/T0[j]+ 1/T0[j+1])*(eps2-eps1))

66 if(runif(1) < alpha)

67 {

68 Y=X0[,,j]

69 X0[,,j]=X0[,,(j+1)]

70 X0[,,(j+1)]=Y

71 change[j]=change[j]+1

72 }

73 }

74 else

75 {

76 for(r in 1:3) ### step (3)

77 {

78 # choose randomly a coordinate (i,j)

79 k= sample(1:m, size=1, replace=TRUE)

80 l= sample(1:m, size=1, replace=TRUE)

81

82 Y=X0[,,r]

83 Y[k, l]= -1 *Y[k,l] # flip this energy

84

85 alpha= exp(1/T0[r]*(ising_energy(J=J0, H=H0, X=X0[,,r]) - ising_energy(J=J0, H=H0, X=Y)))

86 Z= runif(1)

87

88 if(Z< alpha){X0[,,r]=Y}

89 }
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90 }

91 results[i]= mean(X0[,,1])

92 }



Chapter 5

Markov Chain Monte Carlo on
General State Spaces

5.1 Markov Chains on General State Spaces

So far we have just considered Markov chains defined on a countable state
space. It seems natural to ask if we can also think about Markov chains on a state
space, X , that is not necessarily countable. Such a state space is called a general
state space.

In order to define a Markov chain on such a state space, we need an analogue
of a transition matrix. Because we are no longer guaranteed that the state space
is countable, we cannot use a matrix for this purpose. Instead, we use a more
abstract object called a transition kernel.

Definition 5.1.1 (Transition Kernel). Given a general state space, X , a transition
kernel is a function, K, on X × B(X ) such that

(i) K(x, ·) is a probability measure for all x ∈ X .

(ii) K(·, A) is measurable for all A ∈ B(X ).

We then define time-homogeneous Markov chains on a general state space using
the notion of a transition kernel.

Definition 5.1.2 (General state space time-homogeneous Markov chain). A se-
quence {Xn}n∈N is a time-homogeneous general state space Markov chain with
transition kernel K if

P (Xn+1 ∈ A |X0 = x0, . . . , Xn = xn)

= P (Xn+1 ∈ A |Xn = xn)

=

∫
A

K(xn, dx).

Example 5.1.3 (A random walk with normal increments). Consider the following
general state space Markov chain. We set X0 = 0 and

Xn+1 = Xn + εn,

105
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for n ≥ 0, where the {εn}n∈N are iid normal random variables with mean 0 and
variance σ2. The kernel of this chain is given by

K(xn, A) =

∫
A

1√
2πσ2

exp

{
−(y − xn)2

2σ2

}
dy.

Note that, here,

K(xn, dy) =
1√

2πσ2
exp

{
−(y − xn)2

2σ2

}
.

Concepts such as irreducibility and recurrence are trickier to define for general
state space Markov chains (this is basically because continuous probability distri-
butions assign zero probability to each point in the state space, so it no longer
makes sense to talk about the probability of returning to a specific point). If you
are interested, have a look at [7] or [5].

What is important for us, however, is the concept of an invariant measure.

Definition 5.1.4 (Invariant measure). A σ-finite measure, µ, is invariant for the
transition kernel K if

µ(B) =

∫
X
K(x,B)µ(dx).

As in the countable state space case, the detailed balance conditions will play
a key role in establishing that MCMC methods work.

Definition 5.1.5 (Detailed balance). A Markov chain with transition kernel K
is in detailed balance with a measure µ if

K(x, dy)µ(dx) = K(y, dx)µ(dy)

for every (x, y) ∈ X 2.

Theorem 5.1.6. If K satisfies the detailed balance equations with a probability
measure π, then π is an invariant distribution of the chain.

Proof. We have∫
X
K(x,B)π(dx) =

∫
X

∫
B

K(x, dy)π(dx)

=

∫
B

∫
X
K(y, dx)π(dy) =

∫
B

π(dy) = π(B).

Note that, as far as we are concerned, π(dy) will always be a probability density.

5.2 Metropolis-Hastings Algorithm

Equipped with a version of the detailed balance conditions, we are able to
extend the Metropolis-Hastings algorithm to general state spaces.
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Algorithm 5.2.1 (Metropolis-Hastings). Suppose we wish to sample from a den-
sity f (or something proportional to a density) using a proposal density q(y |x)
(a density that is conditional on x). We can do this as follows:

(i) Draw X0 ∼ µ. Set n = 0.

(ii) Draw ∼ q(y |Xn).

