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Introduction

Generally speaking, the field of spatial statistics deals with the statistical inference of random
objects that are embedded into the Euclidean space R¢ such as random closed sets, mosaics,
geometric point processes and graphs, shapes, fields etc. Here, the space R? can as well be
understood as a space-time continuum if we separate some dimension of R? to be a time line.

Modern spatial statistics is a huge area which can not be covered in one lecture course. The
field’s practical applications range from engineering to medicine and social sciences, and are too
numerous to mention them all. To give a feeling of how powerful its methods can be, consider
just two specific subareas of spatial statistics:

First, the subarea concerned with random sections of random closed sets is called stereology
with main applications in medicine and biology, in particular pathology analysis. The second
subarea, which deals by applications in geosciences, is named geostatistics. Here, the main
objects of study are random surfaces, which might be evolving in time. We refer to these surfaces
as random fields. These fields may model gas, ore, crude oil or coal deposits in geology, rough
surfaces of metals or composites in materials science, regression forecast surfaces in climate
research and environmental contexts as well as in georeferenced economics and insurance.

The latter area, dealing with statistical inference of random fields, is the subject of these
lecture notes. It will include the estimation of the mean, covariance, spectral density, variogram
as well as various prediction methods for (space-time-)random surfaces. In the context of
prediction, we will review different regression, kriging and metric projection-type methods.



1 Basics of Random Fields

We start with a short overview of the basic notions of the theory of random fields. Let Bga
denote the Borel g-algebra of subsets of R%, d > 1. We equip the Euclidean space R? with a

norm || - ||, e.g. the Euclidean norm ||z||s = /(z,z), = € R?, where (-, ) is the scalar product
in R2. Denote by R the set of positive real numbers, i.e. R, = [0,00). Furthermore, let

(Q, F,P) be an arbitrary probability space.

Definition 1.1 A random field X = {X(t),t € T} is a random function on (2, F,P) indexed
by the elements of some subset T C R? where d > 1 is an arbitrary integer, i.e. X is a
measurable mapping X : Q x R¢ — R. That is, for all Borel sets B € Bg it holds that
X 't)B)={weQ: X(t)eB}e FVteT.

For an introduction into the theory of random fields see lecture notes "Random Fields" [43].

1.1 Random Fields with Invariance Properties

Definition 1.2 A random field X = {X(¢),t € T} whose finite-dimensional distributions are
invariant with respect to the action of a group G of transformations of 7' is called G-invariant
in the strict sense. That is, for all ¢1,...,t, € T,n € N, and g € G it holds that

(X(gt1)s - X (gtn)) £ (X(t1), -+, X (1)),

where £ denotes equality in distribution and gt = g(t) for all t € T..

In case the invariance is given only for the first two moments of the field, which are assumed
to be finite we speak of G-invariance in wide sense:

Definition 1.3 A random field X = {X(¢),t € T'} is G-invariant in wide sense if it is square-
integrable, i.e. E[X2(t)] < oo for all t € T, and the mean value function u(t) := EX(t), t € T,
as well as the covariance function C(s,t) == cov(X(s), X (t)) s,t € T, satisfy

p(gt) = p(t) and  C(gs,gt) = C(s,t)

for all s,t € T and g € G.

It is easy to see that any random field X which is G-invariant in strict sense, is also G-
invariant in wide sense provided that EX?2(t) < oo for all t € T.

Remark 1.4 Let G be

(a) the group of translation of T, i.e., g(t) = t + h, for some translation vector h, € R%.
Then, the G-invariant random field X is called stationary (in the respective sense).

(b) the group of rotations of T, SO,4. Then, the G-invariant random field X is called isotropic
(in the respective sense).
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(c) the group of all rigid motions of T. Then, the G-invariant random field X is called motion
invariant (in the respective sense). This is equivalent to X being stationary and isotropic.

If X is square integrable, then properties (a)-(c) imply
(a) p(t) = const, C(s,t) = Co(s —t), s,t € T, where Cp : R? — R is a covariance function,
(b) u(t) = ult]), C(s,t) = C(|sll.[1t]), s,t € T, where || - || is a norm in R,
(¢) u(t) = const, C(s,t) = Ci(||s—t|), s,t € T, where C; : R;. — R is a covariance function.

The same notions of G-invariance can be transformed to the increments Xj, = {X,(t) ==
X({t+h)—X(t),t €T}, heT,of arandom field X. In this case, the stationary property is
called intrinsic. The intrinsic stationarity in the wide sense is called intrinsic stationarity of
order two. It holds that

E[Xu(t)] = f(h) and E[X}(t)] =2v(h)

do not depend on t € T'. The function -y is called the variogram. It is defined by defined by
1
A(h) = JE (X (t + h) = X(1))?]

forall h e T.

Exercise 1.5 Show that the mean value function (if it exists) of any process (d = 1) with
stationary increments is a linear function, i.e., EX(t) = at + ¢ for all ¢t € R, where a € R and
c € R are some constants.

Lastly, we say that a random field X = {X(¢),t € T'} is centered if its mean value function
p(t) exists, and p(t) =0 for all t € T.

1.2 Elements of correlation theory

Let X = {X(t),t € T}, T C R? be a square-integrable random field which is wide sense
stationary with covariance function C(s—t) = cov(X(s), X(t)), s,t € T. Then, the covariance
function C is positive semidefinite, as it follows from

Proposition 1.6 A function G : RxR% — R is a covariance function of some square integrable
random field if and only if it is positive semi-definite.

Exercise 1.7 Prove Proposition 1.6. Hint: Calculate the variance of the linear combination
n 2 X () for arbitrary n € N, t; € RY, z; € R.

An important aspect of correlation theory is the so-called spectral representation of X. By
the Bochner-Kchinchin theorem, see lecture notes "Random Fields" [43, Theorem 2.1.1], any
positive semi-definite function f : R — R, which is continuous at the origin, is a Fourier
transform of some symmetric finite measure p1y on R?. Thus, for a wide-sense stationary and
mean-square continuous field X we have

cov(X(s)),X(t)=C(s—t) = /Rd @5 o (da).
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Here, (-,-) denotes the Euclidean scalar product in R%. The finite measure pc on Bga is called
a spectral measure of X. If pc is absolutely continuous with respect to the Lebesque measure,
then its density fo is called a spectral density, i.e.

ne(de) = fo(@)da.

It holds that the spectral density fo : R — R is integrable on R?, since

fo(r)dr = / pe(dx) = C(0) = varX (t) < oc.
R4 R4

Together with the covariance function C', the spectral density measures the stochastic depen-
dence between X (s) and X(t) for s,t € T. In particular, the behaviour of fo at the origin
0 € R? (e.g. whether fc(0) < oo or fo(z) 1 0o,  — 0) can tell whether the field X has short

memory, i.e.
/ |C(z)|dz < o0
R4
or long memory, i.e.

/Rd 1C ()| dz = oo.

Sometimes, the terms short and long range dependence are used, instead.

1.3 Examples of random fields

1.3.1 Boolean random fields

Let {X;(t),t € Rd}leR be a family of stochastically independent a.s. continuous random func-
tions with subgraphs having almost surely compact sections. Furthermore, let I = {(Y;, T;)}5°,
be a Poisson point process in R? xR with intensity measure vg®6, where vg denotes the Lebesgue
measure on R? and 6 is a o-finite measure on R. The random function X = {X(t),t € R4}
with
X(t)= sup Xrp(t—Yy), teR?
(Yi,Tr )€l

is called a Boolean random field. The functions X; are refered to as primary functions. Boolean
random fields are often used for modeling purposes in geo- and materials science.

XTl XTQ X 3 XT4
' l f f ' X (t)
i Y, Y; Yy

Fig. 1.1: X (¢) at "simulation time" step 7}.
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Fig. 1.2: Examples of realizations of a Boolean random function with cone primary functions
(left) and built from Poisson lines (right) [38, p. 149].

1.3.2 Gaussian random fields

A widely known and among the most important classes of random fields is the class of Gaussian
fields.

Definition 1.8 A random field X = {X(t),t € R} is called Gaussian if its finite dimensional
distributions are Gaussian.

The popularity of Gaussian fields for modeling purposes in applications can be explained
mainly by the simplicity of their construction and analytic tractability combined with the
normal distributions of marginals, which describe many real phenomena due to the central
limit theorem.

By Kolmogorov’s theorem, the probability law (or distribution) of a Gaussian random field
is uniquely defined by its mean value and covariance functions, see lecture "Random fields" [43,
Theorem 1.1.2.].

Exercise 1.9 Show that for Gaussian random fields stationarity (isotropy, motion invariance)
in the strict sense and stationarity (isotropy, motion invariance) in the wide sense are equivalent.
In this case we call a Gaussian field just stationary (isotropic, motion invariant)

In the following, consider two particular cases of Gaussian random fields:

(a) An Ornstein- Uhlenbeck random field is a centered, i.e. E[X (¢)] = 0 for all t € R, Gaussian
random field X = {X(¢),¢ € R} with covariance function

E[X(s)X ()] = exp{—|s — t|/2}, s,t€R%
It is clearly stationary and isotropic, hence motion invariant.

(b) A fractional Brownian field X = {X(t),t € R} is a centered Gaussian field with covari-
ance function

1
E[X(5)X ()] = SllsI* + [t — Is =, s,t € R?
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—

Fig. 1.3: Fractional Brownian fields with different roughness parameter H [38, p.398].

for some H € (0, 1], where || - || is the Euclidean norm in R%. Often the process is denoted
by X to emphasize its dependence on H.

The parameter H, often referred to as Hurst indezx, is responsible for the regularity of
the paths of X — the larger H, the smoother the paths of X. In the one-dimensional case
(d = 1) the process X is called the fractional Brownian motion, including the two-sided
Wiener process (defined on the whole real line R) where H = % In the case d > 1, X is

1
called the Brownian Lévy field if H = 5

It is easy to check that X is intrinsically stationary of order two and isotropic. Its
variogram y(h) = 3 - ||h||*# is clearly motion invariant. However, this field is not wide-
sense stationary as its variance is not constant.
Exercise 1.10 Show that a fractional Brownian field X

(a) has stationary increments, which are positively correlated for H € (3,1) and nega-
tively correlated for H € (0, 3),
) is H-self-similar, i.e. X (At) 4 INF X (t) for all A € R and ¢ € R%.
c¢) has a version with a.s. Hoélder-continuous paths of any order 8 € (0, H),

)

)

has nowhere differentiable paths for any H € (0,1)

is a linear process for d = H = 1, i.e. X(¢) 4 tZ, for all t € R and some random
variable Z ~ N(0,1).

1.3.3 Max-stable random fields

Max-stable random fields are used to model external events such as highest floods, maximal
temperature and precipitation etc.

Definition 1.11 A random field X = {X(¢),t € T'} is called maz-stable if for any n € N there
exist constants o, > 0, 5, € R such that

X i {maszl,...,an(t) - Bn
On

ver),

where {X(t),t € T'} are i.i.d. copies of X.
In particular, if T = {to}, to € R? then X is called a maz-stable random variable. On the
other hand, if T = {t1,...,t,} C R? | then X is a max-stable random vector.
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By the theorem of Fisher-Tippett-Gnedenko [7] any max-stable random variable (and hence
any margined distribution of a max-stable random field X') has one of the three possible eztreme
value distributions: Weibull, Gumbel or Fréchet.

Among these distributions, only the Fréchet distribution does not have a finite variance. We
say that a random variable Y is Fréchet-distributed is its cumulative distribution function is

given by
]P’(Yga:):exp{—(x_'u> }, x> .
o

We use the notation Y ~ Fréchet(a, u, o), and for Fréchet(a,0,1) = Fréchet(c). Fréchet(1) is
called standard Fréchet distribution.

Exercise 1.12 Show that for Y] ~ Fréchet(«) it holds that E|Y;| < oo if and only if o > 1.
Moreover, E|Y1|* < oo holds if and only if a > k ¥k € N. For a > 1, check that E(Y;) =
ra-4).

Every max-stable random field X can be suitably transformed via a transform W such
that the marginals of ¥(X) have either Weibull, Fréchet or Gumbel distribution. A suit-
able transformation of X (¢) can be chosen as follows. For the cumulative distribution function
Fx@ =P(X(t) <z), z€R, define

1

- zeR
log Fx () ()

U(x) =

Then, it is not difficult to see that Y (¢) = U(X(¢)) ~ Fréchet(1). Consequently, it is sufficient
to consider random fields with marginals standardized to Fréchet(1).

Exercise 1.13 Prove the above.

The stochastic dependence in max-stable random vectors is described by the so-called tail
dependence function. Consider the (n — 1)-dimensional unit simplex S, = {(x1,...,xz,) = x €
R% Z?Zl zj =1} , n € N, n > 2. The tail dependence function I, is introduced in the
following result.

Theorem 1.14 Let Y = (Y7,...,Y,,) be a max-stable random vector. The following are equiv-
alent.

(a) Y; ~ Fréchet(a) for some o > 2, j =1,...,n.
(b) There exists a function [, : Ry — R, such that
P(Y1 <z,...,Y, <z, = exp{—ln(xl_o‘,...,a;;a)}, T1,...,Ly > 0.
where

ln(x1,. . 2pn) = max {zjq;} du(qi,. .., qn)-
S, J=1,...,n

The finite measure p on S, satisfies the constraint
/S g dqr,...,qn) =1, j=1,...,n,

see [34] for a proof. The function [,, is called tail dependence function of the vector Y.
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Theorem 1.15 The tail dependence function I,
(a) is convex,
(b) is homogeneous of order 1, i.e.
Ln(Ax1, .. A zpn) = N D21, .0y 2p)
for all A > 0 and x1,...,z, >0,

(c) satisfies

n
2]l maz < ln(z1, ..., 20) < Z%’ = ||lz(l1
=1
for all vectors z = (z1,...,2,) € R", where ||2|mer = maxj—1. p |z;| is the maximum
norm of x and |[z[|; = > %_; |z;| the l;-norm.

Exercise 1.16 Prove Theorem 1.15.

Exercise 1.17 Let [, be the tail-dependence function of a max-stable random vector ¥ =
(Y1,...,Y,). Show:

(@) ln(z) = ||z]|maz © Y1 = -+ =Y, as., i.e. complete dependence.
(b) ln(z) = ||z||p & Yi,...,Y, are stochastically independent.

Recall that the Fréchet distribution has infinite variance. For n = 2, the quantity 6 = l2(1,1)
is called (pairwise) extremal coefficient. It serves as an analogue to the covariance for heavy-
tailed random variables Y7, Y5 ~ Fréchet.

Example 1.18 Let us now give some examples of max-stable random fields.

(I) The Brown-Resnick random field is defined as follows. Let Y = {Y(t),t € T} be a
centered Gaussian random field with stationary increments and o2 (t) := var(Y (¢)), t € 7.
Let II = {¢;} be a Poisson process on R, independent of Y, with intensity measure
A(dz) = e *dx. Then, the Brown-Resnick random field is given by

jEN 2

2(t
R(t) :== max{gj +Y;(t) — o) , teT,
where p; = {Y}(t), t € T'} are independent copies of Y. It is stationary and has standard
Gumbel margins P(R(t) < x) = exp(—e™ "), = € R.
Exercise 1.19 Show that the transformation B(t) := e®®) has Fréchet(1) margins.

The finite-dimensional distributions of {R(t), t € T} as well as the tail dependence
function [,, are given in the following.

Theorem 1.20 For any tq,...,t, € T it holds that
0.2 .
(a) P(R(T1) < g1, R(tn) < yn) = exp { ~E exp {max;_1 (Y (1) — 5% = V) ]}
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(b) the tail dependence function I,, of (B(t1),...,B(ty)) is given by

ln(wl,...,xn)_/(:oo [1_F2n <log(i)+a2(tl),---ay)—i—az(tN))] dy,

2 T, 2

where ¥, is the covariance matrix of (Y (¢1),...,Y(¢n)), =1,...,2, > 0, and Fy is
the multivariate cumulative distribution function of N(0,X%,).

(IT) The Smith random field S = {S(t),t € T} is defined by
S(t) == mgéi{cjfg(t —¢)}, teT CRY,
J

where Y is a positive definite matrix with dimensions d x d, fs is the probability density
function of N(0,%) and II = {({j,&;)}jen is a Poisson point process on (0,+00) x R?
with intensity measure A(dz,dy) = x~2dxdy.

Similarly to Theorem 1.20, we may formulate:
Theorem 1.21 For any ¢1,...,t, € T it holds that

(a) S(t;) ~ Fréchet(1),

(b) P(S(t1) < wy1y...,5(tn) < yn) = exp {— Jramax;—1 . n %é_s)ds}, Yy Yn > 0,
(c) the tail dependence function I,, of (S(t1),...,S(t,)) is given by

ln(x1,...,2p /IR max {azjfg(t —s)}ds.

d ]_ kA 7
(III) The extremal Gaussian random field G = {G(t), t € T'} is given by

G(t) i= max G;(max{Y;(1),0}), teT CRY,
J

where {Y}(t), t € T'} are independent copies of a stationary centered Gaussian random
field Y = {Y(t), t € T}, and IT = {({;}jen is an independent Poisson process on R with

intensity measure A(dz) = 2ra2dz.
Theorem 1.22 For any t1,...,t, € T it holds that
a) G(t;) ~ Fréchet(1),
b) P(G(t;) < G = ~E , fo(ti—s)
1) S y1,--5 G(tn) < yn) = exp MaXj=1,.n = - s Yoo Yn >0,

Y5
c) the tail dependence function I,, of (G(t1),...,G(ty)) is given by
_ Y
ln(xl,...,:vn)— ( )] dy, x1,...,2, >0,
x1’

where F,, is chosen as in theorem 1.20.

Exercise 1.23 Show that for n = 2, the tail dependence function in Theorem 1.22 (c)
simplifies to

1

lo(x1,29) = =

5 (xl + 1z + /23 — pr122 +$%> )

where p = corr(Y (t1), Y (t2)).
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Brown-Resnick

Smith

<
75 i,
P AR
gy AN
rrrEy t:'::':“: oA

oo = M

Fig. 1.4: Simulated realizations of Brown-Resnick, Smith and extremal Gaussian random fields
ind=21[9].
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1.3.4 o-stable random fields

The class of a-stable random fields models heavy-tailed phenomena, where the variance (and
possibly even the mean) is infinite. Such events are common in insurance and finance, where
high volatility, dangerous risks in extreme scenarios are common. First, we introduce a-stable
random vectors.

Definition 1.24 A random vector Y = (Y7,...,Y,) : Q — R" is called stable if for all m > 2
there exist ¢ = ¢(m) > 0, k = k(m) € R" such that

YO 4v@ o pym Loy yg,

where {Y(j)}}”:1 are independent copies of Y.

It can be shown ¢ = m!/®, where a € (0,2] is called stability indez, cf. [37, Theorem 2.1.2].

Exercise 1.25 Show that for k = k(m) from definition 1.24 it holds k(m) = u(m — m'/®),
where (1 is the shift parameter of S, (p,T).
Hint: First, show that 377", Y) ~ S, (mp, mT) and m'/®Y +k(m) ~ So(m*u+k(m), mr).

An equivalent definition of stable random vectors is given in terms of their characteristic
function.
Definition 1.26 A random vector Y = (Y1,...,Y,) : Q — R" is called stable if its character-
istic function py(s) = E [e“y’sq, s € R", is of the form

oy (s) = 1 P A Jsnor Il 2 (1= 1 -sgn((s, o)) tan (5)) D(da) +ils, )}, a1,
exp {— Jon—1 (s, )] (1 +i2sgn((s,z)) log !(s,:z:>|) I(dz) + i<s,,u>} Ca=1,

where I'(.) is a finite measure on the unit sphere S"~! € R™ and p € R™.

For a € (0,2), the pair (i, I") yields a unique parametrization of the distribution of a stable
random vector Y. We say Y is a-stable with shift parameter p and spectral measure I' and write
Y ~ S4(u,T'). The spectral measure I' contains all information about the interdependence of
the coordinates Y, j =1,...,n.

In the case a = 2, the characteristic function in Definition 1.26 defines a Gaussian random
vector Y with

vy(s) =E [e“s’yq = exp {i(s,m - ;sTZs} , seR

with a positive semi-definite (n x n)- covariance matrix ¥ = (o)}, ojr = cov(Y},Yy) and
u=EY € R". In the Gaussian case, the spectral measure I'(.) is not unique, see Exercise 1.27
below.

Exercise 1.27 Consider the following measures I'1,I's on SO with

Show that I'1,I'y yield the same characteristic function in of a Gaussian random vector ¥ =

(Y1,Y2) with mean p € R? and covariance matrix ¥ = (; ;)

A random vector Y is called symmetric if Y 2 Y. For symmetric a-stable random vectors,
we will use the notation ¥ ~ SaS.
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Lemma 1.28 A random vector Y ~ S, (i, T') is SaS if and only if 4 = 0 and T' is symmetric
on S"L.

The proof of the above lemma is given in [37, Theorem 2.4.3]. For n = 1, Definition 1.24
yields an a-stable random variable Y. We will reparametrize its distribution using 4 parameters
«, 0, and u, as seen in the following representation of the characteristic function of Y. For
all s € R we have

(s)——lg{ewY}<_ exp {—0%|s|*(1 —iB - sgn(s) tan(’3*)) +ips}, a#1,
P ZEIT T e (ool 1418 Zegno o) + s a1

In the univariate case, we use the notation Y ~ S, (o, 5, ).
Exercise 1.29 Show that the spectral measure I of Y ~ S, (0, 8, i) is given by
o o
['(dr) = ?(1 + B)og1y(dw) + ?(1 — B)di—1;(ds)
such that
r{1}) +Ir({t-1})
F{1}) +T({l-2})

Stable distributions are absolutely continuous. However, their densities are not known ex-

" =T({1) +T({-1}) and §=

1
plicitly except for the cases a = 3 (Lévy distribution), « = 1 (Cauchy distribution), and o = 2
(normal distribution).

Exercise 1.30 Show:

(a) For Y ~ SasS it holds that Y ~ S, (0,0,0) with characteristic function
oy (s) = e’ seR.

(b) For Y ~ Sy(c,0,p) it holds that Y ~ N(u,20?).

