Risikotheorie II

Übungsblatt 10

Aufgabe 1

Berechne basierend auf dem Datensatz in der folgenden Tabelle die Sterbewahrscheinlichkeit q_{50} mit Hilfe der Geburtsjahr, der Sterbejahr-, der Verweildauermethode und dem Sterbeziffernverfahren für den Beobachtungszeitraum B = [01.01.2005, 31.12.2006].

Person	Geburtstag	Todesdatum	Eintritt nach Beobachtungs-	Austritt vor Beobachtungsende
			beginn	(nicht wegen Todes)
P1	03.03.1954	-	-	-
P2	01.08.1954	18.03.2005	-	-
P3	28.04.1955	05.02.2006	-	-
P4	24.09.1955	-	-	-
P5	11.03.1956	01.12.2006	-	-
P6	29.07.1956	-	01.08.2006	01.10.2006

Aufgabe 2

Ein Lebensversicherungsunternehmen entwickelt einen Tarif für eine gemischte Versicherung gegen Einmalbeitrag in Höhe von 80% der Versicherungssumme. Am Ende der Laufzeit wird im Erlebensfall die gleiche Versicherungssumme ausgezahlt wie bei Tod während der Laufzeit. Zur Vereinfachung gehen wir davon aus, dass die versicherten Personen bei Abschluss alle 20 Jahre alt sind, die Verträge eine Laufzeit von 4 Jahren haben, keine Kosten zu berücksichtigen sind und das Deckungskapital linear ansteigt. Das VU möchte im Hinblick auf das Schwankungsrisiko eine Sicherheit von 0.95 erreichen. Es gelten folgende Rechnungsgrundlagen:

Alter	Bestand	Unterstellte Sterbewahrscheinlichkeit
x	L_x	q_x
20	400	0,005
21	400	0,01
22	400	0,015
23	400	0,02

- (a) Ermittle Sicherheitszuschläge oder -abschläge auf die Sterbewahrscheinlichkeiten q_x , so dass für jedes Alter 20-23 mit der geforderten Sicherheit 0.95 die tatsächliche Anzahl der Toten nicht über der erwarteten liegt.
- (b) Ermittle Sicherheitszuschläge oder -abschläge auf die Sterbewahrscheinlichkeiten q_x , so dass für jedes Alter 20-23 mit der geforderten Sicherheit 0.95 das riskierte Kapital des

VU nicht über dem erwarteten liegt.

- (c) Wie verändern sich die Ergebnisse aus (a) und (b), wenn sich der Bestand um den Faktor y verändert?
- (d) Unter dem Solvenzkapital versteht man das Kapital, das ein VU zusätzlich zum erwarteten Gesamtschaden bereithalten muss, um mit einer Wahrscheinlichkeit von 0.95 alle Ansprüche von Versicherten erfüllen zu können. Leite Formeln für das Solvenzkapital für obigen Tarif her, wenn der Gesamtschaden
 - (i) in der Form $S_n = \sum_{i=1}^n X_i, X_i \ge 0$ iid und
 - (ii) als $S_N = \sum_{i=1}^N Y_i$ mit $N \sim \text{Poi}(\lambda)$ unabhängig von Y_1, Y_2, \ldots iid modelliert wird.

Aufgabe 3 (Fortsetzung von Blatt 4, Aufg.1)

Ein Lebensversicherer plant, sein Geschäft auf den internationalen Markt auszudehnen. Für ein Pilotprojekt wurde ein erstes Land ausgewählt. Um dort Lebensversicherungstarife anbieten zu können, soll nun überprüft werden, ob die biometrischen Rechnungsgrundlagen aus Deutschland ohne Modifikationen übertragen werden können. Die Daten sind in folgender Tabelle gegeben:

Alter	Bestand	Unterstellte	Beobachtete	Erwartete
		Sterbewahrscheinlichkeiten	Tote	Tote
x	l_x	$q_x^{(0)}$	Z_x	$E_x = l_x q_x$
40	13253	0,0011151	16	14,78
41	12588	0,0012369	20	$15,\!57$
42	13402	0,0013706	23	18,37
43	13233	0,0015148	22	20,05
44	13896	0,0016709	22	23,22
45	12785	0,0018403	22	23,53
46	11568	0,0020216	21	23,39
47	11862	0,0022190	20	26,32
48	11586	0,0024325	25	28,18
49	12003	0,0026628	30	31,96
50	12455	0,0029127	42	36,28
51	12052	0,0031843	45	38,38
52	11837	0,0034790	49	41,18
53	12121	0,0038024	49	46,09
54	12635	0,0041566	54	52,52
55	12577	0,0045493	55	57,22

- (a) Überprüfe mit Hilfe des Vorzeichen- und des Iterationstests, ob die unterstellten Sterbewahrscheinlichkeiten bei einem Signifikanzniveau von 5% für den neuen Markt angemessen erscheinen oder nicht.
- (b) Erläutere anhand der Beispieldaten die den Tests zugrunde liegenden Ideen.