(iii) Set α(Xn, Y ) = min
{

1, f(Y )
f(Xn)

q(Xn |Y )
q(Y |Xn)

}
.

(iv) With probability α(Xn, Y ) set Xn+1 = Y . Otherwise, set Xn+1 = Xn.

(v) Set n = n+ 1 and repeat from step 2.

Example 5.2.1. We consider a random vector B = (B1, . . . , Bn)T with B1 ∼
Bin(1, θ), θ ∈ (0, 1) unknown, and B1, . . . , Bn are i.i.d. Consequently, the sum
Sn =

∑n
i=1Bi holds: Sn ∼ Bin(1, θ). Moreover we assume that we have a prior for

θ that is
π(θ) = 2 cos2(4πθ).

We now want to sample from the posterior density f(θ) = π(θ||Sn) by using the
proposal density

q(θ′|θ) =
1√

2πσ2
exp(− (θ′−θ)2

2σ2 ).

We know that f(θ) is of the following

f(θ) = CθSn(1− θ)n−Sn cos2(4πθ)

where C is an unknown, but finite constant. The acceptance probability is given
by:

α(x, y) = min{1,
(y
x

)Sn
(

1− y
1− x

)n−Sn
(

cos(4πY )

cos(4πY )

)2

}

Listing 5.1: Independence Sampler Code

1 prior_theta= function(theta){2*cos(4*pi*theta)^2}

2 curve(prior_theta, xlim=c(0, 1))

3 integrate(prior_theta, lower =0, upper=1)

4

5 n= 10

6 Sn= 5

7 posterior_theta= function(theta){theta^Sn *(1-theta)^(n-Sn) *prior_theta(theta)}

8 postint= integrate(posterior_theta, lower =0, upper=1)$value

9 posterior2_theta= function(theta){1/postint* posterior_theta(theta)}

10 curve(posterior2_theta)

11 curve(1/(sqrt(2*pi*0.01))*exp(-(x-0.5)^2/0.2), add=TRUE, col="red")

12

13 N=10^3

14 X=c()

15 X[1]= runif(1, 0, 1)# step 1

16 for(i in 1:N)
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17 {

18 Y= rnorm(1, mean= X[i], sd= 0.1) # step 2

19 alpha_i= min(1, posterior_theta(Y)/posterior_theta(X[i])) # step 3

20 U = runif(1, 0, 1) # step 4

21 if(U < alpha_i){X[i+1]= Y}

22 else{X[i+1]= X[i]}

23 }

24

25 hist(X, freq=FALSE)

26 curve(posterior2_theta, add=TRUE)

Theorem 5.2.2. Let {Xn}n∈N be the Markov chain produced by the Metropolis-
Hastings algorithm. Then, {Xn}n∈N is in detailed balance with f .

Proof. The transition kernel of {Xn}n∈N can be written as

K(x, dy) = α(x, y)q(y |x) + (1− α∗(x))δx(y),

where δx(y) is the Dirac delta function. Here, the term (1 − α∗(x)) gives the
probability that the chain rejects the proposed state and stays where it is. This
is given by

1− α∗(x) = 1−
∫
X
α(x, y)q(y |x)dy.

Thus, showing detailed balance amounts to showing that

K(x, dy)f(x) = K(y, dx)f(y).

That is

α(x, y)q(y |x)f(x)+(1−α∗(x))δx(y)f(x) = α(y, x)q(x | y)f(y)+(1−α∗(y))δy(x)f(y)

Now, it is immediate that (1−α∗(x))δx(y)f(x) = (1−α∗(y))δy(x)f(y), as δx(y) 6=
0⇒ x = y. Thus, we simply need to show

α(x, y)q(y |x)f(x) = α(y, x)q(x | y)f(y).

This is trivially satisfied if f(x) = 0 or f(y) = 0, so we can ignore these cases.
In order to show the identify, we take cases. First, we consider the case where
f(y)q(x | y) > f(x)q(y |x). Then we have

α(x, y)q(y |x)f(x) = min

{
f(y)

f(x)

q(x | y)

q(y |x)
, 1

}
q(y |x)f(x) = q(y |x)f(x)

=
q(y |x)f(x)

q(x | y)f(y)
q(x | y)f(y) = min

{
f(x)

f(y)

q(y |x)

q(x | y)
, 1

}
q(x | y)f(y)

= α(y, x)q(x | y)f(y).