Theorem 1.31 S, is heavy-tailed, i.e. for Y ~ S, (o, 8, n) with o € (0,2)
IP’(\Y]>3:)~£, T — 00
xa

holds for some ¢ > 0.

Consequently, we have

]E’Y|p :/ II:-D(|}/| > wl/p) dx S C1 / xfa/p dx
0

{< 0o, pe€(0,a)
0

=00, p2a.

In contrast to this, the normal distribution shows the following short tail behavior. For X ~
N(0,1) it holds that

1
PX<—2)=PX >z)~ \/27767‘%2/8, x — 00,
T

and all moments are therefore finite.
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Fig. 1.5: Realizations of Sy gS- moving averages with different kernels [38, p.344].

Definition 1.32 A non-Gaussian random field X = {X(¢),¢ € T'} is called a-stable with index
of stability (o € (0,2)) if all its finite-dimensional distributions are a-stable (in the sense of
definition 1.24).

An important example for an a-stable random field is given by X = {X(¢) : t € T} with

X(t) LA Y (t), where A and Y independent with
A~ Sy a((cos(ma/4)**,1,0)

and Y = {Y (t),t € T} being a centered Gaussian random field with a positive definite covari-
ance function. The random field X is called subgaussian. Its a-stable distribution follows from
Exercise 1.33.

Exercise 1.33 Show that for a random variable A as above and Yy ~ N (20?), with A and Yy
independent, it holds that Xg := v/A - Yy ~ S,(,0,0).
Hint: Compute the conditional characteristic function E {eiSXO | A}.

If the underlying Gaussian random field Y of a subgaussian random field X is stationary,
then X is stationary in the strict sense.



2 Elementary statistical inference for
square-integrable random fields

Let X = {X(t),t € T}, T C R be a wide-sense stationary, measurable random field with mean
u =EX(0), covariance function C(t) = cov(X(0), X (t)) and spectral density fo(t), t € T. In
this chapter, we describe some non-parametric statistical inference methods for the estimation
of u, C and fo. We also analyze their asymptotic properties if the number of observations
grows to infinity.

We assume that one single realisation of X is available and can be observed on an observation
window W C T, which is assumed to be non-empty bounded Borel subset of R?. The values
{X(t),t € W} will be called observations of X. Sometimes, we will assume W = {t1,...,t,}
to be a finite set. For asymptotic inference, we will consider a sequence of observation windows
{W,} C T growing in Van Hove-sense, i.e.

Jim |[Wy| = o0 (2.1)
and
oW, & B, (0
nh_)rgo W =0 for any r > 0, (2.2)
where | - | is the volume (d-dimensional Lebesgue measure) in RY, W is the boundary of W,

B.(0) = {z € R? : ||z||z < r} is the spherical neighbourhood of the origin with radius 7.
Additionally, ®-operation is the so-called Minkowski addition of two sets being their pointwise
sum, ie. A@B={x+y: v€Ayc B} for A, BCR

Requirement (2.1) is understood in the sense that the growth of W, is unbounded as n — oo,
whereas (2.2) indicates that the boundary of W), can be neglected in the subsequent asymptotic
analysis.

2.1 Estimation of the mean

We consider the estimator
fin = /W X()G(Wy, t)dt, neN
of p, where G : Bra x T +— R is a weight functional satisfying G(W,t) =0, t € T\W and
/T (W, T)dt = 1 (2.3)

for any bounded Borel window W & Bya.

14
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Example 2.1 (Uniform weights): The simplest weight functional is uniform on W, i.e. G
is given by

I(teW)
GWit)=———, teT.
W]
Then, the estimator /i, becomes
1
1 X (t)dt,

which is the well-known sample mean in statistics. Its practical interpretation is based on the
discretization of the integral. If the only observed sample at the points ¢1,...,txy € W, is

(X(t1,)..., X(tn)), then fin ~ & 300 X(t)).

Lemma 2.2 (Unbiasedness): The estimator /i, is unbiased, i.e. Ef,, = u.

Proof Applying Fubini’s theorem as well as the stationarity of X and Equation (2.3) yields

/X(t) (W, t)dt| "= /E G(Wy, t)dt = /G (W, t)d

=1
O

Consider the function I'y,(t) := [ G(W,,,t)G(Wy,y + t)dy for t € T. Note that I',(t) = 0 if
T

t & W, ® W, where K := —K for any set K.
Lemma 2.3 For any n € N, it holds that

var(fin) = /T C(t) - Tu(t)dt.

Exercise 2.4 Proof Lemma 2.3.

Next, we examine the asymptotic behaviour of fi,. We take a look at its mean-square
consistency and asymptotic normality.

Theorem 2.5 (L?-consistency): For a Van Hove sequence {W,, },cn of observation windows,
assume that there exist constants ¢y, # > 0 such that

sup G(Wp, t) <

eN d 1 W, T, =0.
e w m N end i el Ta(t)

If the covariance function C' is integrable over T, i.e. [;|C(t)|dt < oo, then
lim [W,|var(fn) = 9/ C(t)dt
n—oo T

and consequently E [|f, — u?] — 0 as n — oo.

Proof The unbiasedness of (i in Lemma 2.2 and Lebesgue’s dominated convergence theorem
yield

lim [W,|var(z) = hm|W|/C’ £)dt = /c i (W, [T (1 dt_G/C

n—oo
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Thus, var(fi,) ~ |V§/71n| — 0 as n — oo. The unbiasedness of ji,, then implies E|f, — p*> =

var(ji,) — 0 as n — co. O
Under certain mixing and integrability assumptions, the asymptotic normality of f,, i.e.
~ d
(Wl - (in — 1) = N(0,07)
, where 02 := 0 - [ C(t)dt > 0 can be proven. Let us give an example of such assumptions |20,
T

theorem 1.7.4], see also [3, chapter 3].
(I) Assumptions of Theorem 2.5 hold true.

(IT) There exist a constant § > 0 such that E [|X(0)|2+5] < o00.

(ITI) It holds that o2 > 0.
(IV) There existf3,e > 0 such that
alr) < p-r 4
for € - 6 > 2d and arbitrary r — oo, where «(r) is the so-called a-mizing rate of X.
To give a formal definition of the a-mixing rate we introduce the following quantity.

Definition 2.6 The Rosenblatt dependence rate of two g-algebras Fi, Fo C F is defined by

a(F1, Fo) = sup |P(ANB)—-P(A)-P(B)|
AeF1,BEF,

It is a measure of stochastic dependence of F; and F5. This can be easily seen from the
following lemma.

Lemma 2.7 Let Y; be Fj-measurable random variables and p; > 1, j = 1,2, such that
E [|Y;[Pi] < co. Then,

S

|cov(Y1, Y2)| <10 [[Yillp, - [Yallps (a(F1, F2)) 7,
where ¢ > 1 satisfies p% + p% + % =l and ||V, = (IE|Yj|pi)1/pj is the LPi-norm of Yj.
Proof A proof can be found in [20, Lemma 1.0.2] O

Now, for any Borel window W' € Bga introduce Fx ) = o({X(t),t € W}), i.e. the o-algebra
generated by the random field X within the observation window W. Finally, the ac-mizing rate
a(r) is defined as

a(r)= sup  o(Fxp)Fx(B)) T>0,
A(Bi1,B2)>r
B1,B2€Bga
where the supremum above is taken over all o-algebras generated by X on observation windows
Bi, By that have a minimum distance of r to another, see the following for an illustration.

A(BI,BQ) ::infmeBl o r
yEBy

The mixing condition (I)-(IV) can be varied in many ways, see e.g. [10].
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2.2 Estimation of the covariance function

The covariance function C'(h) of a wide-sense stationary, measurable random field X = {X (¢)),t €

T} observed within a Van-Hove sequence of observation windows {W,,} can be estimated by
. 1
Cp(h) :=
() |Wn OV (Wy — R)| Jwn(We—h)

for any Borel observation window W. Alternatively, one might apply

X)X (t+h)dt — a2, heW,

1
Culh) = / X(OX(E+h)dt — p2, heWnU(Wy@W)
Whn

for which the random field X needs to be observed in a larger area W,, U (W,, & W). For

N

practical calculations based on a finite sample {X (¢;),j = 1,..., N}, a discretization of C}, and
C, is given by

_ 1 X B
On(h) = & Yo X(t)X(t) — i,
el

N
where Ny, := #{(tj,tx),j,k=1,...,N :t; —t ~ h} >0, heWandﬂ::% > X (tj).

Lemma 2.8 (Asymptotic unbiasedness): Under the assumption of theorem 2.5 both C,, (k)
and Cp(h) are asymptotically unbiased, i.e. it holds that

EC,(h) = C(h) and EC,(h) = C(h), n — .

Proof By the stationarity of X and Fubini’s theorem, we have

1

E|Cn(h)| := E[X(t) - X(t+h)]dt + pu® —Ej2
(o] = s T S, g EEX O X+ W) dt 4 ® — B
C(h)
=C(h)— wvar(i,) — C(h)
———
—0 by Thm. 2.5
as n — 0o. The proof for C,(h) is analogous. O

Under some additional mixing and integrability conditions similar to (I)-(IV), one can show
that the estimators C,, and C,, are strongly consistent (uniformly in h € W) and asymptotically
normally distributed [20, chapter 4].

Returning to their computational version C, notice that the number N, may be often
very small or even zero when the sample points {¢,...,¢,} are not lying on a regular grid
within W C T. This is for example the case for large lags h, where ||h|2 ~ diam(W) :=
sup, yew |7 — yll2. The estimator Cn becomes unreliable at such lags k. In addition, Cy(-) is
not positively semidefinite (contrary to C(-)).

Similarly to C,, and C,,, estimates of a variogram (-) for an intrinsically stationary measur-
able random field X of order two are commonly used in geostatistics. An estimator for ~ is
given by
[(X(t)— X(t+h)*dt, heW

1
Y(h) = —/
7(h) 2|W, N (W, — h)| WaN(Wy—h)
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and a discretization is given by

_ 1 al
F(h) = —— > [X(t;) - X(tp)]dt, heW
N jk=1
tjitkfvh

Their asymptotic properties are very similar to those of C,, and C,,, respectively, due to the
well-known relation y(h) = C(0) — C(h) when X is mean-square integrable.

2.3 Spectral density estimation

Let fc be the spectral density of the wide sense stationary centered random field X = {X (¢),t €
R} with covariance function C), i.e.

fo(z) = (27lr)d /ei<x’t>0(t)dt, z e RY

d

by means of the Fourier inversion formula, if C'is continuous at the origin and [pa ||C(t)|dt < oc.

The so-called periodogram allows us to estimate fc.

Definition 2.9 (a) The periodogram fo of X observed within a window W, is given by

2

3 ! / expl{—ilt WYX (®)dt| . new,
Whn

fC(h> = (27’[’)d‘Wn‘

where W and {W,,}°2 ; are observation windows.

(b) For arandom field X = {X(t),t € T} observed only by a finite sample (X (t1), ..., X(tn)),
N € N, the empirical periodogram fy is defined by

2
, heW.

In(h) = (27;,[]\[

N
> exp{—i(t;, h)} X (t;)dt
j=1

Assume that {t1,...,ty} ={0,1,..., M —1}%5, § > 0, lie on a regular grid with N = M.

Lemma 2.10 If fo € C(T), i.e. if fo is a continuous function on T, then the estimators fc
and fy are asymptotically unbiased almost everywhere on W, i.e.

E|fo(h)] = fo(h), n— oo, and E[fn(h)| = fo(h), N — oo,

for almost all h € W.

Proof (a) It holds that |2|> = z - z for all z € C, where Z is the complex conjugate of z.
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Fubini’s theorem yields

E[fo(h)] = (%)iw/n/ oxp (it ) + (s W) E [X(5)X (1)] ddt

%,_/
C(t—s)
1 A i
- . _Z<h1t_8) — . —
(27) 4| W /]Rd /Rd ¢ Ot =) 1(s € W, t — s € Wi @ Wy)dsdt
=y
1 ds

oy - 2. —ihy) O (1) d
(2n) . W) - ()dy
———

=1
1 .
— . _Z<h7y> —
o (27I')d /Rd e C(y)dy fC(h‘)7 h e T:

since W,, & W,, — R? for any Van-Hove-sequence {W,,} and the Fourier inversion formula
holds.

(b) To prove the statement for E[fx(h)], consider for simplicity d = 1 and t; = j, j =
0,...,N — 1. Then, similar to (a), it holds that

en(t—=h)fet)dt — fo(h),

1
T

where
N-1 N\ 2
1 : 1 [sin(5N)
A) = ezz\] — 2
v =N ]-Z:o 27N | sin(3)

is the so-called Fejér kernel. The convergence above holds for almost all h € W (w.r.t.
Lebesgue measure on R) by the properties of the Fejér kernel.

O]

However, the variance of fo or fy, respectively, does not vanish with increasing n or N,
which makes it a bad estimator of fo. Indeed, it holds that var(fo(h)) — f2(h) as n — oo [36,
p. 129], since consistency is not given. In order to correct this estimate, we consider smoothed
versions of fg and fy, which are defined by

A

fo(h) = N Gm(h—t)fet)dt, heW
and

Fa) = [ Gulh=0fx(vd, tew.
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B

[
=

Fig. 2.1: Bartlett’s kernel

where G, : R — R, is a square integrable smoothing kernel, which approximates the Dirac
delta function as m — oo and [ga Gy (t)dt = 1 for all m € N, i.e. Gp(t) = do(t), t € T, as
m — oo and [pa G2, (t)dt < oo for all m € N.

Remark 2.11 The asymptotic unbiasedness does not hold for fN(h) if the sampling locations
ti,...,t, are irregularly spaced [8, Section 3.2].

Example 2.12 Let {am}men be a sequence with a,, — oo and %= — 0 ans m — oo. For
d = 1 consider the following examples for smoothing kernel functions.

(a) Bartlett’s kernel: Gy, (t) = am, - B(am, - t),

(b) Parzen’s kernel: G,,(t) = al, - P(an, - t), d € {1,2,3},

(c¢) Zhurbenko’s kernel: G, (t) = apm, - Z(am - t),

200 = 2 - AP IA < 1), a(0,2]
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0

Fig. 2.2: Parzen’s kernel

20

Fig. 2.3: Zhurbenko’s kernel

21
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All of these functions are even and have a pronounced peak (sharp maximum) at A = 0, see
Figures 2.1 - 2.3. The kernel Z()\) has compact support [—1, 1], whereas the support of B(\)
and P()) is the whole real line.

As seen above, we may put Gy, (t) = a?,- H(ay, -t) for any d > 1, where H is an even function
H which integrates to 1, i.e. [pa H(t)dt = 1. For instance, one might choose

O sin(ltla/ ]t
HO =i | i/ |

with

-1
% gint A
pd=:(wdwﬂ i ‘v_d> , d=2,3,

where wy € {27, 47} is the surface area of the unit sphere S4~! in R? and || -||4 is the Euclidean
norm in R? d = 2, 3.

Exercise 2.13 Compute the normalizing constant z4 of
H{(t) = za[1 = [Itll21([[t]l2 < 1), a €(0,2],

for d > 1.

The smoothed periodograms fé, fjﬁ, are asymptotically unbiased as well:
Lemma 2.14 Let G,,(t) = a%, - H(ay, - t), t € T, m € N, where H : R? — R, is an even
bounded function with [gps H(t)dt = 1 and a,, — oo as m — oo. Under the assumptions of
Lemma 2.10, it holds that

lim_ lim Efé(h) = fo(h),

lim lim Ef%(h) = fo(h)

m—0o0 N—o00

for h e W.

Proof We proof the assertion only for fg Fubini’s theorem yields

Efs(h /G h—1)-Efo(h dt—>/ Gon(h — ) fe(t)dt, h e W,

as n — oo, where the convergence is a result of Lemma 2.10 and Lebesgue’s dominated con-
vergence theorem. Then,

L Gonlh=00fctdt = [t Hanh =) foat ™" [ H(—y) foth+ Ly
Rd R4 (0799
*H(y)
= fe)- [ H@)dy= fe(b), hew.
=1

as m — oo. O



2 Elementary statistical inference for square-integrable random fields 23

In contrast to fo(.) and fy(.), the variance of the smoothed estimators f(*;() and f(.) tends
to zero as N — oo for any fixed m € N. Indeed, we have

2
varfy () = o151 [ (1),

see [36, p. 134], and thus fé and fjﬁ, are weakly consistent estimators for the spectral density
fo by means of Chebyshev’s inequality since for all A € W it holds that

P (Fih) = fo®)] > ) < 2 (155h) ~ EFi )] > 5 ) + B (1Fich) = fo(w] > 5)
var % (h
- 551/\[4( )HO’

whenever a,, — oo and the function H(.) are chosen in a way such that % [pa GZ (t)dt — 0
for m, N — oco. In general, it holds that [pa G2, (t)dt =00, hence its convergence to infinity

must be slower than V.

Remark 2.15 (a) The selection ot the bandwidth a,, is studied in [23, 31, 24].

(b) Asymptotic normality of fg() and f%(.) can be shown as in [36, Theorem 7, p.118]; see
also [19] and [44].

In the literature, one can find further (parametric and non-parametric) spectral density

estimates such as the Whittle likelihood [53, 12, 32, 48] and Kernel density estimators [8]. See

also [15] and references therein. For a Bayesian approach we refer to [54, 46] and for other
methods see [25, 1, 2, 5, 6, 18, 28, 47, 52].



3 Prediction of stationary random fields

Let X = {X(t),t € T} be a square-integrable and stationary (in a sense to be specified later)
random field, T C R?. Assume that the sample X (t), j =1,...,N is observable.

Problem: How can we predict the value of X (¢) for ¢ ¢ {¢1,...,tn} based on this sample?

Denote by Fy, .. ¢y the o-algebra generated by {X(¢;),t; € T}, i.e. Fyy,.in = c({X(¢)),t5 €
T}). Evidently, the predictor X (¢) of X (¢) has to be Fy, . ;,-measurable, and also optimal in

-----

some particular sense. A list of desirable properties of X (t) is given in the following.

(1) Exactness: X (t) = X(t)ift=t;, j=1,...,N.
(2) Unbiasedness: E[X ()] = E[X(t)], t € T.
(3) Continuity: Almost every path realization of e (t) is a continuous function in ¢t € T'.

(4) Consistency: X (t) — X (t) as N — oo, where this convergence may be understood in the
a.s., weakly or in quadratic mean sense.

4

(5) Exactness in distribution: X (t) = X (t), t € W.

Later on, several criteria of optimality will be considered. One of the most common ones is

E|X(t) — X(#)|P = min ElY — X(1)|P
| X(t) (t)] verr @S | (t)]

for some p € N, e.g. p = 1,2, where LP(2, Fy, . 4y, Dp) is the space of all F, . ;,-measurable
random variables Y with E|Y'|P < co. Let us consider the case p = 2 in more detail.

3.1 L’-optimal prediction as a conditional expectancy

It is well known that

X(t) :==E[X(t) | Fiyootn] = argmin  E[X(t) — Y%, (3.1)
YELP(Q,Fty,....t 5 D)

compare [41, theorem 1.4.7]. It holds that there exists a Borel-measurable function ¢ such
that X(t) = @(X(t1),..., X (tx)) [41, lemma 1.4.11]. However, the function ¢ is usually not
explicitly known. In very few cases, it is known to be linear, as for instance in the case of
Gaussian or some a-stable random fields

e(X(t1),.., X(ANn) =M - X(t1)+ -+ v - X(tN)

Here, the procedure of finding weights A\; = A;(t1,...,tn,t), j = 1,..., N satisfying (3.1) is
called linear regression.

24
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3.1.1 Linear regression for Gaussian random fields

We consider linear regression in the Gaussian case and begin with N = 1. find E[X (¢) | X (¢1)],
if the stationary random field is Gaussian with the mean E[X (¢)] =  and covariance function
C(t) = cov(X(0), X(t)), which is positive definite. In this case, the random vector (X (¢), X (¢1))
has a bivariate normal distribution with probability density function

1 1 9 9 }
- _ _ —9(p — _ _
st T O s gy [ 0 = 20l = 0l =0+ = )
z,y € R, where p = corr(X(t),X(t1)) € (—1,1) and 02 = C(0) = var(0) > 0. The conditional
density fx ) x () (7 | y) of X(t) given X (t1) = y is equal to

fX(t ( Y) =

fX(t),X(tl)(%ZJ)

Ixwyxen(@y) = Frean @)
N 27r0211 — ) eXP{2(1 __;2)02 (@ = 1) = 20(@ — i)y — 1) + (y — )?] + ! ;0’221(?1;2‘;)2}
- Mexp {—202(11_p2) (2= 1) = 2p(2 = ) (y — 1) + P (y — u)Q]}
2
- 27r(11_p2)geXp 202(11_p2) z—(u+ply—m)| ¢,

=:(y)

which is equal to the probability density function of a N(u(y), (1 — p?)o?) distributed random
variable. The following equations are well-known. It holds that

ELX() | X(0) = 9] = [ o fxopan(@ | v)de =u(y) = u+ply=1) (32

and
var(X(t) | X(t) =y) = /R(w — 1) Fxwixn (@ | y)de = a*(1 = p). (3.3)

The conditional variance above does not depend on y and represents the minimal variance in
(3.2). Hence, the following lemma holds.

Lemma 3.1 Let X = {X(¢),t € T} be a stationary Gaussian random field with mean
E[X (t)] = p, positive definite covariance function C(t) = cov(X(0), X(t)) and ¢ = C(0) > 0.
Then,

N Clt—t,

X(O) =EX(0) | X(t)] = p+ ——5—(X(t1) — )
with )
BIX(1) - X)) = 0>~ S0
Proof Follows from (3.2) and (3.3) with p = M O

Let In be the (N x N)-dimensional identity matrix. We can now formulate and prove the
following more general result.
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Theorem 3.2 Let X be as in Lemma 3.1. Then,

X(6) =E[X(t) | X(t1), ... X(IN)] = 1+ Sty Sttt (3.4)

E[X(t) - X(t)]2 =0’ - Yttt Etl,l SN Egtl, LN (3.5)
where ¥4, ¢y = (C(t—t1),...,C(t—tn)) and Xy, 4, = (C(t5 tk))] el
Proof Consider a random variable
Y = X(t) = p—Setytn Stytn X
where X = (X (t1) — g, ..., X (tn) — p)7. It holds that

E[Y - XT) = E[(X (1) — ) - X7] ~Stayty - Sy - E— [X- X7 =

Hence, Y and X are uncorrelated, and therefore also stochastically independent, since they are
jointly Gaussian. It follows that

E[Y | (X(t),..., X(in)]) = E[Y] =0,

X+p(1,...,1)

and consequently

E[Y | (X(t1), ..., X(tn)] = E[X () — | X(t1), o, X(EN)] = Bttt - Sttty - X

We can conclude that

E[X () | X(t1),.., X(N)] =+ Detyotn - Zp 4 - X

t1,..tN

which proves (3.4).

To show that (3.5) holds, note that Y = X (¢) — E[X(¢) | X(t1),...,X(tn)], and Y and
(X(t1),...,X(tn))T are stochastically independent. We can compute
var(X(t) | X(t1),..., X (tn))
X()
Y2
=E[Y? | X(t),...,X(tn)]
=E[Y?]
=E |:X(t) — K Et7t17 ot Ztl,l SN X
= E[X(t) - M]Q - 22t7t1r~~7tNEthl...,t]\]zg,th...,t]\l + Et7t17-~~7tN Ztl,l SN E[XX ] Etl, 7tNZ;,t1,...,tN
—_——— ———
0'2 Etl ,,,,, tN
In

_ 2 -1 T
=0 — Et,tl,...,t]\rEtl,,“,tht,tl,...,tN7
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which is deterministic. Thus,

A

E[X() = XOP =E[EY? | X(t1), ..., X (0] = 0° = Sterty Sinty* Shtrtns
which coincides with (3.5). O

Remark 3.3 Lemma 3.1 and Theorem 3.2 hold (with obvious modifications p +— pu(t), C(t —
s) — C(s,t), 02 — CO(t,t)) also for non-stationary random fields.

Corollary 3.4 Let X(¢1),...,X(tn) be stochastically independent, and X be as in Lemma
3.1. Then

N
() Z (t— 1) - (X(t}) - ), (3.6)
R N
E(X(t) — X(t))? Z (t —t5) (3.7)
Proof Use Equations (3.4) and (3.5) with ¥y, ;v =02 Iy. d

Notice that Equations (3.6) - (3.7) are a direct generalization of Lmma 3.1.

3.1.2 Linear regression for a-stable random fields

Let X = {X(t),t € T} be a strictly stationary a-stable random field with index of stability
€ (1,2), so that E|X(¢)| < oo for all t € T, which is necessary for conditional expectations
to exist. Assume for simplicity that X (¢) is symmetric a-stable (write X (t) ~ Sa.S), i.e

ox(s) = B[] =1 s eR,
such that X is centered, i.e. E[X(¢)]=0,teT.
Problem: When does
E[X(#) | X(t1),...,X{EN)] = - X(t1) + -+ Ay - X(tn) a.s. (3.8)

hold?

First, we mention a very general result on characteristic functions.

Theorem 3.5 Let Z = (Zy, Z1,...,ZnN) be a random vector with E[|Z;|] < o0, j =0,...,N,
and joint characteristic function ¢z(s) = E[e/*%)], s = (s0,51,...,5y5) € RVt Then

N
ElZo | Z1,.... ZN] 2 >\ Z;
j=0

0 0 0
—z(50,51,---,5N) |sp=0= M 5—92z(50,51,...,5N) + -+ 5=—pz(50,51,...,5N)
8 S0 881 8

Proof See [29, Theorem 3.1] O
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A random field X = {X(t),t € T} is a SaS stationary Subgaussian random field, o € (1,2)
if
X(t) £ VAY(t),
where Y = {Y(¢),t € T'} is a centered Gaussian random field with positive-definite covariance
function C(-), independent of A ~ SQ/Q((COS(%))Q/O‘, 1,0).

Corollary 3.6 Let X = {X(t) :t € T} be a SaS stationary Subgaussian random field. Then,
the regression (3.8) is always linear and coinciding with (3.3) for u = 0:

E(X (to) | X(t1), .., X(EN)) = Stotyotn - Sty tn (X (1), X (E0))T

Proof Check the validity of condition (3.9) for Z = (X(to),..., X (tn)) with
¢z(s) = exp{—(sT%5)*/2}, where & = (C(t; — tk))é\szo. O

Exercise 3.7 Proof Corollary 3.6.

Corollary 3.8 Let X = {X(t),t € T} ba a Sa.S random field, a € (1,2,), and let I' be the
spectral measure on SV of the Sa.S random vector (X (tg),..., X (tx))T. Then,

E[X(to) | X(t1),..., X(N)] = M X (t1) + - + AN X (tN)

B Vs1,...8n,...,5n €R /(ac —A\xy — = Ayen)(sixp + -+ sNxN)<°‘_1>F(da:) =0,
SN
(3.10)
where a?) := |a|P - sgn(a)sNH, a,p € R and dx = dxodz; ... dzy.

Note that, condition (3.10) is always satisfied for N = 1:

Proposition 3.9 Under the conditions of Corollary 3.7, it holds that E[X (o) | X (t1)]
A1 - X(t1), where

a.s.

Proof Write (3.10) for N =1 in the form

P,
Sﬁa—1> /xo . :c§a_1>1“(da:) = A1 s§a_1> /371 : x§0¢—1> I'(dx), dx = dzidzy
S2 S2
(X (t0), X (t1)]a o
After cancelling s§a71> we get A\ = [X(to)o,% O

Remark 3.10 (Properties of the covariation): The covariation is a dependence measure
between jointly Sa.S random variables, o € (1, 2], which may be considered a generalization of
covariance for v = 2. Indeed, for (Y1,Y2) ~ S25 = N(0, X), with covariance matrix

Y U% pPoO102
pPo102 0'%
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and spectral measure I' it holds that[Y7, Ys] = 2cov(Y1, Ys), as the following comparison be-
tween py; y,)(s) of a Gaussian and a SaS random vector shows:

_ [ez (s1Y1+s2Y2) }

vy, Y2
= eXP{ / (s121 + s2w2)” (dﬂﬁ)}
= exp{—(s§ /S 23T (dx) + 2s152[Y1, Yol + 83 /S w%F(dx))}

1
= exp {—2(3% -varY] + 2s;s9 - cov (Y7, Ys) + 53 - var(YQ))}

Setting s; = 0 or s9 = 0 yields
. 1
var(Y;) = 2/ =1,2, [Y1,Ys]s = icov(Yl,Yg).

However, [X(to), X (t1)]a, o € (1,2), of a SaS random vector (Y71,Y2) is not a symmetric
function of Y7, Yo, and it is linear only w.r.t. the first argument.

The following proposition shows necessary conditions for (3.8) and any N > 1 that are much
simpler than condition (3.10):

Proposition 3.11 Under the assumptions of Corollary 3.7, if

N
E[X(to) | X (0, X (t2)] 2 A X (E), (3.11)
j=1
then the coefficients A1, ..., Ay) must satisfy the following system of linear equations.
N
SNIX (), X (t)]a = [X(t0), X (ti)]as k= 1,...,N. (3.12)
j=1

Proof Set cji, = [X(t;), X(tk)]a» J,k = 0,...,N. It holds that ¢;; = %, see the proof of

proposition 3.8. Using its result, we have for j =1,..., N

J

. N
S X(ty) = B(X(to) | X(t;)] =E [E [X(to) | ZX(tk)] | X(tj)l

k=1

Ba. (311) [ZN: e X (te) | X(tj)] = N X () + > MEX () | X(25)]

k=1 k#j

Pro& 39 + Z )\kaJX < Z /\ka3>

k#j ] J k=1
This leads to cgj = S0y Akckj, j = 1,..., N, which ultimately yields (3.12) O

Since [Y7, Y3, is not linear in the second argument, we can easily construct an example of a
non-linear regression, where the necessary condition (3.11) does not hold:
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Example 3.12 Let Y7, Ya, Y3 be stochastically independent Sa.S random variables, a € (1,2).
Consider a Sa.S random vector X = (Xg, X1, X2)T such that Xg =Yy, X3 =Y; +Ys, Xy =
Y1 4+ Y3. Then,

E[X() ’ Xl,XQ] 7é MX1+ XaXs a.s.

Exercise 3.13 Check that condition (3.11) in Example 3.12 is not satisfied.
Hint: Consider [Xo, X1 + 0X2)o and E[Xo | X1 4+ 0X2] as a function of @ > 0.

Finally, we state the following positive result about regression:

Theorem 3.14 Let X = {X(¢),t € T} be a SaS random field, a € (1,2), and let locations
to,t1,...,ty € T, N > 1, be chosen such that X (¢;), ..., X (tx) are stochastically independent.
Then,

N
E[X (tol X (t1), ..., X(tn)] = SN X () as.
j=1

where

[X (to), X(t))]a

«
J

A\ =

g~

and o? is the scale parameter of X(¢;), j =1,...,N.

Proof See [37, Corollary 4.1.5] O

3.2 Kriging methods

The previous section, in particular Section 3.1.2 illustrated how prediction as a conditional
mean does not always lead to feasible computable forecasts, since the regression E[X (¢) |
X(t1),...,X(t,)] may not be linear. From an application’s point of view however, linear
forecast methods are very easy to use and thus desirable to have. Hence, the need for linear
L?-theory of prediction for square-integrable random functions developed. After pioneering
publications [21], [39], where the linear predictor

N
X)) =Y NX(t)+ o, t €W, (3.13)
j=1
was used with weights A1, ..., Ay, which solve the minimization problem
E [(X(t) —X(t))Q] ~ min (3.14)
M, AN

the German geologist D.G. Krige was first to apply these predictors for gold ore mining predic-
tion in South Africa (1951). These linear prediction methods (further developed by the French
school of mathematical geology(1960s, G. Mathéron)) were subsequently called linear inter- or
extrapolation, or Kriging, some of which we explore in the sequel. More detailed accounts on
Kriging methods can be found in the books [45, 51, 4, 22].
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3.2.1 Simple Kriging

Let X = {X(t),t € T} be a (possibly non-stationary) square-integrable random field, i.e.
EX?2(t) < oo,t € T, with known covariance function C(s,t) = cov(X(s), X(t)), s,t € T and
mean function p(t) = EX(t), t € T.

Goal: Find a linear forecast (3.13) such that the prediction error E [(X (t)—X (t))ﬂ is minimal.

It is easily seen that

E {(X(t) - X(t))z] —var (£(t) - x(8)) + (E[X(0) - X(0])" > min
ALy AN
if E[X (t) — X ()] = 0, i.e. the predictor X (t) is unbiased and E[X (t)] = E[X ()] = u(t), t € W.
Plugging in the linear form of X (¢) from Equation (3.13) into this relation yields pu(t) =
Z;-V:l Aj(t;) + Ao, hence, equivalently Ao = pu(t) — Zé\le Aju(t), which allows for

N
X(t) = p(t) + (X (t;) — ulty)), t € W.
j=1
The latter expression implies that if u(¢) is explicitly known, then X (¢) can be centered by
subtracting its mean in the forecast X (t).

Let t =ty and
N 2
U(N) = var(X (to) — X (to)) = E (Z Aj (X (t5) — u(tj))>
§=0

with A\g = —1 be the target function to be minimized with respect to A = (A1,...,A\y) € RV,

Note that we used the fact that E { ;VZO (X (t5) — u(tj))} = 0 for all Ay,...,An in the above.

The necessary conditions (first order conditions) of an extremum are 6;’/\(/_\) =0,7=1,...,N.
J

Since

N
T(A) = > Adcov(X(t)), X (t)) (3.15)
7,k=0

::C(tj »tk)

by linearity of the expectation, we get

OV (N) N .
PV 2];)Ak0(tj,tk) +2X\;C(t,t;) =0, j=1,...,N,
k#i
which, together with A\g = —1, yields the system of linear equations

N
> - Clty, te) = Clto,t), j=1,...,N,
k=1

or, in matrix form,
YA = ¢, (3.16)

where Y = (C(tjatk))]k\{j:p A= (Al, . .,)\N)T S RN and Cco = (C(to,tl), e ,C(to,tk))T.



32 3 Prediction of stationary random fields

Theorem 3.15 Let X = {X(t),t € T} be a square-integrable random field with known mean
function u(t), t € T, and positive definite covariance function C(s,t), s,t € T. Then, the
simple Kriging method yields the unique predictor

N
X(t) = u(t) + 3 N(X(t) = ulty)
j=1

with A = (/\17 .. .,)\N)T =1 co.

Proof A quadratic function W(\) has a unique minimum if ¥ is invertible, since it is a
paraboloid function with W(A) > 0 for all \. Then, the vector A\, which satisfies ngI’ = 0,
J

j=1,...,N, coincides with the unique solution of Equation (3.16). O
Let us investigate the properties of simple Kriging forecast.

Theorem 3.16 (Properties of simple Kriging): Under the assumptions of Theorem 3.15,
the following holds.

(1) Exactness: X (t;) = X(t;), Vj=1,...,N.

2) Smoothness: If u, C are C*-smooth, k € Ny, then so is X()

A

(2)
(3) Shrinkage: var(X(t9)) < var(X(tp)), t € W.
(4)

4) Orthogonality: E[(X (to) — X (t9))Y] = 0 for all Y € Ly, where Ly is the linear span of

X(t;),j=1,...,N, ie. Ly =span{X(t1),..., X(ty)}

(5) If X is Gaussian, then the simple Kriging predictor coincides with Gaussian linear re-
gression, i.e.

X(t)=E[X(to) | X(t1),...,X(tn)] a.s., toec W.
Proof (1) It is easy to see that for ¢y = t;, the vector A = (0,...,0,1,...,0) is the unique
j
solution of the system of linear equations in Equation (3.16).

(2) The smoothness of

N

X(to) = plto) + DN - (X(t5) — p(t;)) = plto) + X - 7 'eg
j=1

with X = (X (t1)—u(t1), ..., X (tx)—p(ty)) with respect to tg € W is evidently controlled
by the corresponding smoothness of functions u(-), C(-,t;).

(3) One can easily see from Equation (3.16) that
E [(X(to) — X ()] = var(X (t)) — var(X (t)) > 0,
hence .
var(X (t9)) > var(X(to)), to € W
Indeed, Equations (3.16) and (3.15) together with Ag = —1 imply that

T(A) = ATEN — 20T .E/)_\/+ C(to,to) = var(X(to)) — &;_))

=0 —var(X(to)) =var(X (to))
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(4) For any Y € Ly, there exist v1,...yn € R such that ¥ = Zé\le v; X (tj). Then,

E [Y (X (to) — X (to))
N N

=E | v X(t) - D N(X(ty) - u(tj))]
j=1 Jj=0

.
M=

<
Il
—_
i
o

ViAE [ X (25) - (X (tk) — p(te))]

I
™=
™ =
2
>

(ELX((t) = p(t))) - (X (1) = pte))] +ty) - B X (1) = pu(te)])
C(tj.ty) =0

<

Il
—
£

Il
)

-

N
vj <Z AC (L, te) — C(to,tk)> =T 2N T - ¢ =0,
k=1 :

<.
Il
—

co
where v = (y1,..., 7).

(5) The assertion follows from Equation (3.4), which evidently holds also for non-stationary
Gaussian random fields, see Remark 3.3.
O

Remark 3.17 (a) The shrinkage property (3) in Theorem 3.16 means that the simple Krig-
ing estimate is less dispersed than the original random field. The simple Kriging predictor
X thus provides a linear smoothing procedure which does not perfectly imitate the path

. d
properties of the original field X. In particular, we have X # X(t), t € W.

Other prediction methods which yield forecasts that are equal in marginal distribution
to X are e.g. conditional simulation and excursion metric prediction , see later sections

of Chapter 3.

(b) Property (4) has the following geometric interpretation. The simple Kriging predictor
X (to) = Projj, X(to) is the orthogonal projection of the unobserved random variable
X (to) onto the linear subspace Ly formed by available observations X (t;), j =1,..., N,
i.e.

Proj,  X(to) = a}r/gggin(X(to) -Y, X(to)),
N

where (£,n) = E[{ - n] for square integrable random variables &, 7.

(c) For Gaussian random fields X, the property
E (X (to) = X(t0))* | X(h),..., X (tw)| = E |[(X(to) = X(t))?| a5, to€W,

shown in the proof of Theorem 3.2, Equation (3.7) is called homoscedasticity.

(d) Another property of Gaussian simple Kriging is the conditional unbiasedness, i.e.

A

E[X(to) | X(to)| = X(to) a5, toeW.
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Indeed,

E [ X(to) | X(to)] = E [E[X(t0) | X(to)] | X(t1,..., X (tw)]
=E[E[X(t) | X(t1), ..., X(tn)] | X(to)] = X (to)

X(to)

by properties of the conditional expectation, since o(X (t)) C o(X (1), ..., X (tn)), where
o(L) denotes the o-algebra generated by a family of random variables L.

Remark 3.18 The practical application of the simple Kriging estimates to spatial data is
tampered by the prerequisite to have an explicit knowledge of the mean value function pu(t)
(also called drift) and the covariance function C(s,t). Since both are in general unknown, they
have to be statistically inferred from the available spatial data.

Estimation of the drift

It is assumed that the unobserved mean function p(-) can be decomposed into a series
)= puVvyt), teT,
JeEN

with respect to some orthonormal basis {¥;};en in L*(T). Then, this series can be truncated
at some detail level M € N, and the coefficients

b= (e = [ WO, 00 j=1....M
Rd

are estimated from the data. Ideally, many paths of X have to be observed for drift estimation,
since the estimation of a non-constant mean value function based on only one single path is
highly unreliable.

Denoting the estimates of u; by fi;, we get

M
=> ;v
j=1

The squared estimation error

M
I(t) — a3 = 11> (s — )+ Z 195 ()13
j=1 j=N+1
(+) =
= (1 — )+ Z I
7j=1 j=M+1

where (x) follows from Parceval’s identity, has to be kept minimal, thus a trade-off between the
number of basis functions M and the quality of estimates fi;, j = 1,..., M has to be accepted.

Common examples of bases in use include the Fourier basis, Wavelets, B-splines, etc. How-
ever, a simple Kriging based on an esimated drift /i is prone to large errors. A way out would
be the use of other non-stationary methods of geostatistics such as e.g. universal Kriging [51,
Chapter 38].
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Kriging with estimated covariance function

Since also the covariance function C(s,t), s,t € T, is unknown, an estimate from spatial
data using inference methods from Section 2.2 is needed. However, the estimation result C' is
not positively semi-definite, so that its immediate use in the linear system of simple Kriging

R R N
equations, see (3.16), is not recommended. The matrix ¥ := (C’(tj,tk)) _— is often singular
.]7 =
or ill-conditioned. To avoid the issue of numerical instability, a parametric covariance model

Cy, 0 € © € R is fitted to the estimator C' such that the mean square error between 3 and
Yo = (C’g(tj,tk))j.vk:l is kept minimal, i.e.

N
0 = argmin Y (Cy(tj, tr) — C(tj, tr))? - wi, (3.17)
6O j,k’=1

where weights w;;, > 0 with E;\fk:l w;r = 1 are often taken to be uniform, i.e. wj, = N—2.
: N .

Then, the matrix X; = (Cg(tj,tk))j’kzl and the vector &y = (Cj(to,t1),...,Cy(to,tn))" are

used in (3.16) to compute the vector of simple Kriging weights

A:E;-m

The choice of the parametric model Cy is usually made after a visual inspection of the
estimate C' based on statistical experience [42, section 2.1.4]. Since the estimate C often
exhibits discontinuities at the origin, one might suggest to use a family of models displaying
the so-called nugget effect o7 as well as geometric anisotropy.

Remark 3.19 (Nugget effect and geometric anisotropy): Let Cy(s,t) = o7 - I(s =
t) +C%/(s —)TQ(s — t)), s,t € T, where 6> > 0, t € T, C°(-) is a covariance function of a
motion invariant random field on R?, and @ is a positive definite (d x d)-matrix responsible for
anisotropy. This matrix can be chosen as ) = RART, where A = diag()\,..., \y) is a diagonal

matrix with diagonal entries Ai,...,\q > 0, and R is a rotation matrix in R? parametrized by
Euler angles 61,...,04_1.

If we assume for simplicity o7 = 03 > 0, then the parameter vector § with include o2,
01,...,0q-1,M,...,\q as well as parameters of CV.

Example 3.20 (Exponential model): Choose d = 2, ¢ : Ry — Ry with ¢*(z) = a - e I*l

and
Q= (cos(&l) —sin(91)> ' (771 0) ' ( cos(f1) sin(91)>
sin(f;)  cos(61) 0 n2 —sin(fy) cos(6y) /)"

We get Cp(s,t) = Cg(s —t), where Cp(y) = 03 - I(y = 0) + aexp {—yTQy}, y € R?, with
0= (U%,a,el,kl,)\g).

Remark 3.21 Since the covariance estimates are non-reliable for high values of ||s — |2, see

Figure 3.1 and exhibit large oscillation artefacts (due to the simple fact that the number of

pairs (tj,t), j,k=1,..., N with ||t; —ts||2 = diag(W) := Htlag(VHs — t|| is rather small), it may
s,te

be reasonable to punish these artefacts in (3.17) by taking non-uniform weigths w;j, that are
nearly zero for such lags (j, k) of C4(y), y = (y1,y2)T € R? from Example 3.20.
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C(lit)

)1

Y
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S

Fig. 3.1: An empirical isotropic covariance function C'(||¢]).