In the second case, f(x)q(y |x) ≥ f(y)q(x | y). Then,

α(x, y)q(y |x)f(x) = min

{
f(y)

f(x)

q(x | y)

q(y |x)
, 1

}
q(y |x)f(x) =

f(y)

f(x)

q(x | y)

q(y |x)
q(y |x)f(x)

= f(y)q(x | y)f(y) = min

{
f(x)

f(y)

q(y |x)

q(x | y)
, 1

}
q(x | y)f(y) = α(y, x)q(x | y)f(y).



5.2. METROPOLIS-HASTINGS ALGORITHM 109

There are a number of different possibilities when choosing the probability
density. Two of the most popular are the independence sampler and the random
walk sampler.

5.2.1 The Independence Sampler

In the independence sampler, the proposal density does not depend on the
current location of the Markov chain. That is, q(y |x) = g(y), where g(y) is some
density. The acceptance probability is then of the form

α(x, y) =
f(y)

f(x)

g(x)

g(y)
.

The independence sampler is quite similar to the acceptance-rejection algorithm.
However, it actually works better in the sense that the probability of accepting
a proposal is always bigger than or equal to the acceptance probability in the
acceptance-rejection algorithm. Note that the name is a bit deceptive, as the
samples produced by the independence sampler are not independent of on another
(it is the proposal that is independent of the current state).

Example 5.2.3 (Sampling from a truncated normal distribution). Suppose we
wish to sample from the density

f(x) =

√
2√
π

exp

{
−1

2
x2

}
I(x > 0),

which is the density of a normal distribution truncated to the interval [0,∞). We
use the independence sampler with the proposal g(x) = exp{−x}, which is the
density of an exponential distribution with rate 1. The acceptance probability
here is of the form

α(x, y) =

√
2√
π
exp

{
−1

2
y2
}
I(x > 0)

√
2√
π
exp

{
−1

2
x2
} exp{−x}

exp{−y}
=

exp{y − y2/2}
exp{x− x2/2}

.

Listing 5.2: Independence Sampler Code

1 N= 10^3

2 X= c()

3 X[1]= 1

4 for(i in 1:N)

5 {

6 Y= rexp(1)

7 alpha_i= min(1, exp(Y-Y^2/2)/exp(X[i]- X[i]^2/2))

8 U=runif(1, 0, 1)

9 if(U < alpha_i)

10 {

11 X[i+1]=Y

12 }

13 else X[i+1]=X[i]

14 }

15 hist(X[100:length(X)], freq=FALSE)

16 curve(sqrt(2/pi)*exp(-1/2*x^2), add=TRUE, col="red")
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5.2.2 The Random Walk Sampler

A more interesting Metropolis-Hastings sampler is to let the proposal try to
make steps like a random walk (with continuously distributed step sizes). In this
version, we choose q(y |x) = g(‖x− y‖). That is, we choose the proposal density
to be a symmetric distribution centered at x. The classical example is to use a
normal distribution with mean x and variance σ2. In this case, the acceptance
probability is of the form

α(x, y) =
f(y)

f(x)
.

Example 5.2.4 (Sampling from a truncated normal distribution). Suppose, againm,
we wish to sample from the density

f(x) =

√
2√
π

exp

{
−1

2
x2

}
I(x > 0).

We use the random walk sampler with the proposal q(y|x) = ϕ(y;x, σ2), where
ϕ(·;µ, σ2) is the density of a normal distribution with mean µ and variance σ2.
The acceptance probability here is of the form

α(x, y) =

√
2√
π
exp

{
−1

2
y2
}

√
2√
π
exp

{
−1

2
x2
} =

exp{−y2/2}
exp{−x2/2}

.

Listing 5.3: Random Walk Sampler Code

1 N=10^3

2 X=c()

3 X[1]= 1

4 alpha=c()

5 sd0= 1

6 for(i in 1:N)

7 {

8 Y=X[i]+ rnorm(1, 0,sd=sd0)

9 alpha[i]= min(exp(-Y^2/2 + X[i]^2/2)*(Y>0), 1)

10 U=runif(1, 0, 1)

11 if(U < alpha[i])

12 {

13 X[i+1]=Y

14 }

15 else X[i+1]=X[i]

16 }

17 mean(alpha)

18 hist(X, freq=FALSE)

19 curve(sqrt(2/pi)*exp(-1/2*x^2), add=TRUE, col="red")

Example 5.2.5 (Multi-dimensional Metropolis-Hastings). Suppose we want to
sample from the density

f(x) = 0.7 · ϕ(x;µ1,Σ1) + 0.3 · ϕ(x;µ2,Σ2),
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where ϕ(·;µ,Σ) is the density of a multivariate normal distribution with mean
vector µ and covariance matrix Σ and

µ1 =

(
4
5

)
, Σ1 =

[
1.0 0.7
0.7 1.0

]
, µ2 =

(
0.7
3.5

)
, Σ1 =

[
1.0 −0.7
−0.7 1.0

]
.