Y2

=
-

Fig. 3.2: Contour lines {y € R? : C}(y) = const} of C}(y), y = (y1,92)T € R?, from Example
3.20.
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3.2.2 Ordinary Kriging

Assume that X = {X(t),t € T}, T C R? is a wide-sense stationary random field with mean
w = E[X(0)] and covariance function C(t) = cov(X(0), X (t)), t € T, where the value of y is
unknown. Assuming the linear form of the forecast X () as in (3.13) and the minimization of
the mean-square error (3.14), one sees that the unbiasedness of X (¢) leads to

N
w=E[X (0] = o+ SN EX(E)] = Ao+ 3N,
— j=1
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N
1% 1—2)\j :)\0.
j=0

Since the explicit form of X(t) must not depend on u, we conclude that A\g = 0, Zjvzl Aj=1
is the only possible choice.
Hence, the ordinary Kriging estimate X (tg) = Zé-v:l AjX(t;), to € W should satisfy

which yields

() = var (X (to) = X(t0)) = E [(X(to) = X(t0))?] = _ pnin,

such that Zévzl Aj = 1, where the function W(\) is given by Equation (3.15), i.e.

N N
U = > NMC(t —te) —2> A - Clto —t;) + C(0) = ATSA = 2ATCy + 0.
k=1 j=1 ey

The notation X, c¢g is defined in Section 3.2.1.
Consider the Lagrange function of the constraint minimization problem

ATEN — 2A\T¢y + 02 — min
AERN (3.18)
AT-e=1,
where e = (1,...,1) € RY. Then,
LONY) =NTEZA=2XT .o+ 02 +28(\T-e—1), BER,

is the so-called Lagrange multiplier.
Taking partial derivates of L(\,~) with respect to A;, 8 and setting them equal to zero, we
obtain the following system of linear equations in A, 3,

G SN Oty —t) + B~ Clto— 1) =0, j=1,....N, 510)
L=y N A-1=0 ‘
oy j=1 )
or in matrix form
A=c¢—0-e (3.20)
AT.e=1 ’

The relation (t) = C(0) — C(t) connects the covariance C' and the variogram v of X. One can
easily rewrite (3.19) and(3.20) in a form, which is common in geostatistical literature, i.e.

S Ct—te) + B—7(to—t;) =~(to —t;), j=1,...,N, (3.21)
or in matrix form
r-A=3- r
fretTo, (3.22)
AT.e=1,

where I' = (y(t; — tk))j-\szl and o = (y(to — t1),...,v(to — tn))T.
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Theorem 3.22 If the matrix X (or I') is non-singular, then the constrained optimization
problem (3.18) has the unique solution

A=T"YB-e+TYy), (3.23)
where .
1—eTT'T
= .24
b eTl'~le (3.24)

The corresponding mean square error of the ordinary Kriging is given by
oor = E[X (to) — X (to)]> = NIy — 8 (3.25)
with A, 5 as above in (3.23) and (3.24).

Proof Relation (3.24) is evident. To show (3.23) multiply A in (3.24) with e and set it equal
to 1, i.e.
1=¢€"\= BT e+ T IT,

hence .
1— eI,
B=—F7

efl'"‘e
which proves (3.24). To show (3.25) rewrite W(\) in terms of I". It follows

)

05 = U(\) = =ATTA +20(0) — 2ATeg = —ATTA + 2\ 1 T,

Here, we used the relations ATe = 1 and ~(¢t) = C(0) — C(¢t). Plugging (3.22) into the above
yields

0K = —AT (Be +T) +2ATTg = —f ATe =TT + 2AT - T = ATy —
A =1

We may also give 0(2) i explicitly
oo =T5- A= 0
=00 07 T+ B(Tf -1 e = 1)
:rg-r—l-ro—ﬁ(l—eT-r—l-ro)

(1 —eT-T71.Tg)?

—_ 71T -1
—I}-T7'-Ty— T

Remark 3.23 An advantage of expressing the ordinary Kriging system as in (3.22) is that it
is also applicable to intrinsically stationary random fields X of order 2, i.e., fields that may not
possess a finite variance, but have wide-sense stationary increments.

Theorem 3.24 (Properties of ordinary Kriging): For an intrinsically stationary random
field X = {X(¢),t € T} with observations X (¢;), j =1,..., N and variogram ~(-) such that the
matrix I' = (y(tg —tj))ﬁjzl is invertible, the oridinary Kriging predictor X () = évzl Aj-X(t;)
with A = (A1, ..., An)T satisfying (3.23) possesses the following properties.

(1) Exactness: X(tj) =X(t;), j=1,...,N, as.
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N N ~ ~
(2) Orthogonality: forany Y € {3 a; X (¢;) : > aj =0} = Ly it holds (X (tg) — X (t9), Y )2 =
- j=1 j=1
0 for all tg € W.
(3) Conditional bias reduction: For all ¢ty € W it holds that

E| (2 [X(to) | %(to)] - X(t0)’]
E[( (to) — (tg)>2]—E[var(X(to)]f((to))]. (3.26)

Proof (1) Set ty = t; for some j = 1,..., N and show that A = (0,...,0,1,0,...,0) is a
solution of (3.22), where § = 0 and

Lo=(v(tj —t1),..,v(t; —t5),...,v(t; —tn))T.
~7(0)=0

J
Indeed, we have 3 = 0 by (3.24) since eTT'"'T'g = €7(0,...,0,1,0,...,0) = 1 by definition
of the inverse matrix I'"1, while 'y is the j-th column of I'. Then, the system (3.22)
reduces to I' - A = I['g, which holds evidently by the explicit form of I'; A and T'y.

et Y € Ly, ie. a t;) wit a; = en, with Ap = —1 we have
()LYL Yzle(]) hzleTh h A 1 h

N N N N
—E Sy X () MK ()| = 303 ahe - BX ()X (1)
j=1 k=0 j=1k=0
N N
= >0 e (BIX()X ()] =)+ 20 =3y EX (t0) X ()]~ —* -0
Jik=1 j=1
=C(t;—t) 5 a,=0, i A=) C(to—t;)
j=1 j=1
N N
=Y a; ZAk (tj —ti) —Clto—t;) | ==B>_a; =0.
=1 1=
/ ——
—=—8 by (3.19) =0
(3) To prove relation (3.26), we apply the law of total variance
varY = var(E[Y | Z]) + E [var(Y | Z)] (3.27)

for any square-integrable random variables Y, Z. We may write for Z = 'e (to),Y =
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X (to) — X (to) that

E {(fqto) _ X(t()))z} “ var(X (to) - X (to))

= E [var(X (to) - X(to) | X (to)| + var (E [ X (to) — X (to) | X (t0)])

—e{((t0)-ELx o) (07— (E[X (10)] - E[ELX (t0) | X()]])

=u =EX (tg)=p

= E[E[X(t0) | X(t0)] - X(t0)]” +E |E[[X(to) — X(to) — B (to) — X (to) | X(t0)]* | X (to)]

var(X(t0)|X(t0)

— | (BX(t0) | X(t0)] - X(t0)”| + E [var(X t0) | £20)]

where (%) follows from E(X (to) = EX (tg) = p.
O

Remark 3.25 (a) The shrinkage property varX (to) > varX (ty) of simple Kriging does in
general not hold for ordinary Kriging anymore. Indeed, we have

0<U(N) =E [(X(tg) - X(to))z]

CLD ATSA —2Mep+ o2
~—~ =var(X (to))

var (X (to))

G20 \TEA(f) — 2ATEA — 28 Xe +o?

=1
=2 - \NTZX—283

hence
var (X (o)) > var(X (to)) + 253,

whereas the 8 given in (3.24) belongs to R, i.e. it can be > 0 as well as < 0. It follows

A

that var(X (¢9)) > var(X (o)) if 5 > 0.

(b) The smoothness property holds for ordinary Kriging as follows. If C € C*(T) or v €
C*(T), k € Ny, then so is X € C¥(T) a.s. This can be seen from Equations (3.23)-(3.26).
It holds that

1—eT-T71.Ty)

_ _p. p-1 e
)\—)\(to)—ﬁ I' e+ 1" Ty= T e

I'te+T7'r0,

where only the term I'g depends on tg, and so A inherits the smoothness of ~.

(¢) The remarks about kriging with estimated covariancev function hold for ordinary Kriging
as well. However, it is more common to estimate the variogram ~ of X, fit a valid
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parametric model vy to 4 via weighted least squares, and solve the system of linear
equations (3.22) as

Fé A= ﬁe + Fé,O’
ATe =1,

where Fé = (’}/é(tj — tk))j'\,[kzl’ Fé,O = (’}/é(to — tl), e ,’}/é(to — tN))T, and {’}/9,9 S @} is a
parametric family of conditionally negative-definite functions [42, Proposition 2.2.1] with

N

0 = argmin > win(5(t; — tr) — Yoty — tr))*

In the construction of vy, a nugget effect and geometric anisotropy can be transferred
from the covariance functions via the relation vy(h) = C(0) — C(h), accordingly.

Example 3.26 Let X = {X(¢),t € R?} be a stationary anisotropic Gaussian random field
(d = 2) with variogram
Y(t) = (1) +e(t), teR?

where
ViTQt

5
and the matrix @) is given as in Example 3.20 with 6; = 114,59°, 11 = 5,712 = 1. A simulated
realization of X, an estimate 4 of v as well as ~ itself are given in Figure 3.3.

@) =1—¢eMt2 and ~(t) =1 —exp—

Example 3.27 Let X = {X(¢),t € R?} be a centered motion invariant Gaussian random field
observed in a window W = [0,10]? on the grid {3j,2k, j,k € [0,3] N No}. Let X have the
Whittle-Matern-type covariance function with nugget effect, i.e. we have

cov(X(0),X(t) =C(t)=2I(t=0)+2k1(2||t_2) - ||t]|]2- I(t #0), te R2,
where

Kn(x) = lim €'z’ . J_ (we'T) — e I3V J,,(xe_ig)) , r€R, neN,

v—=n2sin(mv) (
is the modified Bessel function of the third kind, and

< 1y (5
D = v

reC, veR,

is the Bessel function of the first kind of order v.
After estimating the variogram of X (c.f. Section 2.2) by 4 from a realisation of X given in
Figure 3.5(a), a Whittle-Matern-type family of variogram models

Yot) = I(t #0) |0 +b—b-2""(alt]) ry (alt]2)| . tERE 0= (b,va,b),
is fitted to 4 by ordinary least squares, see Figure 3.5(c) (true variogram = is in red, 4 in green,
and 7, in black with the estimate 6 = (0.933;1;1.967;1.067)). Then, the ordinary Kriging is

performed with 7, its result being shown in Figure 3.5(b). As it is seen, the Kriging result X
smooths out the rough surface of X.
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Fig. 3.3: Realization of an anisotropic Gaussian random field with the corresponding empirical
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Fig. 3.4: Microscopic steel image (left) and its empirical variogram estimated in different direc-

tions (right).
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Fig. 3.5: Application of ordinary Kriging to simulated data from Example 3.27

3.2.3 Universal Kriging

Assume that X = {X(¢),t € T}, T C R? is a non-stationary random field with drift u(t) =
E[X(t)],t € T, where

M
pl(t) =D pW5(t)
j=0
is a finite sum of orthonormal basis functions {V;, j € No}, ¥o(¢) = 1 as in Remark 3.18. Let
the random field Y = {Y(¢t) = X (¢) — u(t),t € T} of residuals be wide-sense stationary with

covariance function C(t) = cov(Y(0),Y (t)),t € T.
As in Sections 3.2.1 and 3.2.2, we are looking for a linear predictor

R N
X(to) =Y XX (t))
j=1

for to ¢ {t1,...,tn}, where X(¢;),j =1,..., N are a sample of observed values, subject to

E [X (to)| = E[X ()] = p(to)-
It follows that
M N M
Yk Wi(to) = p(to) = Y Aju(ty) = D ik Wi(t),
k=0 =1 k=0

which yields

M N
> bk (‘I’k(to) -> )\j‘I’k(tj)) =0.
k=0 J=1

Since py, are non-zero, the above equation is a source of the so-called universality constraints

N
> N Wk(ty) = Wi(te), k=0,...,M. (3.28)
j=1
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For &k = 0 the condition Zé\f:l Aj = 1 known for ordinary Kriging appears. Minimizing the
target function

v = E| (X(t) - X(to))’|

subject to the universality constraints with respect to A\ = (A1,...,A\n) via the Lagrange func-
tion

M N
LB =N+ B (Z Ajr(t;) — ‘I’k(to))
k=0 j=1

with the Lagrange multipliers Bo, ..., B leads to the system of linear equations for universal
Kriging (compare (3.19) - (3.20))

{Z?E NC(t —t;) — M BeWi(t;) = Ot — o), i=1,...,N,
A Uk(t) = Wi(to), k=0,...,M,

v 5)(5) =) 2

or, in matrix form,

where

r=(Ct— tj))fij:l

U= (‘I’k(ti))f\ilﬂlgzm

co = (C(t1 —to),...,C(tny — to))7,
(

\I/O(to), cey \IJM(t()))T.

Lemma 3.28 If C is positive definite, then there exists a unique solution for the system of
linear equations (3.29).

Proof Since is X is invertible, the whole matrix ( ?) is invertible if the matrix ¥ has full

Ut 0
Wy (t1)
rank, i.e. if its columns : ,k=20,...,N are linearly independent. This is true since
W (tn)
{W}72, is an orthonormal basis. O

Remark 3.29 To solve the system (3.29), we assumed that C' and function V¥, are ex-
plicitly known. However, in practice the function C' has to be estimated from the data
X(t1),...,X(tn), which is e.g. possible by inferring the covariance of estimated residuals
Y*(t;) = X(t;) — fu(t;), where fi(.) is the estimated drift. This is a source of additional bias to
the universal Kriging [51, p.303-307].

Remark 3.30 The drift estimation previously mentioned in Remark 3.18 can be practically
exercised using an approach very similar to (3.29). In the expression u(t) = S o uxVr(t),
assume that pp themselves are realizations of random variables My, and estimated via

N
=Y a"X(t;), k=0,... M.
j=1
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The unbiasedness of the estimator, i.e. E[fix] = E[My], k =0,..., M, yields the constraints

N
S aPwy(t)) = 6y, k1=0,..., M. (3.30)

where

Solving the minimization problem

E[(ﬂk—uk)2]—> min k=0,....M

9
o)l

subject to the constraints (3.30) via the Lagrange formalism leads to the system of linear
equations

SN G SIRG ’

Z:laj C(ti—tj)—glaj \I/l(tj):[), ZZl,...,N,

N " J k=0,...,M, (3.31)
ZlOéj \Ill(tj):5kl, l:O,...,M,

j=

where ﬁl(k), k,l = 0,...,M are the Lagrange multipliers, see Equation (3.29), which can be
shown to be
8™ = cov(iu, fu), k,1=0,..., M.

Exercise 3.31 Check the above.
The estimated drift is then given by

M M N
Ato) =Y uPi(to) = > Oég'k)X(tj)‘I’k(to)-
k=0 k=0j=1

However, the uncertainty of estimating C' as mentioned in Remark 3.29 is still present. It can
be also shown that the drift estimation variance equals

E [(Alto) - u(t))?] = " - (47571 @)‘1 g0,

using the same notation as in (3.29). More on drift estimation can be found in [4, Section 3.4.5,
3.4.6].

Remark 3.32 (a) The variance of universal Kriging o3 = E(X (o) — X (t))? is equal to
o = C(0) = AT+ o+ BT 07,

where (A, —) is the solution of the system (3.29).
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(b)
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Similarly to ordinary Kriging , see Equation ((3.22)), one can rewrite the system of linear
equations in ((3.29)) in terms of the variogram ~(t) = $E[Y(0) — Y (¢)]? of the residual
random field Y. Formally, the values C(t; —t;), 4,7 = 0,..., N, sould be replaced there
by *’y(ti - tj).

Additivity property: The universal Kriging predictor X (tg) = Z;-V:l A; X (tj) can be de-
composed into

X (to) = Xsx (to) + X*(to), (3.32)
where
(1) Xgk(to) = Zévzl )\JSKX(tj) is the simple Kriging predictor of X (¢g) as if X were
centered, i.e. after the substraction of the "known" mean from the data, i.e. A€ =
(AEL AT = X1y, compare (3.16).

(ii) The term
N

X*(to) = Alto) = Y- AT A(t)) (3.33)
j=1

is the drift correction, where the estimated drift [i is given in Remark 3.30.
Combining (i) and (ii) yields
N

X(to) = ilto) + >_(X(t;) — filty)).

j=1

Indeed, substracting YAK = ¢q from the system YL\ — UB = ¢y out of (3.29) yields
YA =AY w3 = 0.
Let AP := A—X%K_ Then ,the above relation together with the second equation T\ = W0
of (3.29) rewrites as

YA —w.5=0

YT\ = W0 — PT . \SK
where the first equation coincides with the first one from (3.31) and both give birth to
the correction term X* (o).

Remark 3.33 (Further properties of universal Kriging): Similar to Theorem 3.24, the
properties of exactness, orthogonality and conditional bias reduction hold for universal kriging

as follows.
(a) X(tj) = X(tj) a.s., since A = (0,...,0,1,0,...,0) and 8 = (0,...,0) yield o7, = 0,
compare Remark 3.32.
(b) For any

N N
Vel ajX(t): > ajUp(t;) =0, k=0,1,...,M
j=1 g=1
it holds that

<X(t0) - X(tg),Y>2 =0, toeW.

(¢) Equation ((3.26)) is still valid, which means that A = (A, ..., Ay)T minimizing E[(X (to)—

A

X (tp))?] also reduces the conditional bias E[X (to) | X (to)] — X (to)-
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3.3 Geoadditive regression models

Prediction of spatial phenomena can occur, beyond random fields, also in the context of classical
(non)-linear regression. For that, consider the following setting. Let Y; be absolutely continuous
target or response random variables. Assume the regression model

k m
Y, = Zﬂjxij + Zgj(zij) + fgoo(ti) +e, 1=1,....n, (3.34)
§=0 j=1
where
i) BTa; = Sk, Bz with parameter 8 = (8o, A1, - - ., Bk)T and covariates z; = (1, zi1, . . ., zip)T,
=0 ~J*1]
where ;0 = 1 is the linear part and B, z; € RF1 i=1,... k.
(ii) zi1,...,2im, ¢ = 1,...,n are continuous covariates, and the unknown functions g1, ..., gm

are smooth enough, together, forming the non-linear additive part.

(iii) The unknown smooth function fgeo : R¢ — R contains georeferenced information provided
at spatial locations t; € R%, i=1,...,n

(iv) The random variable ¢; is the regression error with Ee; = 0 and Ee? = 02 > 0. It is
usually assumed that e; are uncorrelated or even stochastically independent. Sometimes,
Gaussian errors are common, i.e. &; ~ N(0,02).

The regression model in Equation (3.34) is called geoadditive. Its purpose is to yield esti-
mates for 3, gj, feeo given the data YV = (Y1,...,Y5),Z = (2i5)i"j-1, X = (xij)?zlkal,t =
(t1, ... t,)T € R?¥9,

The spatial locations ¢; can either attain a finite number of values, e.g. postal code centers of
a region, thus leading naturally to be modeled as vertices of a finite spatial graph. Alternatively,
they may have an uncountable range of values.

Similarly to the drift u(-) in universal Kriging, we assume

M
fgeo(t) = Z'yj ’ \Ijj(t)v M €N, (3'35)
j=1

where U = {\Ifj};il is an orthonormal basis of functions in a certain functional space. For
smoothing procedures, the basis function ¥; may be assumed to have a certain degree of
smoothness, such as tensor products of univariate splines or Fourier basis. In higher dimensions

d > 2, the additive structure

d
foeo®) =Y_filth), t=(t',.. tNT eRY,
=1

is often used to diminish the effect of the curse of dimensionality. Here, f; : R — R are
univariate functions which may themselves have a structure as in (3.35). The goal is to estimate
the regression coefficients 71,...,vy in (3.35).

Similarly, functions g; are assumed to have a form

N
9i(2) =Y aji-i(z), j=1,..., M, (3.36)
=1
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where ¢ = {¢;};2, is another orthonormal basis in a certain functional space. The regression
coefficients aq;,...,an;, | =1,..., N have to be estimated from the data.

Example 3.34 (Basis functions): (a) Tensor product bases: Let d = 2, t = (t},#3)T € R%

B-Splines: As an example of univariate bases {\11]1}

For an orthonormal basis in L?(R) consisting of functions {\I/}} o Ve may form
J

W5 () = W5, (1) - W5, (£%), j1,j2 €N,

thus yielding
M1 Mo

Joeo@®) =D Y %1jnYirjns t € R

j1=1 jo=1

Similar construction can be easily adapted to any dimension d > 2.

consider B-Splines on an interval

JEN
(a,b] C R. Their construction is iterative. Without loss of generality set a = 0,b =1 and

let 0 < ¢ <ep <--- <¢p =1 be adecomposition of [0,1] into disjoint intervals [¢;, ¢j+1)
forj=1,...,p—1.

For any z € [0, 1] consider | = 0 first and set
B)(2) = I(z € [¢j,¢j11)), j=1,...,p—1,

and for higher orders [ > 1 proceed with

zZ—ci_ Cit1— 2
Bl(z)= —— LB )+ —2 " B(z), j=1,....p-1
Cj — Cj—] Cj+1 — Cj+1-1
For this calculation, we need 2! outer knots ¢;_y,...,co,...,Cpt1,. .., lying outside of

the interval [0,1]. For simplicity, ¢; can be often chosen equidistantly over [0, 1] and
beyond.

B-Splines have many interesting properties:
(i) Local basis: It holds that Bé(z) > 0 only on (c¢j_;,c¢jy1—) and Bé(z) = 0, elsewhere
on [0,1]. Vice versa, at any z € [0, 1], only { + 1 functions Bg are positive. If ¢; are

chosen equidistantly, then all B]l~ have the same shape and are only shifted along the
Z-axis.

(ii) Unity decomposition: Z§:1 B;-(z) =1 for all z € [0,1], I € Ny.
(iii) Uniformly bounded 0 < Bé(z) <lforalzel0,1],7=1,...,p—1,1€ Np.

(iv) Derivates:

0B)(z) _, (B Bi'(z)
9z G = Ci-1 i1 = Ciyi-i)

which yields

=13 BB G), 2 e (o, 1]

for any fixed [ > 1 and any coefficients vo,71,...,7 € R, 7 = 0.
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(c) Splines and the truncated power series: Another example of {\Il}} N is given by
J

Ui(2) =1,05(2) = 2,..., U4 (2) =24, W i(2) = (2 —¢j)4, G =2,...,D,

where [ is chosen large enough, and the points {c; }§:1 are as in Example (b). The sum

I+1 p

j l
D ovid ) iz =)k
j=1 j=2
is called a polynomial spline with truncated power series. Here,
{a, a >0,
ay =

0, a<0,

denotes the non-negative part of a € R. The second sum of truncated monomials (z—cj)lJr

is designed to catch sudden changes of slope in the functional data.

We now return our focus to the geoadditive regression model in (3.34). Using the assumptions
on fgeo and g; in (3.35) and (3.36) we can state the regression model as

K m N M
Y=Y BiXij+ Y. oupizig) + Y vVit) +ei i=1,...,n, (3.37)
j=0 j=11=1 j=1

or in matrix form N
Y =XB+4Y oi(Z)ag + Uy +e,
=1

where
Y=(Y,...,Y)T,
X = (%ij)i=1,...n, j=1,..k>
B = (Bo, b1, BK)T,
= (ag)ity,  oi(Z) = (wizif))i=1,..n, j=1,..ms [ =1,...,N,
Wy = (U(t))j=1,...m, i=1,....n>
=)
e=(e1...,en)T
We may combine everything in one single matrix X, i.e.
p
: : : : ai
X=| X|e(2) |- |en(2) | ¥ =n, B=| :
aN
Y

k+14+m-N+M

Summarizing, the linear model (3.37) is given by

Y =X B+e. (3.38)
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The parameter vector 3 can be estimated using the ordinary least squares procedure, i.e.

f= argmin ||Y — X33 (3.39)

BeRk+1+mN+M

Theorem 3.35 Let the matrix X have full rank K, and let n > k+1+mN + M. If {¢;}, and
{W;}, are linearly independent, then there exists a unique solution solution of (3.39), which is
given by

2 ~_~\—1 ~

3= (XTX) XTY.

Proof Since all the matrices X, ¢;(Z) for I = 1,..., N and ¥, have full rank, the matrix X
has full rank equal to k + 1 4+ mN + M. It follows that XTX is invertible. Hence, we can
compute the partial derivatives of ||Y — X 3||3 and set them equal to zero. The solution is then
given by (3.39) It is unique since the target function represents a paraboloid. O

Sometimes, it is also desirable to control the smoothness of the solution of the regression
equations. For that, a penalized regression is usually performed, which minimizes the energy
of functional basis approximation given by the integral of its second derivative. For instance,
if the j-th non-linear part is given by g;(2) = S, aj; - (%), we define its energy by

9 N
£lo) = [ (5/)) dz = 3 - [ ()l (2)dz = a]Ka,

il=1

Ky

where K = (Kj);=1,..n and o = (o1, ..., a;n)7. Similarly, doing so for any g;, j =1,...,m
and the geoadditive part fye, with

d
where A = 3 %32 is the Laplace operator, we may come to the following penalized regression:
j=1

|Y = XB|24+X-fTK3 —  min (3.40)

BERk+1+mN+Iv]

where the penalty factor A > 0 is chosen experimentally.
The matrix K is a block matrix (similar to X):

K=| X0| K¢, |- | Koy | KU,

Analogously to Theorem 3.35, the solution of (3.40) is given by

S

b= (X% Af()*l Xty

for all A > 0 such that XTX + AK is invertible.
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Example 3.36 (Penalization): (a) Penalization with B-Splines: If for any fixed degree [
and jo =1,...,m we have

l
g]o Z Qjoj B

where Bé() are B-Splines, then using property (iv) in Example 3.34 (b) we may write

Ainq — O 1
990( —l Z JjoJj Joj— B;fll(z),
j=1 Cj — Cj—I

=dj_1

2 _
gi(Z)=1(1—1) Z dim1 = djos = BiT(2),

which yields
E(g50) = af Kajy = (I(1 - 1)) Zel 2€j-2 - /B Bl 2(2)dz.

An alternative (easier) way to write the penalization with B-Splines is to get rid of the
energy and replace it by a quadratic form oij-OKTosz, where K, := DID,, and D, =
Dy - D,_q is the recursively defined matrix of differences of order r, i.e.

-1 1 0O ... ... ... 0
0 -1 1 o ... ... 0
0 0 -1 1 :
D, =
0
0 0o -1 1
is a ((d — 1) x d)-matrix differences of first order with
Qjo2 — Qjol
Dyaj, = )
Qjop — Xjop—1
and
1 -2 1 0 0
O 1 -2 1 0 0
0O 0 -1 1

S
I
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is a ((d — 2) x d)-matrix of differences of second order. Ultimately, we get

Aof Krajo = A-a] DIDraj, = A | Drajells = A D (Arajos)?,
j=r+1

where A, = A - A,_; is the difference of order r > 2, Aajy; = ajo; — vjgj—1-

(b) Truncated power series: For a regression as in Example 3.34 (c¢), the most popular form
of penalization is to keep the sum of coefficients of truncated powers

p
A - Z VJZZA.VT.KV
=142
with v = (71,. .., Yi4p)T, K = diag(0,...,0,1,...,1) minimal.
——— ——
I+1 p—1
Example 3.37 (Radial basis functions and thin plate splines): Another way to construct
the basis {\I/j};il in the geoadditive part of the regression model is via the so-called radial
functions, which are defined by

Ux(t) = B(llz = tl2),

where the function B : Ry +— R depends only on the distance between an observation point
t € R? and a knot « € R?. Hence, instead of counting U, with j € N, this functional system
is parameterized via a finite system of knots x; € W, j = 1,..., M, where W is our spatial
obervation window, see Figure 3.6. This kind of basis is advisable for isotropic spatial effects.

A
W
T
L] L] L] L] L] L] L] II;M
Fig. 3.6: Finite system of knots z1, ...,z in a window W C R2.

As an example for the function B, consider the so-called thin plate spline given by B(r) =
r? -log(r), r > 0. As a georeferenced penalization criterion, the penalization

Efyeo) = [, (peo®))

is often used instead of

E(fgeo) = /Rd (A2f960<t))2dt,
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where d2fgeo is the second differential of fyeo, i.e.

) 4. 92 o
dfgeo(t): ZW""ZE%% fgeo(t)-
1<J

j=1

Other common examples of radial functions B are B(r) = r! with [ odd, B(r) = V72 +¢c2, ¢ > 0
constant, or B(r) originating from a covariance function of an isotropic random field, i.e.
C(s,t) = B(||s — t||2), s,t € R% This random field may represent spatial effects in regression
model (3.34) giving rise to the part fgeo.

Example 3.38 (Markov random fields): Sometimes, the spatial location variable ¢ may be
discrete, attaining a finite number of values, e.g. as in the case of postal codes. We assume that
t € V, where I' = (V, E) is a finite non-oriented geometric graph with a finite set of vertices
V =t1,...,ta C R and edges E. We say that the vertices t;, tj are neighbours (write t; ~ t;)
if they are connected by an edge (t;,t;) € E. For instance, the set of vertices V' may be a finite
regular grid of locations within an observation window W C R? with an intuitive neighbouring
relation, compare Figure 3.7.

° ° ° L] . ° . L[] o ° . L[]
* * ¢ L] [ ] L] [ ] L]
N N
t L] [ ] L] [ ] L] [ ] ® ® ®
L] [ ] L]
(b) Regular triangulation (c) Regular hexagonal lattice in

(a) Regular square grid with a 4-
or 8-neighbourhood relation

R? with a 3-neighbourhood

of plane with a 6-
relation

neighbourhood relation

Fig. 3.7: Planar regular grids with corresponding neighbourhood relation

In this case, the georeferenced part is piecewise constant: fgeo(t) =, t € V. A reasonable
penalization criterion is that values of ;4 for neighbouring vertices ¢ do not differ too much, i.e.

g(ggeo) = Z (’75 - 'Yt)2'

(s,t)eE
In matrix form this can be expressed as
g(ggeo) = ’YTK’%

with v = (V)iev, K = (Kgst)stev is the adjacency matriz of the graph I, i.e.

deg(s), s=t
Kst: _1, S#tws'\’t 787t€‘/7
0, s#t,s~t

where deg(s) is the degree of a vertex s € V, i.e., the number of all possible neighbours of s,

deg(s) =#{t eV :t ~ s}.
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However, the order of vertices in V' is important for the particular structure of K. It is desirable
to numerate t € V so that all non-zero elements of K are located close to the main diagonal to
produce a band matrix with a small band width.

A popular model used in econometrics is the so-called spatial autoregressive process, which
is defined by

YsszT-B—kaZwsth—kss seV,
trs

where X = (1, Xs1,...,Xa)T, B8 = (Bo, S1,---,0k)T represents the linear part (see (3.29),
(3.31)), the constant « € [0,1) is an autoregressive parameter, ws = wys are symmetric weights
such that wss = 0Vs € V, and the errors 4 ~ N(0,0?) are ii.d., s € V. Then, the field
{Ys,s € V'} is called a Markov random field.

3.4 Quantile regression

A drawback of geoadditive regression is the consideration of means of target variables, i.e.
EY = X -3 in terms of (3.37), since Ee = 0. Here, EY = (EY7,...,EY,,)T, Ee = (Eeq,...,e,)T.
In addition, the method of least squares imposes the assumption IEZYi2 <o0,t=1,...,n, which
excludes heavy tailed regression errors ¢; with Ee? = oo.

The goal of this Section is to construct a regression model which is not based on the (condi-
tional) means but on the (conditional) quantiles of Y, allowing for a more general structure of
the error vector e. For a random variable Z, its quantile of order o € (0, 1) is given by

F,=infx eR: Fz(z) > a:=q, (3.41)

where Fz(x) = P(Z < z), x € R, is the cumulative distribution function of Z. It has the
property

F, (o) = argmink [wo(Z, ) - |Z — ], (3.42)
z€R
where
l—a, Z<uzx,
wa(Z,z) =40, Z=u,.
«Q, Z > .

For a = %, the quantile q1/2(Z) is called a median of Z. Here, wy5(Z,x) = 1-1(Z #2).
Exercise 3.39 Show relation (3.42).

If a sample of i.i.d. realizations (Z1,...,Z,) of Z is given, the empirical quantile §o(Z) of Z
of order a € (0,1) is defined similarly to (3.41) as

1 . 1 .
2 WZi<d) za, Y U4z d) 210
or equivalently (similar to (3.42)) as
n
Ga(Z) = argminz (wa(Zi, ) - |Z — x). (3.43)
=1
The linear a-quantile regression is given by

Y=XT.-8+c¢,
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where XT- is the linear part with X = (1,z1,...,2%)7, 8 = (Bo, 1, - -, Bk)T, and the regression
error random variable e satisfies F;(0) = a, where F.(z) = P(e < z), x € R. This implies

a=F.(0)=PE<0)=P(XT8+¢e < XT8) = Fy(XTB).
=Y

Hence, the a-quantile of the target random variable Y is given by XT3, i.e.
2@ (Y)=XT8, a€(0,1). (3.44)

For instance, a = % yields the median regression.
Now the a-quantile linear regression model, o € (0, 1) given by

Yi=XB+e, i=1,...,n,

where Y = (Y7,...,Y,)T is the vector of the target random variables Y;, i = 1,...,n, ¢ =
(€1,...,en)T is the vector of regression error random variables subject to assumptions that
€1,...,En are independent and F;,(0) = o, i = 1,...,n. The matrix X = (zij)i=1,...n, j=0,...k

is the design matriz with rows X; = (1, z1,...,2%), i = 1...n and 8 = (Bo,...,0k)T is the
vector of regression coefficients. The estimation of 5 is based on relation (3.43), i.e.

B =argminy_ we (V;, X7 B) [V — X] 5| (3.45)
BERFHL j—1

The above minimization problem is usually solved numerically via linear programming or
functional gradient descent boosting. Let us explain the first of these two methods. To minimize
the target functional in (3.45), rewrite the regression errors

Vi-X[B=¢ei=(g)+ — (&4, i=1...m,

with a; = a - 1(a > 0) such that

n

n n
S wa (Y, XIB) - Yi—X[B)=a-> ui+(1-a)> vi=a-e-ut+(l-a) € v,
i=1 i=1 i=1

where
wii= (6)s = (Yi— X]B)ps vi= (—20)4 = (X8 = Yi)s,

with v = (u1,...,u,)T, v = (v1,...,v,)T, e = (1,...,1)T € R™. Then, the quantile regression
is given in total by the equation

Yi=X] - B+u —v, i=1...n,

or in matrix form
Y=X8+u—v. (3.46)
In terms of constraint minimization (3.45) can be rewritten as
a-eT-u+(l—a)-el-v— min
B7U7U
XB+u—v=Y,

which is a linear programming problem with polyhedral constraints.
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Theorem 3.40 (Properties of quantile regression):

(a)

(b)

Invariance under monotone transforms: If 7; : R — R is a monotone transformation of
the data, then the a-quantile regression (3.45) based on Y;, X3 and T;(Y;), Ti(X]B)
yield the same results.

Asymptotic normality: If €;, ¢ = 1,...,n are i.i.d with probability density function f.,
then

XX - (B-B) LN (o, a(flz(_a)a) : I,m) , (3.47)

where Ij41 is the ((k 4+ 1) x (k4 1))-dimensional unity matrix.

Remark 3.41 Although we will not prove the above theorem, let us comment on its assertions.

(a)

(b)

The invariance property is clear since the quantiles are kept under monotonic transforms
T, ie. qo(T3(Y:)) = T;(X]B),i=1...n, for any a € (0,1).

Although the asymptotic variance in (3.47) is seemingly minimal if & — 0 or o — 1, the
requirement F.(0) = a suggests that f.(0) — 0 as well in such cases, which will dominate

the quantity J(C 0 )) letting it diverge oo. This observation is in line with the fact that

estimating extremal quantiles ¢, (Y;), i.e. for @ — 0 or a — 1, is difficult. Hence, the
the regression with a = %, e.g. the median regression, will yield a smaller asymptotic
variance.

Using Equation (3.45), we can propose a similar framework for a non-linear a-quantile

Teqression
Yi:g(Zi)—i-Ei, 1=1,...,n,

where the non-linear part g : [a,b] — R, g € Cl[a,b], a < b is approximated by a
truncated expansion, i.e.

N
x) =y oqepi(x)
Pt

with respect to some function basis {¢;};°; C L?[a,b], and F;,(0) = « € (0,1), i =
1,...,n. Under the notation & = (a1,...,an)T, one looks for the a-quantile regression
estimate @ of @ as

&= rgmanwa ( Y;,Zam )Y — Zam ) +X-Vig )) (3.48)
GeRN ;1
where A > 0 is the penalization factor. Here, thepenalty is the total variation of the first

derivate of g, i.e.
n

Vigh= sup Y |f (mar1) — f'(z)l. (3.49)
{z;}Cla,b] j=1

The supremum is taken over all partitions of [a,b] into disjoint intervals (x;,x;j11] with
a<x <x2< < xp_1 <xp < b,

If we additionally assume g € C?[a, b] we may write the penalty as

b
_ / ¢’ (2)|da. (3.50)
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This is sunllar to the penalty of the usual (geo-)additive linear regression, which was given
by f x))2dz. The use of the L'-norm of ¢” instead of the L?-norm allows for the use
of hnear programmmg methods for the minimization of the target functional in (3.48).

Since we approximate g(z) = Y1, ap;(z), it follows that ¢'(z) ~ Siv | y)(z) and

V(g') = sup Z Zaz (ei(@j+1) @E(%‘))‘
{z;}Clab] j=1 ;=1
or
b| N
> oy (x)| da
I=1
respectively. For practical purposes, we may use z; = Z(;), ¢ = 1,...,n which yields

. Similar to (3.34) and (3.48), the geo-additive a-quantile regression can be computed by

m
QQ(Y;):XJ'B‘FZgj(Zij)“‘fgeo(ti)v i = la-"an;
j=1

Using the truncated series expansions g;(z) = 1w ajigi(2) and fyeo(t) = ij\il v - U(t)
leads to ¢o(Y) = X - 3, compare (3.38).

The a-quantile estimate of 3 is given by

n
A

Fe o |3 (0003 - (- B)) o]

BGRK"'I'””‘N‘*M i—1

where the penalty is
m

Z (95) + V(Vgeo)

with

n N
:Z’Zaﬂ Sol l+1)j)_¢E(Z(Z)]))|7 jzlv"')m)

i=1 [=1

~

as well as
V(VggeO) = /Rd ’Aggw(t)‘dt or V(VggeO) = |829960(t)|dt

Here, the penalty factor is A > 0, and (X - §); is the i-th coordinate of the vector X - 3.

Remark 3.42 (Formulation via a loss function): The a-quantile regression (3.45) can be
reformulated as follows. For any strictly increasing real function G, define the ,tick® function
to be

pa(z) =(a—=1(x <0)z, zeR, ae(0,1).
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Let
L(z,y) = pa(G(z) — f(y)), =yeR

be the loss function with the property L(z,y) > 0 and L(z,y) = 0 iff x = y. Then, the
a-quantile regression estimate is

B = argminE [L(Y, X75)]
BGR’“JA

for the regression (3.44), or, in a data setting,

n
B = argminz L(Y;, X[ B).
BERFHL j—1

Analogously, the unpenalized non-linear a-quantile regression Y = g(Z) + ¢ is given by

g= arg;ninE [L(Y,9(Z))]

or
n
g = argmin Z L(K? g(ZZ))a
i=1

respectively, where g(Z) can be further linearized as in (3.48).

3.5 Prediction via level sets

Let (Q, F,P) be a complete probability space and X = {X(t),t € T}, T C R be a strictly
stationary real-valued measure random field on (€2, F,P) with marginal distribution Fx(z) =
P(X(s) < ), x € R. Assume that X is observed at locations t1,...,ty € W, where W C R?
is a compact non-empty observation window. For ¢ ¢ {t1,...,tx}, we predict the value X (t)
by a linear predictor

N
X(t) =D NX(t))
=1

such that weights Aq,..., Ay are chosen to minimize a certain mean error criterion subject to
the additional constraint
X Lx@), tew,

ie, P(X(t) < z) = P(X(t) < z), = € R. Compared to Kriging, which does not keep the
marginal distribution of X, this property is sometimes very desirable and is attained most of
the time by the so-called conditional simulation. However, to be able to mimic the law of X (t)
by a linear predictor X (t), it is necessary that X belongs to the so-called infinitely divisible
class.

Definition 3.43 (a) The probability law of a random vector Y : Q — R™ is called infinitely
divisible if for all n € N there exist i.i.d. random vectors Y;,1, ..., Yy, such that

n

Y L3V,

i=1
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(b) A random field X = {X(t),t € T} is called infinitely divisible if all its finite dimensional
distributions are infinitely divisible.

Examples of infinitely divisible random functions are Lévy processes and a-stable random
fields. Under the assumption that X is infinitely divisible it is guaranteed that a linear combi-
nation Zé-v:l ;X (tj) may have a distribution of the same type as X (t).

Apart from the mean-square error E[(X(t) — X (¢))2, which is used to compute Kriging
predictors, other error criteria, which do not impose the restriction of square-integrability onto
the field X, i.e. EX2(t) < oo, t € T, are possible. One of them is based on the comparison of
the so-called level sets or excursion sets of X and X.

Definition 3.44 The excursion set of a random field X at a level © € R observed on a window
W is given by
Ax(u) :=={te W : X(t) > u}.

Since X is measurable, the set Ax(u) is Borel for any w € Q, and thus its volume |Ax (u)|
exists and is a random variable bounded a.s. by |Ax(u)| < |W|, where

| Ax ()] = /1(X(t) > w)dt.
w

The error criterion measuring the prediction error of X by X is given as an error-in-measure
ElAx (u)AA g (u)]

at an excursion level u € R, where A¢(u) = {t € W : X(t) > u} and the symmetric difference
is defined by

Ax(u)AA g (u) = (Ax(W)\Ag (1) U (Ag(u)\Ax(u)) .

Choosing an excursion levels u according to a finite non-zero measure v on (R, Bg) allows us
to give the overall mean extrapolation error as

/E|AX(U)AAX(U)|u(du).
R

k
The measure v can be chosen to be discrete, i.e. v(.) = > dy,(.) with v being concentrated
j=1

at atoms u;. Alternatively, it can be an absolutely continuous probability measure. Later on,
a choice v(.) = Px(g)(.) is proven to be quite reasonable, since it provides meaningful levels u
such that Ay (u) # () with positive probability.

To compute the weights A1, ..., Ay for the linear predictor X (t) we need to solve the mini-
mization problem

PYIISY
; L AN (3.51)

JRE[Ax(u)AA¢(u)lv(du) — min ,
X(t)=X(t), teW.

The target functional above does not depend on ¢t € W, since it provides an average over all
t € W. However, it would be desirable to let A1,..., Ay depend on the point t € W. In order
to do so, we modify (3.51) as follows.
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Theorem 3.45 The minimization problem in (3.51) is equivalent to the maximization problem

{fW JrP(t € Ax(u)AAg(u))v(du)dt — \max
d

Xt =X(t), teW.
Proof First, rewrite
L(Ax(w)AAg ) = LX) > u) + X (1) > u) = 21(X (1) > u) - L(X (1) > u).

Then, applying Fubini’s theorem yields

W
= 2W[P(X(0) > u —2/19 X(t) > u) dt,
where the last equality is due to the constraint in (3.51), i.e. X(¢) L X(t) 4 X(0), and the
stationarity of X, i.e.
/P(X(t)>u) ) > w) /dt W -P(X(0) > u),
w w

/IP(X( > w)dt = /]P’ 0) > w)dt = [W| - P(X(0) > u).