The density is show in Figure 5.2.1. We can sample from this density using random
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Figure 5.2.1: Plot of f(x).

walk Metropolis-Hastings with a multivariate normal proposal density. That is,
we set Y = Xn + ε, where

ε ∼ N
((

0
0

)
, σ ·

(
1 0
0 1

))
Figure ?? shows a plot of the sample obtained from the algorithm superimposed
on a contour plot of the density.

Listing 5.4: Multivariate Metropolis-Hastings Code

1 dmixed_norm= function(x, mu1, mu2, Sigma1, Sigma2, lambda)

2 {

3 det1 = det(Sigma1)

4 det2= det(Sigma2)

5 temp1 = t(x-mu1) %*%solve(Sigma1)%*%(x-mu1)/2

6 temp2 = t(x-mu2)%*%solve(Sigma2)%*%(x-mu2)/2

7 result = lambda* 1/(2*pi)^(nrow(Sigma1)/2) * 1/det1 * exp(-temp1)

8 + (1-lambda)* 1/(2*pi)^(nrow(Sigma2)/2) * 1/det2 * exp(-temp2)

9 return(result)

10 }

11

12 ## Parameters

13 mu01 = c(4, 5)

14 Sigma01 = cbind(c(1, 0.7), c(0.7, 1))
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Figure 5.2.2: Plot of a sample from the MH sampler superimposed on a contour
plot of the density

15 mu02 = c(0.7, 3.5)

16 Sigma02 = cbind(c(1, -0.7), c(-0.7, 1))

17 lambda0 = 0.7

18

19 ### plot of density function

20 xseq= seq(-2, 8, length= 50)

21 yseq= seq(-2, 8, length= 50)

22 zseq= matrix(0, nrow=50, ncol=50)

23 for(k in 1:50)

24 {

25 for(l in 1:50)

26 {

27 zseq[k,l]= dmixed_norm(x=c(xseq[k], yseq[l]), mu1=mu01,

28 mu2=mu02, Sigma1=Sigma01, Sigma2=Sigma02, lambda=lambda0)

29

30 }

31 }

32 persp(xseq, yseq, zseq, zlab=" ",

33 ticktype="detailed", theta= 315, phi= 0)

34 contour(xseq, yseq, zseq, lty=1)

35

36 ### Algorithm

37 N= 10^3

38 X= matrix(0, ncol= 2, nrow=N+1)

39

40 X[1,]= c(1, 3)

41 for(i in 1:N)

42 {

43 Y= X[i,]+ rnorm(2, mean=0, sd=1)

44 f_Y = dmixed_norm(x=Y, mu1=mu01, mu2=mu02,
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45 Sigma1=Sigma01, Sigma2=Sigma02, lambda=lambda0)

46 f_X=dmixed_norm(x=X[i,], mu1=mu01, mu2=mu02,

47 Sigma1=Sigma01, Sigma2=Sigma02, lambda=lambda0)

48 alpha[i]= min(1, f_Y/f_X)

49 U=runif(1, 0, 1)

50 if(U < alpha[i])

51 {

52 X[i+1,]=Y

53 }

54 else X[i+1,]=X[i,]

55 }

56 contour(xseq, yseq, zseq, lty=1)

57 points(X[,1], X[,2])

5.3 The Gibb’s Sampler

We can also consider a version of the Gibb’s sampler for general state spaces.
Suppose we wish to sample from the multivariate density f(x1, . . . , xd) and we
know the conditional densities

f(x1 |x2, . . . , xd), f(x2 |x1, x3, . . . , xd), . . . , f(xd |x1, . . . , xd−1).

We can use the following (systematic-scan) algorithm.

Algorithm 5.3.1 (Continuous Gibb’s Sampler (Systematic Sampling Version)).
One step of the Gibb’s sampler (from X to Y) is given by

1. Sample Y1 ∼ f(x1 |X2, . . . , Xd).

2. Sample Y2 ∼ f(x2 |Y1, X3, . . . , Xd).

...

d. Sample Yd ∼ f(xd |Y1, . . . , Yd−1).

The trick in using the Gibb’s sampler is to find the conditional densities. A
simple trick for this, which is used a lot in Bayesian statistics, is to observe that
(so long as f(y) > 0)

f(x | y) =
f(x, y)

f(y)
∝ f(x, y),

so, in some sense, the joint density gives us all information about the conditional
densities except their normalizing constants. Thus, if one looks from the right
perspective (this takes a little practice) one can often get the conditional density
of x given y by looking at f(x, y) and treating y as a constant.