Hence, the target functional in (3.51) can be rewritten as

/E[AX(U)AAX(U)W(CZU) =2|W|- /(1 — Fx(u))v(du) — 2//IP’ ) > u, X (t) > u)dtv(du).
R

R
Since the first term on the right-hand side does not depend on Ay, ..., Ay, the above expression
is minimal when
/ / P (X(t) >u, X < u) v(du)dt (3.52)
w JR
is maximal. ]

In view of Theorem 3.45, we omit the integration over W with respect to t, and modify our
prediction problem as

[P(X(t) >u, X(t) > u)v(du) - max ,
R ALy AN for any t € W, (3.53)
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| 1% ! t

Fig. 3.8: The symmetric difference Ax(u)AA ¢ (u) is shown in red for a process X = {X(t),t €
R} and its linear predictor X (t), t € R (d = 1). The overall length of these intervals
is minimized to get a better fit of the path of X to the path of X.

since the integral in (3.52) is maximal if its integrand is maximal for all ¢ € W. Thus, the
problem (3.51) yields a geometric motivation to the final formulation (3.52), see Figure 3.8

To solve the maximization problem (3.53) for each ¢, knowledge of the uni-and bivariate
probability law of X is required. The advantage of the criterion (3.53) is that no integrability
assumptions on X are needed. Thus, extrapolation of heavy-tailed random fields such as a-
stable random fields is possible. However, the choice of the measure v may heavily influence the
results, and its optimality is still an open problem. Nonetheless, for Gaussian random fields,
the choice of v is irrelevant, as we will see in the next section.

3.5.1 Gaussian level set prediction

Let X = {X(t),t € T}, T C R? be a stationary measurable random field with mean EX = p,
covariance function C(t) = cov(X(0), X (t)), t € T, and variance 02 = C(0) = varX (0) > 0. In
order to solve the maximization problem (3.53), we first reformulate the constraint X (t) < x (0)
in terms of A = (A1,...,An). For ease of notation, we will omit the dependence of \; = \;(t)
on the location t € W, j =1,..., N, in the following.

Note that, since X is Gaussian, the constraint X (¢) 4x (0) is equivalent to
E[X ()] = L[S e=n | [Ae=1
var(X(t)) = o2 Nis1 AN C(t — t) = o2 ANYA =02

where e = (1,...,1)T, ¥ = (C(t; — tj))%-:l. We refer to A\Te =1 as the simplex constraint and
to A\TEX = 02 as an ellipsoid constraint. In general, then mean u # 0 is unknown. In the case
that, © = 0 is known, the simplex constraint would not be needed and hence just be omitted.

Recall the usual notation ¢; = (C(t —t1),...,C(t —tn))T.
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Lemma 3.46 The maximization problem (3.53) for stationary measurable Gaussian random
fields X with unknown mean p is given by

T .
¢ -A— max, ifv#0
t AGRN’ ;é )

ATYN = 02, (3.54)
AT.e=1.

Proof We use the following representation of the Gaussian bivariate law [13, p.9]. Since the
bivariate vector (X (t), X (t)) is jointly Gaussian, it holds that

sin™ 1 (p¢)
. B 1 u—pu)? 1—sind
P(X(t) > u, X(t) > u) = ¢, ,(u) + - / xp {_( 52M) " cos?f }dg’

0

(O

where p; = corr(X (t), X (t)), the function Ouo(T) = f e 202 dy, € R is the cumula-

27r0

tive distribution function of N(u,0?) and ¢, (7) = 1 — ‘Puﬂ( x) is the tail probability function.
Then, using Fubini’s theorem, the target function in (3.53) simplifies to

= / P(X(t) > u, X(t) > u)v(du)

1 fsinT ) u—p)? 1—sind
/qu v(du) +7/ /Rexp{( 2 . p—y v(du) db.

=9(9)

It follows that N
=02 ) cov(X(t),X(t;) =02 A
Since g(#) > 0 for all § € [0,7/2), we get
I(Pt

/ g(0)dd — max <= sin"!(p;) — max,
/ AERN AERN’

which is equivalent to

pt — max

AeRN
since sin~! is a monotonically increasing function. O
Since |AT - ¢| = ||Pre,All2 - ||etl|2, where Pre, A is the orthogonal projection of A onto ¢, it

follows || Pre, Alj2 — max. The geometric interpretation of maximization problem (3.54) is given

in Figure 3.9.

The problem (3.54) as a linear programming problem with a linear and a quadratic constraint
appears to be the special case of second order cone programming (SOCP) or quadratically
constrained quadratic problem (QCQP). We solve it again via the Lagrangian formalism (as in
the universal Kriging case).

Introduce numbers by := ¢; - c+, by :=eTE ley, by :=eTE leif ¥ is non-degenerate. Now
we are ready to formulate and prove the following existence and uniqueness result.
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Ct

%

2

)
(_

Fig. 3.9: The SOCP problem (3.54) for N = 2. Here, ¢\ = ||ct]|2]|A]|2 cos(a) — max.

v

Theorem 3.47 For an unknown g # 0, assume that there exists no 5 € R such that ¢; = - e,
i.e. ¢; and e are not parallel to each other, and let 3 be positive definite. Then, there exists a
unique solution to (3.54) given by

[ o2y — 1 b 1
A=x"1 ( 1119227—1;2(“ — ée) + b;) : (3.55)
1

Proof Let K := {A € R" : \T.e = 1, ATE\ = 02} be the set of weights that satisfy the
constraints in (3.54). For the vectors e; = (0,...,0,1,0...,0)T, j =1,..., N, it obviouly holds
J

ej € KVj=1,...,N. Since the function AT - ¢; is linear, it is continuous on the compact set
K and thus attains its maximal value on K.
The Lagrange function for the problem (3.54) is given by

L(A,7,8) = c]A+y(ATEA = 0®) + 6 - (eT- A = 1),

where v, € R are the Lagrange multipliers. Denote by V)L := (gTLl? ceey a‘?\—j;v). Computing
VL and setting
VLA 7,0)=ct+2y-EX+5-e=0

in order to find extreme points A yields
27-A=—-X"Ye,+ 8- e). (3.56)

Since ¢; # § - e by assumption, it follows that v # 0. Multiply (3.56) from the left by eT and
use AT-e=eTA =1 yields

2y = eTZ_l(Ct +d0-e)= TS ey 48T e = by + 6 - by, (3.57)
=by =bs



64 3 Prediction of stationary random fields

and combining (3.56) and (3.57) we get

Y Ye+d-e)
e e+ e

We compute 6 by plugging the above expression for A into ATEA = o2, i.e.
T S AT 3t 5'3) St ce) = g2(eT L LTy 1p)2
(cf+6-€")-2 212 (ct+0-e)=0(eT8 et +0-eTX e)”,

o

or, in short form,
ba(0%by — 1)62 + 2b1 (0% — 1) + 6%b% = by,

which results in - o

— bl
bod + b))% = 22—
( 2 + 1) 02b2 —1

It can be shown that o2by > 1 and boby > b% due to positive definiteness of . Moreover,
bobz = b? holds if and only if ¢; = Be for some 3 € R, which is prohibited by assumption.
Hence, equation (3.58) has two distinct soultions given by

by 1 |bgby — b2
5172— g:‘:g 70_21)2_1.

The corresponding values of A1 2 can be calculated accordingly such that

(3.58)

b1 b1
A = é o/ (oo ) (0% — 1) = ] X = é - b—Q\/(bobg — b2)(02by — 1),

hence A\; maximizes ¢] - \, leading to the unique solution

Y i T SV SRS 5SS
bobs — 2> T e

if and only if boby — b? # 0, i.e. if and only if there exists no 8 € R such that ¢; = Se. O
Remark 3.48 (a) In Equation (3.55), the vectors ¢; — %e and e are orthogonal. Indeed, it
holds that
=N
b by - €7 by - €T
€T (e — o) = 2 C AT NC € pleTn e eTe, — NeTS ey)
ba ba
—p Ll oTp T 1. ATy 1)
= b, (&/@/ez ¢t —NeT¥ 7 ¢) =0,
=N
1 ... 1
since ¥ 7! and eeT commute because X! is symmetric and eeT = | : .o
1 ... 1

(b) If ¢; and e are parallel, i.e. there exists a § € R such that ¢; = fe, then ¢/ = const for
all A\ € K. Indeed, ¢; = (3 - e implies ¢/ \ = B@ = B for some B € R. Then, all A € K

1
are solutions to the problem (3.54), e.g. A =e¢;, j =1,..., N are solutions as well.
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(¢) The linear predictor X () = é-vzl A; - X (t;) is exact in the sense that X () = X(t;), j =
1,...,n. Indeed, here it follows from ¢; = X - e¢; that
bo == 6;2 2_12 6j = 6}-6]' == C(tj - tj) = 0'2,
In
by =¢€T Z_lZej =el-e; =1,
—In

hence by (3.55) we have weights

[ 2
A= ( m(ctj_g)"‘rge = 'Ctjzej.

We can conclude that

A

X(tj) =€l - (X(tr),...,X(tn)" = X(t;), j=1,...,N.

Example 3.49 Consider the case N = 2 and compute weights A = (A1, A2)T in (3.55). Here,
X(t) = MX(t1) + XX (t2), K = {(1,0),(0,1)} is an intersection of an ellipsoid ATE\ = o2
with the line \; + Ay = 1. Hence, by (3.55) A is of the form

(170)7 C(t_tl) (t_t2)a

A= (071)7 C(t_tl) (t_t2)>
(1,0) or (0,1), C(t—t1)=C(t—ta),

> C
<C

which yields

X(tl), C(t — tl) > C(t — tg),
X(t) = ¢ X(t2), Ct—t) <C(t—ta),
X(t1) or X(t3), C(t—t1)=C(t—ts),

since the target functional to maximize over K is given by
AT = M- C(t - tl) + )\QC(t — t2).

Remark 3.50 (a) If p is known, we may set p = 0 without loss of generality and solve (3.53)
ignoring the constraint AT -e = 1. This leads to the solution

E—l
A=o ot (3.59)
\elX-le
(b) We may compute the square extrapolation error:
R 2(02 — i — L. /(boby — b?)(02by — 1)), k :
B[(x(0) - K@) =27 Tn (bt —12)(5%, — 1)), s unknown
20(0c — /]2 1ey), = 0 known.

This can be done using the explicit form of A from (3.54) or (3.59) and

E {(X(t) — X(t))z] = ATEA —2¢] A + 02 =2(c? — ¢ \).

=0
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Another important property of the prediction method (3.53) is its L? and a.s. consistency,
which states that X (¢) — X (¢) as N — oo in the following sense.

Theorem 3.51 Let the covariance function C be positive definite, and assume there exists no
B € R such that ¢; = fe, e = (1,...,1)T.

(a) Assume that C is continuous, and let I?inNHtj —tlla = 0as N — oo.
J=1L5

Then, it holds that
E[X(t) — X(t)]* =0, N — oo.

(b) Let C be Holder-continuous at zero with Holder-index o > 0. Assume that {t1,...,txy} C
Ty := (hy - Z%) N'W for some compact observation window W such that >"%_; h$; < oo.
Then, it holds that

X(t) ¥ X(t), N — oo

Proof (a) Since A =e; € K, we have

e}'ct:C(t—tj)gAT-ct, j=1,...,N.

Taking jy := argmin||¢t; — t[|2, we can bound the mean-square error by
j=1,..,N
E[X(t) — X(t)]> =2(0® — ¢] - \) <2(6® = Ot —t;y)) = 0, N — oo, (3.60)

since C is by assumption continuous.

(b) Since the points ¢; lie in the set Ty for all j = 1,..., N, it holds that ||t;, —t|2 < Vd-hy.
Furthermore, the Hoélder-continuity of C' implies that there exist constants C7,Cy > 0
such that

|C(0) =C®)] < Cr- |tz
for all t with [|t]|2 < Ca.
Then,

, (360) 20

> ELX () — X (1)] 2 1C(6) - C(t—t;)|
N=1

N=1
o [ee]
<201 Y [t —tjll2 <247 1 Y by < o
N=1 N=1
By the Tschebyschew inequality it follows that

[e.e] [e.e]

N 1 N
Y OP(X(H) - X(1)] >e) < = > EX(t) — X(1))* < o0
e
N=1 N=1
for all ¢ > 0, and thus using the lemma of Borel-Cantelli X (t) — X () a.s. as N — co.

O]

Remark 3.52 It follows from the proof of theorem 3.51, (b) that

E [(X(t) - X(t)ﬂ <201

i t—t;5.
min 1t = ;13

That is, the speed of convergence of X(t) to X(t) as N — oo depends on the roughness of the
paths of X, which is encoded in a larger constant Cy or smaller index a > 0.
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In Figure 3.10 we consider a Gaussian process X with exponential covariance function C(t) =
eIt and compare prediction results X for observation points t; = j, j = 1,...,100 in Figure
3.10a and for t; = 0.25, j = 1,...,500 see Figure 3.10b. Figure 3.11 compares results of
our level set predictor X for a Gaussian process X with Gaussian covariance C (t) = e /2
with known mean g = 0 and unknown mean. The results are compared to simple kriging and

ordinary kriging as well.

3.5.2 Excursion metric projections

In the minimization problem (3.51) the target function was rewritten in the proof of Theorem
3.45 as

/IR E| Ax (u) AA ¢ (u)|v(du) = /W /R P(t € Ax (u)AAg (u) v(du)dt,

:AX,X(U)

where A ¢(u) = P({X(t) > uYA{X (t) > u}). The inner integral can be seen as a measure of
distance between the random variables X (¢) and X (¢), which leads to the following definition.

Definition 3.53 For a finite measure v on R and random variables Y7,Ys : Q — R, we call
E,(V1,Y3) i= /]R P({Y: > u}A{Ya > u})w(du)

the excursion pseudo-metric.

Without loss of generality, assume v to be a probability measure in the sequel. Let L°(Q, F,P)
be the space of all random variables on the probability space (2, F,P). The fact that E, is a
pseudo-metric can be seen from

(i) E, : LY(Q, F,P)? — [0,1] is symmetric,
(ii) It satisfies the triangle inequality E, (Y1,Y2) < E,(Y1,Y3)+E,(Y3,Ys) for any Y7, Y5, Y3 €
LY(Q, F,P).

Since E, (Y7,Y2) = 0 does not imply that Y7 = Y5 a.s., E, fails to be a metric.
Let us rewrite our prediction problem in terms of metric projections with respect to E,,. For
that, we will need further properties of E,, which involve the notion of a copulas.

3.5.3 Copulas
Definition 3.54 A fuction C : [0,1]> — [0,1] is a (bivariate) copula if it is a cumulative
distribution function of a random vector (U, Uz), where Uy, Uz ~ U0, 1].

Copulas measure the dependence between random variables, which finds its reflections in the
following result.

Theorem 3.55 (Sular, 1959): Let Y = (Y1, Y2) be a random vector on (2, F,P) with joint
distribution function Fy (z1,z2) = P(Y] < z1,Ys < 29), x1,22 € R, and marginal distribution
functions Fy,(x) = P(Y; < ), j = 1,2. Then, there exists a copula C' such that

Fy(.%‘l,.l‘g) = C(Fyl (xl),Fy2(332)), r1,T2 € R.

This copula is unique on the set Fy, (R) x Fy,(R), where Fy, (R) is the image of R = RU {400}
under the mapping Fy, : R — [0,1], j =1,2.
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(a) X with exponential covariance C(t) = e~I*l, observed at t; = j, j = 1,...,100.

o
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(b) X with exponential covariance C(t) = e~I*l, observed at ¢; = 0.2, j = 1,...,500.

Fig. 3.10: Comparison of trajectories of Gaussian process X with exponential covariance (blue)
and its predictor X with unknown mean (green) observed at t; = j, j = 1,...,100
(3.10a) and t; = 0.24, j =1,...,500 (3.10b).
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-1

o 20 40 60 80 100

Fig. 3.11: A path of a Gaussian process X (blue) with gaussian covariance function C(t) =
e~ /2 is compared to our new linear predictor X with known mean p = 0 (orange),
with unkonwn mean (green), simple kriging (red) and ordinary kriging (yellow).

Remark 3.56 Note that, if the marginal distribution functions Fy; are continuous on R, then

Fy,(R) C [0, 1] and hence the copula C' in Theorem 3.55 is unique.

Example 3.57 Let U = (U, Uz) be a random vector with its joint distribution function being
a copula C and U; ~ U[0,1], j =1,2.

(a) Independence copula: If Uy, Uy are stochastically independent, then

C(l’l,l’g):l’l'l'g, r1,T2 € [0,1].

(b) Comonotonicity copula: If U; = Uy = Up a.s., then

C(xl,.ilfg) e P(Uo S 1, Uo S .21?2) = P(Ug S min{l’l,l‘Q}) = min{xl,:rg}, x1,T2 € [O, 1].
Notation: My(z,y) = min{z,y}, x,y € [0,1].

(c) Linear dependence copula: If Uy = Uy, Uy =1 — Uy, Uy ~ U0, 1], then

C(x1,22) =P(Up < 21,1 = U < x9)
=P(1 -2 <Up <x1) =max{0,z1 + x2 — 1}, x1,29 € [0,1].

Notation: Wa(z,y) := max{0,z +y — 1}, z,y € [0, 1].

Theorem 3.58 (Hoeffding-Fréchet bounds (1940, 1951)): For any copula C : [0,1]> —
[0, 1], it holds that

Wa(z,y) < C(x,y) < Ma(z,y), =,y € [0,1].
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Proof (i) We first show the upper bound. Using the monotonicity of probability measures,
it follows that

C(z,y) =P{UL <z} n{Uz < y}) <minP(U; < z),P(Us < z)
—z =y

= mln{x,y} = MQ(SU,y), T,y € [07 1]7

where C(-,-) is a joint distribution function of (Ui, Us), U; ~ U[0,1], j =1,2.
(ii) For the lower bound, write

Clz,y) =1-P{U; >z} U{U2 > y}) > 1 —-PU; >z) —P(Us > y)
=1-(1-2)-1-y)=xz+y—1, =z,ye€]0,1]

Since C(x,y) > 0 since it is a cumulative distribution function, we have C(z,y) >
WQ(xay)'
O

3.5.4 Excursion metric and its properties
For any Y7,Y> € C%(Q, F,P) we introduce the notation

Y1 AYs = min{Y1, Y}, Y1V Ys:=max{Y1,Ys}.
Then, Ay, y,(u) = P({Y7 > u}A{Y2 > u}) rewrites as

Ay, vy, (u) =P(Y7 > u) +P(Ya > u) — 2P(Y; > u, Ys > u)
= Fy, (’LL) + Iy, (’LL) - 2C(FY1 (u)a Fy, (u))

(Y2 >u
(Y2 <u

by Theorem 3.55, where Fy,, j = 1,2, are the marginal distribution functions of (Y1, Y2) and
C is a copula. Moreover, note that

Ayl,yz (’LL) = ]P)(Yl VY; > u) — ]P(Yl ANYy > u) = ]P)(Yl ANY; < u) — ]P)(Yl VY, < u), (361)

which leads to the following result.

Lemma 3.59 Let v be a probability law of a random variable U : £ — R representing the
random choice of an excursion level. Then it holds for any Y7, Ys € L°(Q, F,P) that

(a) E,(1,Y3) = E|Fy(Ya—) — Fy(Y1—)|, where Fy is the cumulative distribution function of
U and Fy(z—) = lim 0FU(y) for any = € R.
y—T—

(b) EV(YI,YQ) = P(Yl ANYe <U<YV YQ)
Proof (a) Applying Equation (3.61) yields

E,(V1,Y3) = /R [E(1(1 < Y1V Ya) — L(u < Y1 A Ya))] v(du)

=E [FU(YI V YQ—) - FU(Y1 VAN YQ—)] =K HFU(}/Q—) — YU(YI_)H . (362)
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(b) Equivalently, (3.62) can be rewritten as E,(Y7,Y2) =P(Y1 AY> <U <Y, VYa).
O]

Note that in part (b), the random level U separates Y7 and Y3, which motivated M. Taylor
(1984) to call E,(Y1,Y2) a separation pseudo-metric. Furthermore, if Fyy is continuous, it
follows that F,(z—) = Fy(z) for all z € R leading to E, (Y1, Y2) = E|Fy (Y1) — Fy(Y2)|, which
is called Fy-madogram in geostatistics.

Introduce the subspace Xg C L(Q, F,P) of random variables with support S C R.

Theorem 3.60 If Fy is strictly increasing on S, then E, is a metric on Xg x Xg.

Proof (i) The symmetry of E, is trivial.

(ii) For the triangle inequality, we compute

E, (V1. Y2) C E[Fy(n—) — Fu(Ya-)|
<E|Fy(Y1—) = Fy(Ya—)| + E|Fy(Ya—) — Fy(Yz—)|
=E,(11,Y3) + E,(Y2,Y3)

for any Y1,Ys,Ys € Xg, where the equality (x) follows from Lemma 3.59.

(iii) Let E,(Y1,Y2) = 0 for some Y7,Ys € Xg. By Lemma 3.59, we have Fyy(Y1—) = Fy(Ya—)
a.s., and since Fy is monotonically increasing on S, it follows that P(Y; = Y3) = 1, i.e.

Yl = Y2 a.s.
Ultimately, it holds that E, is a metric on Xg x Xg. ]

Question:Which choice of U or v(.) is preferable from the practical point of view for the
prediction of random variables?

Consider Y1,Y, € Xg. If supp(U) N S = (), then
FU(Y1 V YQ—) = FU(YI A Yl—) = O,

which leads to a degenerate metric. Thus, we may require supp(U) NS = 0, or, ideally,
supp(U) = S. This allows for the choices Fyy = Fy, or Fyy = Fy,. Without loss of generality,
assume Fyy = Fy, in the sequel. Then, relation (3.62) can be stated as

E,(Y1,Y2) = E[Fy, (Y1 V Y2)] — E[Fy, (Y1 A Y2)]
= 2E[Fy, (Y1 V Y2)] — E[Fy, (Y1)] — E[Fy, (Y2)]

= 2E[F, (i V ¥a)] - — E[Fy, (¥3)] (3.63)

since Fy, (Y1) ~ U[0,1] and therefore E[Fy, (Y1)] = 3 in the above.

Now consider the case Y 4 Yo, where Fy, (z) := Fi(x) is strictly increasing, e.g. if Y7 is
absolutely continuous on S. Then, Equation (3.63) simplifies to E, (Y1, Y2) = 2EF; (Y1 VYa) —1.
By Theorem 3.60, it is a metric on the space {Y € Xs: P(Y < z) = Fi(z)} c L°(Q, F,P).
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Lemma 3.61 Let Y;,Ys € LO(Q, F,P) have an absolutely continuous cumulative distribution
function Fj. Then, the excursion metric E, with v ~ F}, i.e. v = dFy, has the representation

1
E,(V1,Ys) =1 — 2/ O, )dz,
0

where C' is a copula of (Y7, Y2).
Proof We know that
Avi v, (u) = 2[F1(u) — C(Fi(u), Fi(u)], uweR.