Example 5.3.1 (Sampling uniformly from a ball). Suppose we want to sample
uniformly from {(x, y) ∈ R2 : x2 + y2 ≤ 1}. We first need to find the conditional
densities. We know the joint density is given by

f(x, y) ∝ I(x2 + y2 ≤ 1).



114CHAPTER 5. MARKOVCHAINMONTE CARLOONGENERAL STATE SPACES

Treating y as a constant, we can rearrange this to see that

f(x | y) ∝ I(x2 + y2 ≤ 1) ∝ I(x2+ ≤ 1− y2) ∝ I(−
√

1− y2 ≤ x ≤
√

1− y2).

By the same argument, f(y |x) ∝ I(−
√

1− x2 ≤ y ≤
√

1− x2). Thus

X |Y ∼ U(−
√

1− Y 2,
√

1− Y 2) and Y |X ∼ U(−
√

1−X2,
√

1−X2).

Listing 5.5: Gibb’s Sampler Code

1 N= 10^4

2 X=matrix(0, ncol=2, nrow=N+1)

3 X[1, ]= c(1, 0)

4 for(i in 1:N)

5 {

6 X[i+1,1] = runif(1, min= -sqrt(1-X[i,2]^2), max=sqrt(1-X[i,2]^2) )

7 X[i+1,2] = runif(1, min= -sqrt(1-X[i+1,1]^2), max=sqrt(1-X[i+1,1]^2) )

8 }

9 plot(X[,1], X[,2])
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Figure 5.3.1: Plot of a sample from a uniform distribution on the unit ball gener-
ated by a Gibb’s sampler.
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Example 5.3.2 (Sampling from a complicated 2D density). Consider a compli-
cated 2D density, as might appear in Bayesian statistics (this example is taken
from [7]). The joint density is of the form

f(x, y) ∝ exp

{
−x

2

2

}
exp

{
−[1 + (x− λ)2]y/2

}
yν−1.

Treating y as a constant and completing the square, we have

f(x | y) ∝ exp

{
−x

2

2
− (x− λ)2y

2

}
∝ exp

{
−1

2

[
x2 + x2y − 2xλy + λ2y

]}
∝ exp

{
−1

2

[
(1 + y)x2 − 2xλy

]}
∝ exp

{
−1

2
(1 + y)

[
x2 − 2xλy

1 + y

]}
∝ exp

{
−1

2
(1 + y)

(
x− λy

1 + y

)2
}
.

Thus, X |Y is normally distributed with mean λy/(1 + y) and variance (1 + y)−1.
Likewise

f(y |x) ∝ exp

{
−1 + (x− λ)2

2
y

}
yν−1.

Now, note that the gamma density, with parameters α and β is given by

βα

Γ(α)
xα−1e−βx.

Thus, we see that Y |X is gamma distributed with α = ν and β = [1 + (x− λ)2] /2.

Listing 5.6: Complicated 2 dimensional density

1 N= 10^3

2 lambda= 0.5

3 nu= 1.5

4 X=matrix(0, ncol=2, nrow=N+1)

5 X[1, ]= c(1, 1)

6 for(i in 1:N)

7 {

8 X[i+1,1] = rnorm(1, mean= lambda*X[i, 2]/(1+X[i, 2]) , sd= (1+X[i,2])^(-1/2))

9 beta= 1+ (1+(X[i+1,1]-lambda)^2)/2

10 alpha= nu

11 X[i+1,2] = rgamma(1,shape = alpha,scale= 1/beta)

12 }

13 plot(X[,1], X[,2])

Of course, we need to make sure that the Gibb’s sampler works. First, we need
to define the forward and backward transition densities for the Gibb’s sampler.
Let

K1→n(y |x) =
d∏
i=1

f(yi | y1, . . . , yi−1, xi+1, . . . , xd)
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and

Kn→1(x | y) =
d∏
i=1

f(xi | y1, . . . , yi−1, xi+1, . . . , xd).

We then have the following theorem.

Theorem 5.3.3. Let f(xi) be the ith marginal density of f(x). If f(y) > 0 for
every y ∈ {x : f(xi) > 0, i = 1, . . . , n}, then

f(y)Kn→1(x | y) = f(x)K1→n(y |x).

Proof. See [3].

Using this result, one sees that the Gibb’s sampler gives the correct distribution
by integrating both sides of the equation to get

f(y) =

∫
f(x)K1→n(y |x) dx,

which shows f is a stationary distribution for the chain.
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