Substituting = = F(u) leads to

1 1

E,(Y1,Y2) = 2/[F1 (u) — C(Fi(w), Fy(w))]dF) (u) = 2/[g; Oz, @)dr =1 - 2/C(x,x)dx.
R 0 0

O

We arrive at the following definition.

Definition 3.62 Let Y7,Y> € L, where L, is the space of random variables with absolutely
continuous cumulative distribution function Fj. The excursion metric G = E, with v ~ F}
given by

1
G(Y1,Y2)=1-— 2/ C(x,z)dx
0

is called Gini metric. Here C' is the copula of the random vector (Y71, Y2).

If the set {C(z,x),x € [0,1]} were convex, the term 2f01(x — C(z,z))dz equals to the Gini
coefficient of the Lorenz curve {(z,C(z,z)),z € [0,1]} used in econometrics for example to
measure the concentration of wealth in the society. Hence the name “Gini metric®

Remark 3.63 Taking into account that x = min{z,z} = Ma(z,x), we can rewrite G(Y7,Y2)
as

1
GY1,Y2) = 2 [ (2 = Cla,@)da = 2 Ma(a, ) = Ca,2) 1o
0

where ||h|[z170,1] = fol |h(z)|dz is the L'-norm of h. Hence, G(Y1,Y2) can be interpreted as the
L'-distance between the diagonal of the complete dependence copula to the diagonal of the
copula of (Y7,Y3).

Lemma 3.64 For any Y1,Ys € Lp,, it holds that G(Y1,Y2) € [0, %] Furthermore, G(Y7, Ys)

5 implies Yo = f(Y7) a.s., wheref is a decreasing function such that Fi(z) = 1 — Fy(f~(2)),

z € R.

Proof By Theorem 3.58, we have
1 1 1 1
- = / max{0,2z — 1}dx = / Wy (z, x)dx = / C(z,x)dx
4 0 0 0
:fll/Z(Qm—l)dx

1 1 1
< / Ms(z, x)dx = / xdr = —,
0 0 2
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which yields

—_

11

1
0=1-2. SG(Yl,YQ):1—2/C(a:,:c)dx§1—2- L
0

2 42

The upper bound is attained whenever Yo = f(Y7) for a decreasing function f, which means
that

Fi(z) =P(Y1 <2) =P(f(Y2) Sa) =P(Ya 2 [ 1(2)) =1 - P(Ya < [ (2)) = 1 = Fa(f ' (2)),

since Y] 4 Y5 and Y5 is absolutely continuously distributed. O

Example 3.65 (a) Assume that the distribution Fj is symmetric around p € R, i.e. Fi(x) =
1—Fi(p—2x), =z € R. Then, it holds that G(Y7,Y2) = % if Y1+ Y, = p as. with
flx)=p—z,zeR.

(b) If Y1,Ys are stochastically independent, then G(Y7,Y2) = 1 — 2f01 22dr = %, since
C(z,z) =z -y for z,y € [0, 1].
3.5.5 Forecasting via excursion metric

Let X be a random variable which has to be predicted based on “observations“ Xi,..., Xy

such that X 4x , j=1,...,N. Assume that X has a continuous distribution function Fx.
We consider the predictor X, of X to be of the form

X\ =g(X1,..., X0, \),

where g : RV xRN - R is a Borel-measurable function of the sample X1, ..., Xy and prediction
parameters (A,...,Ax) = A € A C R. Here, A is the set of admissible parameter values

A:Ag::{AeRN;fgix}.

Since Fx € C(R), we may rewrite the condition X 2 X as Fx (X)) 4 Xx(X)~Ul0,1].

~

The main idea of an excursion-based forecast is to look for X, as 9(X1,..., XN, A), where

5\ = arginf EFX (X, X)\)
AEA

Let us give some examples of g and A, depending on the distribution class of F'x. The function
g has to be chosen such that A, # 0.

Example 3.66 (a) If (X, X;,...,Xy) is infinitely divisible, then
N
9( X1, XN, =D N X (3.64)
j=1
(b) If (X, X1,...,Xn) is max-stable, then

9(X1,..., XN, A) = max_\j. (3.65)
j=1,.,N
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Example 3.67 (a) Let (X, Xj,...,Xy) be Gaussian with marginal distribution N (u,o?)
and ¥ = (cov(X;, Xj))f\]j:l and let g be as in (3.64). Then,

Ag={NeRY  NTEAN =02 AT e =1}
is an ellipsoid of dimension N — 1, see also Section 3.5.1.

(b) Let (X, Xi,...,Xn) be a subgaussian random vector with stability index a € (0,2) and
underlying i.i.d. standard Gaussian components. Moreover, let g be as in (3.64). Then,

Ag={NeRY A 2=1}=8""1

(c) Let (X, X,...,Xn) be a SaS random vector with stability index a € (0,2), spectral
measure I' of (X1,...,Xx) and scale parameter 1 for the marginal distributions. For g
as in (3.64), we have

Ay= (A eRV / (s, \, )°T(ds) = 1},

gN-1

which is a closed subset of RY by the dominated convergence theorem. However, the
structure of this set may be quite complex.

(d) Let (X Xi,...,Xn) be a max-stable random vector with Fréchet(«)-marginals and tail
dependence function Iy of (Xi,...,Xy). For g as in (3.64), it holds that

Ag={NeRY 1 In(\, ..., 2\%) = 1}
This is true, since

IP’(.HllaXN)\ij <z)=exp{—a - IN(AT,..., %)}, Ar,...,An > 0.
j=1,...,

The prediction problem Ep (X, X A) — ;\nf\ can be rewritten in terms of the Gini metric, i.e.
€
1

G(X, X)) =1- 2/CX7XA(33,x)dx — /\iél/fg,
0

where C' X/\(.’ ) is the copula of (X, X)). Consequently, this yields

~

1

A= argsup/ Cy ¢, (z,x)dx. (3.66)
AeA, JO oA

Example 3.68 (a) Let (X, X;,...,Xx) be Gaussian as in Example 3.67 (a) with mean
p = 0 and variance 02 = 1. In view of Section 3.5.1, the copula diagonal Cy X)(x, x) is

equal to
sin~1(cy)

1 1—sinf
2 —1/,1\2
Cyx, (@,0)=2"+ o 0/ exp {—(90 (2)) COSQQ} do,
where ¢~1(z) is the quantile function of N(0,1) and

N
¢y = corr(X, X)) = Z)\j -cov(X, X;).
j=1
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(b) Let (X, X1,...,Xy) be max-stable as in example 3.67 (d). Then, Cy ¢ is an extreme-
value copula with diagonal given by

CX,X(:Qx):xeAa S [071]7

where 0, is the extremal coefficient of (X, X,\), ie. Oy = l2(1,1) with Iy being the tail
dependence function of (X, X ). It follows that

1 1
1
0
/CX,XA(I,x)dJU:/a: Ar = N
0 0

hence the maximization problem

/ CXX (z,x)dx — sup
AEAy

is equivalent to the minimization problem

9)\ — inf .
AEA,

As it was seen in Example 3.67, the structure of the admissible parameter set A, may be quite
complex leading to non-linear non-convex optimization for finding A in Equation (3.66), which
is difficult to solve. A possible way out would be to replace the rigid condition Fiy (X)) ~ U[0,1]
in the definition of A, by an “approximate® condition

p (P(Fx (X)) <), Fuo() <

for a small fixed € > 0, where p(+,-) is any handy metric on the space of cumulative distribution
functions on R.

For simplicity, we consider the 2-Wasserstein distance in place of p, which is defined as
follows.

Definition 3.69 Let Y7,Y> be random variables with quantile functions F; ' and Fy!. For
p > 1, the p-Wasserstein distance of Y1,Y5 is defined as

W,(¥3,Y2) : (/ I ()\pdx)l/p.

Note that, the Wasserstein distance acts on the space of distributions of random variables
rather than on L°(Q, F,P) itself. For p = 2 and Y3 ~ U[0, 1], we may rewrite

W2(Y1,Ys) = /1P74@)_xfdx

1
—/ Fr Y (x)?de — 2/ cFTY( dx—i—/ z?dx
L
/3
*) 2
f dFy( del

P
:§+m3—mmvyx (3.67)



76 3 Prediction of stationary random fields

where P(Y1 VY < y) = F2(y) and Y is an independent copy of Y7, and for the equality (*) we
substituted y = F; !(x). Integration by parts then yields

1 1
WL Y) = 5+ [ R)(F ) - 20dy. (3.68)

This allows us to rewrite the prediction problem (3.66) using the form of (3.63) of excursion
metric and the approximative constraint W3 (X, X) < ¢ as

A = arginf {2EFx (X v X)) — EFx (X)) + 7+ WH(X, X))}, (3.69)
AEA

where —% in (3.63) is ommited and the Wasserstein distance W3(.,.) is of the form (3.67) or
(3.68), where the set A C RY does not depend on g(.,.) (it may well be RN [—M, MV
Rf ). The factor v > 0 weighs the significance of how close F'x has to be to F' %y Under certain

conditions, which are to be specified later, the infimum in (3.69) is attained, thus turning arginf
AEA
to a argmin. It follows that
AEA

EF%(X)) —E[Fx(X,AVY)] + 3,

WQZ(XvX)\) =
fo Fx(Xy) ( )[FFX(XA)(ZJ) — 2yldy + %,

where Y is an independent copy of FX(X A) and Fr. (Xy) 18 the cumulative distribution function

of FX (X,\)
Let us examine the existence of a solution to (3.69).

Theorem 3.70 Let the joint distribution of (X, X1,..., Xx) be absolutely continous. If the
following conditions are met:

(I) A is compact in RY.

(II) Cx x, (#,2) is uniformly continuous on A € A.

(ITT) For each A € A, the distribution of X » is absolutely continuous with probability density
function f¢ ~such that fg - A — L'(R) is continuous on A with respect to the L'-norm.

Then, there exists a solution to minimization problem (3.69).

Proof Using Lemma 3.61, the target functional in (3.69) can be rewritten as
_ 1 1
BN =22 / Oy 5. (@, 0)dz — E(Zy) — / Fypdy, A€ A, (3.70)

where Z) := Fx (X)) and E[Z)] = [; P(Zy>,)dy =1 — fo (y))dy. As an integral with

parameter A, i.e A — fo x.%, (¥, 2)dz, continuity on A follows from condition (II).
Furthermore, for any sequence {A\p} C A with Ay — A9 € A as k — oo, we have

sup
zeR

FX’A (IL’) FXA

k

zeR

— sup L [ 15, @) - s, Wy

[ 116,00 = F, )| dy 0.
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as k — oo by condition (III). Therefore, Fg (Fx'(y)) is uniformly continuous on A with
k

respect to y € [0,1]. Applying the theorem on the continuity of integrals with parameters
proves the continuity of E[Z,] on A.

Similarly, Fz, (y)[2y — Fz, (y)] is uniformly continuous on A with respect to y € [0, 1], so that
also the third term in (3.70) is lies in C'(A). Hence, the target functional ¢ € C(A) attains its
minimum on the compact set A. O

Remark 3.71 The L!- continuity of [, in condition (III) means that
£y, = L1 = [ 15, ) = fi, @ldy 0, & = o,
R

for any sequence {\;} C A with A\y — Ao as k — oo. However, due to

5 [V, ) = F,, Wldy = drv (o, K,
R

where dpy is the total variation distance, we see that this is equivalent to X A v % Ao @S
k — oo.

Example 3.72 Whow that Theorem 3.70 holds true for any Gaussian random vector (X, X1,..., Xn)
with N (0, 1)-distributed marginals. Since A, in Example 3.67 (a) is an ellipsoid in RV ™1, it is
sufficient to consider A = [—~M, MY > A4 for M > 0 large enough. Using the exact form of

the copula diagonal C' X%, (z,x) form Example 3.68, we may see that

1. - -
‘CX,XM (z,x) — CXXAZ (x,az)‘ < % ’sm 1(C,\l) — sin 1(C>\2)
uniformly on x € [0, 1] due to the inequality

exp{— (™ ()2 Lm0

This shows condition (II) of Theorem 3.70.

To show the validity of condition (III), assume the covariance matrix ¥ of (Xi,...,Xy) to
be positive definite such that Xy ~ N (0, ATX\) has a density for all A # 0. This density is
obviously continuous on R\ {0} with respect to the L'-norm.

< 1.
cos2 f b

In the next result, we show that it is often sufficient to consider bounded spaces A only, e.g.
A={XNeRN ;Ao < p} with > 0.

Lemma 3.73 Assume that there exists a A\g € A such that ¢(\g) < 1+ 2. Let XAk&oo as
k — oo for any sequence {A\;} C A with||Agx|]2 — 0o as k& — oo. Then, there exists a constant
M > 0 such that

A).

. i A — .
ming() = | min_ o

Proof Consider the target functional ¢ in its form

1

¢(\) = 2BFx (X V X)) — EFx (X)) + 7 [EF% (X)) —EFx (X VYY) + 3|
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where Y is an independent copy of Xy. The equences {Fx (X))}, {F%(X\)}, {Fx(X X))} and
{Fx (X, VY)} are uniformly integrable since they are a.s. bounded by 0 and 1. Hence, their
expectations tent to 1 as A\y—oo, K — oo, while )A(Ak 2 50, k — oo, and since Fx(y)—1,

Yy — 00.
Then, it follows that

) —1 + % k — oo.

Choosing M > 0 such that ¢(\x) > $(Ng) for all k& € N such that ||Ag|l2 > M concludes the
proof of this lemma. O

Example 3.74 Assume there exists a A\g € A such that

(a) X x = X a.s. This may happen for some prediction function g, if X = Xj; for some
jo €{1,...,N}. Then,
- 1 1 [1 1 1] 1 1

N)=2-——— - — — —| == . — 1 =
(Xo) 5 5T V|3 gty TtV gt

w2

for all v > 0.
(b) X, and X are stochastically independent. Then,

P(Fx(XVX)y,) <z)=P(Fx(z)VFx (X)) <) =P(Fx(X) <z)-P(Y; <) =z Fy, (x)
=V

and

1 1
2 [Fx (X v Xy,)| ~E[Vi] =2 / 2d(z - Fy,(2)) — / 2d(Fy, (z))
0 0

=21 —/1$Fy1(l')d(l') -1 +/1d(Fy1(:U))
0 0
1
=1+ O/Fy1 (x)[1 — 2z]dx
1
~1 +O/ [Fyl(x) By, (;)] (1—22)de < 1
<0

by integration by parts, since Fy, (3 - fol(l —2z)dx = 0. Since
E |[F}(X,)] — E [Fx (X)) VY] <0,
we get ¢(Ag) < 1+ % for all v > 0.

Example 3.75 The condition Xy, % oo as k — oo with ||| = 00, \g = (Ar(1), ..., Ae(N))

is satisfied for A = R and
N

X\ =Y ()X,

Jj=1
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or

A

X\ = ; :Hll%?fN)\k(j)Xj

if X; >0 a.s.

3.5.6 Excursion-based prediction of stationary random fields

Let X = {X(t),t € R} be a strictly stationary measurable random field with marginal distri-
bution Fy, € {Fy,0 € O}, where {Fy,0 € O} is a parametric family of absolutely continuous
distributions and © C R* is its parameter space. The distribution Fj may be heavy-tailed with
no finite moments at all.

Let X be observed on a set of locations Ty = Wy N Z,,, where Wy C R? is a compact set and
Zp = hiZ x - x hyZ is a d-dimensional grid with mesh sizes h = (h1,...,hq) € (0,00)%. We
denote the observation of X on Ty by X7, = {X(¢),t € Tp}.

For a location t € Zj,, t € Wy, the goal is to predict X (¢) from the so-called forecast sample
Xr, = {X(t1),..., X(n)}, Ty = {t1,...,tn} C Zp. As before, we are looking for a predictor
X, of X (t) of the form X, = g\ X1y ), AeAC RY, such that

77

N ) . A 1
A = argmin{ 2E[Fy, (X () V X)) = EFpy (X0) =5 +7- W3 (Fzy Fo)f, - (3.7D)
e =
A

where Fy; is the cumulative distribution function of U ~ U([0, 1]). Furthermore, in the above
we have

E(Z3) -E(Z\VY)+ 3

W (P2, F0) = Ofl Fz, () (Fz,(y) — 2y)dy + §

(3.72)

where Y is an independent copy of Z) with cumulative distribution function Fy, .

Theorem 3.76 (Weak consistency): Let the random field X be stochastically continuous.

Assume that there exists a Ay, € A such that Xj5 = X(tg) as. for all k = 1,...,N, and
min_|[|t; —t|l2 = 0 as N — oco. Then,

j:17"'7N

X5 X(t)

as N — oo.

Proof Let iy = argmin||t; — t|j2 and A € A such that X5 = X (fx) a.s. Then,
j:]-v"'a

Er, (X(1),X5) +7- W} (Fz,, Fn)

<Ep, (X(0),X3) +7- W3 (Fz;, Fn) = B,y (X(8), X (i) +7-0 = 0

as N — oo, since the left-hand side is a minimum of all A € A and X5 = X (fy) 4 X (t) due to
stationarity implies that W3 (F: 75> Fn) = 0. The last convergence holds since

Ep,, (X(t), X(tn)) = E[Fp, (X (1)) — Foo (X (En))]
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Learning Learning Learning Prediction
sample 1 sample 2 sample n sample
XTf+sl XTf—l—Sg o XTf—l—Sn XTf
— e — e — e — e
L] L] L] L] >
[T TTTT TTTT [TTTT i
t1+81,...,ty+81 1 +89,...,tN + 352 t1 4+ Spy---ytN + Sp t1,...,tN

Fig. 3.12: Prediction and learning samples X7,1s, = {X(t1 + s;),..., X(txn + 55)}, j =
0,1,...,n (so=0for d=1).

and
Fi (X (In)) = Fay (X (1))
due to (X(fn)) (X (t)) as N — oo and Fy, € C(R). The L'-convergence of Fy,(X(iy))

to Fy, (X (t)) holds since {Fy,(X(tn)) — Fpo(X(t))} > is uniformly integrable due to its a.s.
boundedness. - O

In order to compute the forecast X 5 numerically, we first estimate 6y by a statistic é, and
then use Fj as a plug-in estimate of Fyp. Next, we discretize all expectations and integrals in
(3.71) to minimize the functional

B = -3 Q; > min. (3.73)
j=1

where

Q(N) =2, (X(t+85) Vg Xrpas,)) = Fy (900, Xryps,))

7 [F7 (900 Xapesy)) = By (900 X)) VY (3.74)

for j =1,...,n,v > 0. Here, it holds that {s1,...,s,} ={s € Zy : s+ Ty U{t} C Ty}, and the
sets Ty + s; are called learning samples, j =1,...,n, see Figure 3.12.

The random variables Y; are independent copies of Fj (g()\, X1yt Sj)). In practice, the sample
Y1,...,Y, may be obtained from

(B3 (9O Xryps0), - Fy (900 Xy4,)) ) )

by resampling, e.g. by bootstrapping. Note that in (3.74), we used the first variant of 2-
Wasserstein distance from (3.72). Alternatively the second variant can be used as well, dis-

1
cretizing the integral [ ...dy there by a sum.
0
To guarantee that = =1 Qi(A) = Ep, (X(1), X)) +7- WQQ(AFZX,FT) a.s. as n — 00, we
require the ergodicity of X together with strong consistency of 6, i.e. 6 — g a.s. as n — oc.

The minimization problem in (3.73) may be solved using the stochastic subgradient descent
method.
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3.5.7 Stochastic approximation and gradient descent

Our functional ¢(\) = 1 721 Q;(\) in Equation (3.73) can be seen as d(\) = EQ¢(N), where
Ae A E~U{1,...,n}). The procedures of stochastic optimization (the so-called procedures
of Robbins-Monro [35]) seek a solution to this problem as

NGRS [/\(z) e )\(l))} . leN,, (3.75)

where II, [-] is a metric (back) projection onto the space A, m; > 0 is a step length factor such
that

o oo

Zm = 00, an < 00, (3.76)

=1 =1
Jji is an independent realization of &, i.e., a member chosen randomly from {1,...,n}, and (for
the case of stochastic (sub-)gradient of Q;(.)) ¢(j,A) = V*Q;(A) is the (sub-)gradient of Q;(-)
with respect to A € A € RY. The difference to the classical batch (sub-)gradient descent lies in
the use of ¢(j, ) = (5(/\) in the classical case, which does not depend on a realization j of &.

Note that a sequence {n;} satisfying the conditions (3.76) can be for example 1 = }. The

iterations in (3.75) stop whenever |A"+1) — X(")| < § for some small threshold § > 0. Then,

A~

the solution A to the minimization problem (3.73) may be chosen to be either

~

A = argmin (A ?)

1=0,...,0*
or
. 1 b o
A= A
i &

the so-called Polyak-Ruppert averaging, which excludes the burn-in period of length lj.

It is well known that the convergence of all gradient-like descent methods heavily depends on
the right choice of the initial value A(). Hence, we recommend to choose A() to be the outcome
of another optimization procedure of the minimization problem q;()\) — 1}1611{1, e.g., simulated

annealing genetic search, etc.
In order to avoid the back-projection Il for A = Rf , it is reasonable to use A} =

(()\gl))2 e (/\E\lf))Q) in the computation of the gradients.
Let us consider the convergence of stochastic (sub-)gradient descent.

Theorem 3.77 Let A C RY be compact. Assume that Qj, j =1,...,n, are piecewise C?(M)
and bounded on A, d(A) > 0 almost everywhere on A, and there exists a unique A* € A such
that Vo(A*) =0, ¢(A*) = ¢(A). Assume that for 4,5 € {1,..., N} it holds that
AEA
(VQi(N),VQ;(N) >0 (3.77)

almost everywhere on A and that this inequality is strict for at least one pair (i,5) € {1,...,n}2.
Then, the stochastic gradient descent

A 20 = vQe(A\Y), ¢ ~U({1,...,n}) (3.78)
with a sequence {n;} satisfying (3.76) converges a.s., i.e.

2D 5\ as., 1= 0.
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Proof For ¢ € C%(A) a.e. on A its Taylor expansion is given by
_ _ 1 _
dAIHD) — p(AD) = (Vo(AD), AHD — \Dy 4 5()\(lJrl) — ANTHEAOYAEHD — \O),

where (-,-) denotes the Euclidean scalar product in RY and A® = \O 4 5(_)\(l+1~) — A0y,
5 € (0,1). Furthermore, Hp(AV) = %2?21 HQ;(A\D) is the Hessian matrix of ¢ at A,
Then, the above in combination with (3.78) yields

qg()\(wl)) — ¢ ()\(l))
Zm( (9 (\), 9@ (XV)) + FVQDHVQ,(AMNVQMY) ). (379)

Due to the condition 7%, n? < oo we have 7, — 0 as | — oo. Additionally, since Q; € C?(A)
piecewise, the gradient and Hessian matrix of Q;, i.e. VQ; and HQ);, are bounded on the
compact set A forall j=1,....n

From Equation (3.77) we get

SOY) —o(AY) <0
as [ — oo. Since &()\) > 0 a.e. on A, it follows that there exists an a.s. limit, which we denote

by limy_ee d(AD) := doo a.s
It remains to show that

Poo = ming(\).

AEA

Since & € U{1,...,n}, it holds that ¢, is a random variable with E(¢s,) < 0o by boundness
on A. Thus,

ZE AEDY — 6(AD) | 4 4(AO),

=0

<0 for sufficiently large [

which implies
ZE AD) — (A HD)) < 0.

Plugging-in (3.79) and dissolving the expectation with respect to £ yields

SE (5(00) - (1)

=0
o0 n 2 )
- % ; .Zl [WQZ-(A‘“), vQ,(M) = LvQ, (0 )THQ(AD)VQ; ()
=01i,j=
=S [mnwwnb T 5T HGAD)EAD)|
=0

Since V¢ and H¢ are bounded on A and Pyt 77[2 < 00, the second term in the sum is bounded
a.s. Hence, also the first term has to be bounded a.s., and since Y 72, n; = oo, it has to hold

IVo(AD) ||, = 0 a.s.
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as [ — oo.
It follows that A* = limy_, oo A is a point of extremum of . Since qg()\(l)) | ¢oo and there
exists a unique minimum of ¢ by assumption, we have ¢, = r)]\rn[r\l d(N). ]
€

Now let us turn to the computation of the forecast Xy. Assume that the marginal distribution
Fy has a density fp, and that the random vectors (X (¢t + s;), X(t1 + 55),..., X(tn +55)), j =
1,...,n have joint densities. Then, it is reasonable to assume

]P)(X(t + 8.7) = g()\’ XTf+Sj)) =0 and P(Y} = fég()‘vXTf-i-Sj)) =0
for j=1,...,n as well as
]P)(g()V X(t + 51)) = g()‘v XTf+5j)) =0

fori,j7=1,...,n.
As a consequence, it becomes easy to calculate the sub-gradient V*@;, i.e.

V*Q] = |:2 ’ 1(X(t + S]) < g()\7XTf+8j)) - 1} fé(g(A7XTf+Sj)) : V*g()‘vXTf+8j)
+7 |:2Fé(g()‘7 XTersj)) - l(g()‘a YTf+sj) < g()‘a XTerSj))} : fé(g()‘a XTerSj))V*g()‘v XTf+Sj)
-7 1(9()\7 YTf+Sj) Z g(/\) XTf+sJ))fé(g(>\, YTf—‘rS]'))V*g()\a YTf+sj)>

where Y7, 45, is an independent copy of XTf+sj) for all j = 1,...,n. The subgradients V*g
depend on the form of g, i.e. we have V*g(\, X1,4s,) = X1,45, for g(A, X1,) = 315, XX (t:)
and

V(N X1, 40,) = (X(tz- 8 LX (1 57) = max MKt 4 5,)), i = 1,...,N)

for g(A, X7;) = max_ \X(t;).

=1,...,

3.5.8 Excursion-based prediction of max-stable random fields

Let us apply the above theory to the extrapolation of stationary max-stable random fields from
Section 1.3. Let X = {X(t),t € RY} be a stationary max-stable ergodic max-stable random
field with Fréchet(«)-marginal distributions, o > 0. Let

X = j:HllaXN )\jX(tj)

[ERE!

be the predictor of X (¢) with Ay,..., Ay > 0.
Lemma 3.78 The pairwise extremal coefficient 0y of (X (t), X (t)) is given by

Ox = Int1 (1, AT, AR,
where [n41(...) is the tail dependence function of (X (¢), X (t1),..., X (tn)).
Proof It is known that

lim P (X(8) > 2| X(t) > ) =2 - 0.

T—r00
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(a) Interpolation of a moving average X; with Cauchy distributed marginals: True trajectory
X1(t) (black), predicted trajectories X ,, (red) and X . (blue)

(b) Extrapolatlon of a moving average X; with Cauchy distributed marginals: True trajectory
X (t) (black), predicted trajectories X, ., (red) and X; . (blue)

) w\
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o
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(c) Interpolation of a moving average X3 with Lévy distributed marginals: True trajectory
Xo.5(t) (black), predicted trajectories Xo 5, (red) and Xo. 5,c (blue)

30t
25F
20

L L L L L L
30 31 32 33 34 35

(d) Extrapolation of a moving average X with Lévy distributed marginals: True trajectory
Xo.5(t) (black), predicted trajectories X5, (red) and Xg 5. (blue)

Fig. 3.13: Excursion based interpolation and extrapolation.
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Since P(X(t) >x) =1—e™* ", x € R and
P(X(t) > 2 X(t) > 2) =1-P(X(t) <x) — P(X(t) < 2) + P(X(t) < 7, X(¢) < )

— 1 _ 26—92704 + €—IN+1(1,>\(11,...,/\%)$7D‘

I

we have
P(X (¢ X(t
s gy 1 PEO) > 2.X(0) > 2)
z—00 P(X(t) > x)
1 - 2= 4 o= Ivr1 (LA A% )
= lim —
T—00 1—e7
e R v (LA A e AR 2
= lim —
T—00 e~
=2- lN+1(17 )‘?7 cee )‘?V)
where the equality () follows from I'Hopital’s rule. The assertion follows immediately. O

Denote by Iy the tail-dependence function of (X (¢1),..., X (tn)).

Corollary 3.79 Let A, = {A € RY : Iy(A}),...,AY) = 1}, see Example 3.67. Then, the

optimization problem 6y — /\in{{ from Example 3.68 reads
€y

Iny1(1,2) — min , (3.80)
a:e]Rf: InN+1(0,2)=1

where = (z1,...,xy) with z; = A}, i =1,..., N.

Proof It is clear that Iy (z) = Iy41(0, ) for all # € R, The constraint I (z) = 1 is equivalent
to X () 4 X(t). The remaining part is trivial. O

For o > 1 the above result can be interpreted geometrically. To do so, the so-called D-norm
needs to be introduced.

Definition 3.80 Let (Yi,...,Yn) be a random vector with components Y¥; > 0 a.s. and
EY;]=1,j=1,...,N. Then,

lollo == B | max [z,[¥;], @ eR",
Jj=1,...,n

defines the so-called D-norm with a generator (Y7,...,Yy).
Exercise Show that || - ||p is a norm on the space RY.

For Y7, ..., Yy ~ Fréchet(a), a > 1, the D-norm with generator (EY;)~!(Y7, ..., Yy) is given
by

Y; 1
—F —L =T 1-Z)E[r; Y3V Y.
lz|lp Lfl{a}fojE(Y})] ( a> [x1Y1 V- VayYN]

Lemma 3.81 Let (Y7,...,Yy) be a max-stable random vector such that Y; = X(t;), j =
1,..., N, generating the above D-norm. For all A = (A1,...,An) € Rf, it holds that

1/ a a
() [[Alp = Iy, .-, A%)
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(b) ||.||p is convex.
N 1/
(c) If X(t1),...,X(tn) are stochastically independent, then ||[A||p = [|A|la = (Z A?‘) .
j=1

Proof (a) By homogeneity of Iy, it holds that
PAY1 V- VANYN) =PA\Y] <z,...,AnYy < z) =exp{—2 “,(A\], ..., AY) },

ie.

, HllaXN/\ij ~ Fréchet(a, 0, In (AT, ..., AY))-
J=1L

Then,
1.- Ay a
H/\HD:F(I_E) 1E[/\1Y1\/~--\/)\NYN]=Z}\{ ( 17"'7)‘N)'

(b) This follows from convexity of Iy, see Proposition 1.6.

(c) This follows from Exercise 1.7.
O

Remark 3.82 For \ € Rf, let A = (1,\) € Rf“. If a > 1, then the minimization problem
(3.80) rewrites as
IAlp — min ,
AERY:][(0,0) [ p=1

which means that the D-norm on R¥+! generated by (X (t), X (t1),..., X (tx)) is minimized on
the positive part of N-dimensional unit ball ||(0, A)||p = 1.
In this case the predictor (3.71) can be rewritten as

A= aﬁ%ﬁn {QE {efoc(t)v;z(t))—a} ) {efxw—a} 4y (; _E [eff((t)‘a} \E [62)2(7&)—0‘}) _ ;} 7

with v > 0, where Y is an independent copy of e~ XM, Taking the Wasserstein metric from
Equation (3.72) into account, it follows that

2 X —a —a 1
A — argmin {QE [ XOVRO ] g [0 1 4y (1 + / Fy (u)(Fy(u) — 2u)du)} ,
AeRY 2 3 0

(3.81)

where Z) = e~ (X7, Using a substitution z; = A%, j =1,..., N, again, we may conclude
with

Lemma 3.83 The minimization problem in (3.81) is equivalent to

— min,

Ayi(le)  va02) v (y41(0,2) — 1)
3 (a1 (0,2) + 1/2)(Ins1(0,2) +2)  acey

- +
INv1(Lz)+1  Iny1(0,2) +1

where x = (z1,...,2y) and I+ is the tail dependence function of (X (¢t), X (t1),..., X (tn)).
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Proof Set tg =t and A\g = 1. Then, clearly it holds that

X(t)vX(t) = jmax (A X (t5)}-

Computing the cumulative distribution function of Z) yields
Fry(u) =P (e X0 <u) =P (X(1) < (~logu) /%) = ul¥OT-20) 0 e [0,1].
Similarly, we have
P (6—(X(t)vf<(t))—a < u) = N IRy e [0, 1).

As a consequence

=x

1
E [e—(X(t)VX(t))fa} — / (1 — v (LT, ;33N)>du — M
/ Ing1(l,2) +17

and similarly
B [e‘Xﬂ _ v (0, 7) .
IN41(0,2) +1

The squared Ws-distance rewrites as

1
W22(FZ,\7 Fu) = -+ / <U2ZN+1(O’Z) _ 2ulN+1(0,z)+1> du
0

1 2

2An41(0,2) +1  Iny1(0,2) +2
(In41(0,2) — 1)

(In41(0,2) +1/2)(In41(0,2) +2)°

where the equality () follows from U ~ U(]0,1]). O

—

()

+

Let us show the existence of the forecast A from Equation (3.81).
Theorem 3.84 The minimization problem (3.81) has a solution.

Proof The random vector (X (t9), X (t1),..., X (tx)) is max-stable with Fréchet(a)-marginals,

and hence absolutely continuously distributed. Since lime™® " = 0 and lim X (t) =0 a.s.,
z—0 [All2—0

there exists a A\g € Rf such that

T(N) == 2E(e- X OVXW) ™) _E(e=XO™") (; + Eem X0 _ e~y Y)) <142

3
holds.
Together with the a.s. divergence H/\him X(t) = o a.s. and Lemma 3.73, the existence
2—00
of M > 0 follows, i.e. min ¥(A\) = min (), and thus condition (I) of Theorem 3.70 is
AeRY Ael0,M]N

satisfied.
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Since
X (t) ~ Fréchet(a, 0,1/ (A, ... AN,

o(\a)

its density is given by

Note that f¢ ) is bounded from above uniformly in A € [0, MY

By the theorem on dominated convergence, we get (denoting X := X (t))

’f)(A fXAJrh‘:

Hf)(A fXA+hHL1 \hH /‘f}(A fX)\Jrh‘

Ihll |h|| 20
R

Since the tail dependence function [y (+) is convex, it is also continuous, and consequently fXA
is continuous in A. Thus, condition (III) of Theorem 3.70 is satisfied.

Since the copula Cy ) ¢ (z,7) = 2%, where 0\ = I5(1,1) is the pairwise extremal coef-
ﬁcient of (X(t),X(t)), 0 is continuous on [0, M]VN because of the continuity of l. Hence,

f C’ 0, (1) (x,z)dx = st +1 is continuous as well, and the application of Theorem 3.70 resumes

thls proof. 0

— n
Now let us discretize the expectations in ¥()\) and write the functional ¢(A) = 2 3= Q;())

j=1
with
Q](A) = QGXP{_(X(t + S]) v g()\a XTf+Sj))7a} - exp{_gia()V XTf+Sj)}
1 —a —a ;
+7 § —exp{—g (A7XTf+5j)}v}/j +exp{_29 ()\7XTf+Sj)} o J=1...,n,

where Yj is an independent copy of exp{—g~%(\, X1;+s;)}. To implement the stochastic sub-
gradient descent, we also need the subgradients

Q0 = (Ve ) = vp (), 1=1,...,N)",

where
Vel (\) = [2 L(X(t4s5) < MX(t +55)) — 1

—’y-l(max )\X(tz+s])< max )\X(tz—l—sj))

ey 17 )

+ 2yexp{—(\ X (t; + Sj))}]

X f()\lX(tl + Sj)) . X(tl + Sj) -1 (/\lX(tl + Sj) = max )\iX(ti + Sj)>

i=1,...,
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and

vpy)(A) =~-1 ( max A X (t; + ;) > max A Xt + Sj))

i=1,..., =1,...,
X f()\lX(tl + Sj)) -1 (/\lX(tl + Sj) = '—nllaXN /\zX(tz -+ Sj))

forj=1,...,n, 1 =1,...,N, where (X(t; + s;),...,X(tn + s;)) is an independent copy of
(X(t1+55),...,X(tn+s;5)) forall j=1,...,n and

f@)=a- a7 7% ™" >0,

is the probability density function of the Fréchet(«) distribution.
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3.6 Conditional simulation of stationary Gaussian random fields

Let X = {X(t),t € T}, T C R? be a stationary Gaussian random field with mean zero,
varX (t) = 1 and covariance function C(t) = cov(X (s), X (¢)). Our goal is to simulate X (t) pro-
vided that observations X (t1) = y1,..., X (tn) = yn are given at locations t ¢ {t1,...,tn} C
W, where W is a compact observation window.

Let X = {X(t),t € W} be the simple Kriging prediction of X in W, compare Section
3.2.1. By theorem 3.16 (4), the random fields X and X — X are stochastically independent.
Indeed, in the Gaussian case the orthogonality of X (t) and X (t) — X (t) means independence,
for any t € W, since X and X — X are jointly Gaussian as linear combinations of observations
X(tj), j=1,...,N. The same reasoning can be applied to arbitrary linear combinations of
values of X and X X, tew.

Therefore, it holds that X (¢t) = (X — X )+ X, where both components are independent and
Gaussian. This leads to the following algorithm to simulate X (¢) conditional on X (t;) = y;,
j=1,...,N:

1. Simulate a Gaussian random field with mean 0 and covariance function C(-) at locations
t € W. Denote the resulting field by {X*(t),t € W}.

2. Compute the simple Kriging estimates of {X*(¢), ¢ e W} on the sample {X*(¢;),j =
1,...,N}. Denote the resulting field by {X*(t) N Aj X (L)), t € W}

3. Return X (t) = X(t) + X*(t) — X*(t), t € W.

The field {X(t),t € W} is a conditional simulation of X provided that X(¢;) = y;. Indeed,
since simple Kriging is exact, it holds that X*(t;) = X*(t) and X(t;) = X(t;) = y; for all
j = 1,...,N. Moreover, X is obviously Gaussian as a sum of two independent Gaussian
components X and X* — X*.

Remark 3.85 For points ¢ lying far away from ¢;,...,ty one can expect X () ~ X*, i.e
the simulation becomes uncondiditonal. Indeed, if C'(t) — 0 as ||t||]2 — oo, the simple Kriging
weights \; in X (t) = Zévzl A;Yj and A} of X*(t) = Zé\f:l A7 X*(t;) are very small, which yields
X(t) ~ 0 and X*(t) ~ 0.
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(a) A 50 time steps’ forecast (dashed blue line), together with its corresponding excursion metric (red
line), of a Brown-Resnick process (blue line). After observing 110 values of B, the predictor B used
ten learning samples of size eleven. Step-sizes for the stochastic gradient descent were given by the
harmonic series {1/n},en. The underlying process Y of the Brown-Resnick process was a standard
Brownian motion.
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(b) A 50 time steps’ forecast (dashed blue line), together with its corresponding excursion metric (red
line), of an extremal Gaussian process (blue line). After observing 110 values of G, the predictor ¢
used ten learning samples of size eleven. Step-sizes for the stochastic gradient descent were given by
the harmonic series {1/n},en. The underlying process Y of G was a Gaussian process with Cauchy
covariance function C(t) = exp(—|¢/0.01).

Fig. 3.14: Forecast of a Brown-Resnick and extremal Gaussian process
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Brown-Resnick
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Fig. 3.15: A ten steps’ forecast of random fields of each type in both directions ¢; and t5. After
observing true values of the random fields at locations ¢t € {1,...,50} x {1,...,50},
the predictor extended the random surfaces to t € {1,...,60} x {1,...,60}.
Step-sizes for the stochastic gradient descent were given by the harmonic series

{1/n}n€N-
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(a) The left plot shows the yearly maximum of daily rainfall in Munich, Germany from 1879 to 2022.
The right plot shows the corresponding empirical c.d.f. F (blue line) and the ML-estimated
Fréchet(&, i, 6) c.d.f. (red line) with & = 7.7551, i = —545.0173 and 6 = 959.8184,
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(b) Forecasts for the annual daily rainfall maxima from 2013 to 2022. All data from 1883-2012 was used
in learning samples. The real data is shown by the blue line. The red lines mark the maximum and
minimum of 100 forecasts using the max-stable predictor with bootstrap. The green line yields the
forecast using the alternative formulation. For every extrapolation 12 learning samples of size 10
containing data from 1883-2002 and a forecast sample containing data from 2003-2012 were used.

Fig. 3.16: Forecast of Munich daily maximums of rainfall
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G-invariant extreme value distribution, 7
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a-mixing rate, 16 Fisher-Tippett-Gnedenko, 7
a-quantile regression estimate, 56 forecast
a-stable excursion-based, 73
random field, 13 fractional Brownian field, 5
fractional Brownian motion, 6
adjacency matrix, 53 Fréchet distribution, 7
asymptotic normal, 15 Fréchet(w), 7
standard, 7
B-Splines, 48
Bessel function geoadditive regression, 47
of the first kind of order v, 41 geometric anisotropy, 35
Brown-Resnick random field, 8 geostatistics, 1
Brownian Lévy field, 6 Gini metric, 72
group of

Cauchy distribution, 12 all rigid motions, 3

centgred, 3 ‘ rotations SOy, 2
classical batch (sub-)gradient descent, 81 translations, 2

complete dependence, 8 Gumbel distribution, 7
conditional bias reduction
universal Kriging, 46 homogeneous of order 1, 8
conditional unbiasedness, 33 homoscedasticity, 33
copula, 67 Hurst index, 6
degree of a vertex, 53 increments, 3
drift, 34 infinitely divisible, 58
estimation, 45 infinitely divisible class, 58
estimation variance, 45 intrinsic stationarity, 3
drift correction, 46 of order two, 3

isotropic, 2

ellipsoid constraint, 61 Gaussian fields, 5

empirical quantile, 54

energy, 50 Kriging, 30
exactness

universal Kriging, 46 Lagrange function, 44
excursion pseudo metric, 67 Lagrange multiplier, 37
excursion set, 59 law of total variance, 39
extremal coefficient, 8 learning samples, 80
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level set, 59 second order cone programming, 62

linear regression, 24 separation pseudo-metric, 71
Gaussian, 32 shift parameter, 11

long memory, 4 short memory, 4

Lorenz curve, 72 simplex constraint, 61

loss function, 58 Smith random field, 9

Lévy distribution, 12 smoothing kernel, 20

space-time continuum, 1
spatial autoregressive process, b4
spectral
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representation, 3
stability index, 11
stable
a, 11
random vector, 11
stationary, 2
Gaussian fields, 5
normal distribution, 12 in the strict sense, 13
nugget effect, 35 step length factor, 81
stereology, 1
stochastic subgradient descent method, 80
Subgaussian, 28
symmetric distribution, 11

madogram, 71

Markov random field, 53

max-stable, 6

mean-square consistent, 15

median, 54

median regression, 55

modified Bessel function
of the third kind, 41

motion invariant, 3
Gaussian fields, 5

observations, 14
ordinary Kriging estimate, 37
orthogonality

universal Kriging, 46

tail dependence function, 7
target, 47
linear part, 47
non-linear additive part, 47
regression error, 47
Tensor product bases, 48
tick function, 57
time line, 1
truncated power series, 49

p-Wasserstein distance, 75
penalization factor, 56
penalized regression, 50
penalty, 56

penalty factor, 50
periodogram, 18
Polyak-Ruppert averaging, 81
polynomial spline, 49
primary function, 4

quadratically constrained quadratic problem, unit simplex S, 7
62 universal Kriging
variance, 45

radial functions, 52 universality constraints, 43

random field, 2

Boolean, 4 variogram, 3

Gaussian, 5 volume, 14

Ornstein-Uhlenbeck, 5

subgaussian, 13 Weibull distribution, 7
random surfaces, 1 Whittle-Matern-type
range dependence, 4 covariance function, 41
response, 47 family of variogram models, 41

Rosenblatt dependence rate, 16 Wiener process, two-sided, 6
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