Dr. Katharina Best WS 2010/11
Malte Spiess 3. 12. 2010

Übungen zu Stochastik für Wiwis - Blatt 7

Abgabe am 10. 12. vor Beginn der Übung

Aufgabe 1

Es seien 10 baugleiche Maschinen in einer Firma im Einsatz, deren Lebensdauer X_1, \ldots, X_{10} (in Tagen) unabhängig und exponential-verteilt ist mit Parameter $\lambda > 0$.

- (a) Offenbar ist ja $x \le \min\{X_1, \dots, X_{10}\}$ genau dann, wenn $x \le X_1, \dots, x \le X_{10}$ gilt. Nutze dies, um zu zeigen, dass $\mathbb{P}(x \le \min\{X_1, \dots, X_{10}\}) = \prod_{i=1}^{10} \mathbb{P}(x \le X_i\})$. (1)
- (b) Nutze Teil (b), um zu zeigen, dass die Zufallsvariable $\min\{X_1, \dots, X_{10}\}$ wieder exponentialverteilt ist mit Parameter $\lambda_{\min} = 10 \lambda$. (2,5)

Hinweis: Hierfür kannst Du z.B. zeigen, dass die Dichte oder die Verteilungsfunktion übereinstimmt.

- (c) Wie lange dauert es im Mittel, bis die erste Maschine ausfällt? (1)
- (d) In welchem Bereich darf λ liegen, damit mit einer Wkt. von 90% alle 10 Maschinen mindestens 30 Tage lang halten? (2)

Aufgabe 2

Es sei X ein zweidimensionaler stetiger Zufallsvektor mit Dichte

$$f_X(x_1, x_2) = \left[\frac{3}{2}x_1^2 x_2 + \frac{1}{2}(x_2 - \frac{1}{2}) - \frac{3}{4}x_1^2\right] \mathbb{1}_{[0,1]}(x_1) \mathbb{1}_{[1,2]}(x_2).$$

- (a) Berechne die Marginaldichten von X_1 und X_2 . (2,5)
- (b) Berechne den Erwartungswert von X. (1,5)
- (c) Berechne die Kovarianzmatrix von X. (4,5)
- (d) Sind X_1 und X_2 unabhängig? (1)
- (e) Plotte die Marginaldichten von X_1 und X_2 mit \mathbf{R} jeweils im Intervall [-.5, 2.5]. (2) *Hinweis*: Die Indikatorfunktion $\mathbb{1}_{[1,\infty)}(x)$ lässt sich in \mathbf{R} durch ($\mathbf{x}>=1$) darstellen, siehe Abschnitt 3.1 im \mathbf{R} -Skript.
- (f) (Bonus) Plotte die 2D-Dichte von X mit dem Befehl persp(), siehe Abschnitt 6.5 im **R**-Skript. Wähle dabei die Parameter phi und theta geeignet. (3*)

Aufgabe 3

Es sei X ein zweidimensionaler Zufallsvektor mit Wahrscheinlichkeitsfunktion

$$p_X(x_1, x_2) = \frac{1}{12}(x_1^2 x_2 + x_1) \mathbb{1}_{\{-1,0,1\}}(x_1) \mathbb{1}_{\{1,2,3\}}(x_2)$$

- (a) Berechne die Marginalwahrscheinlichkeitsfunktionen von X_1 und X_2 . (2)
- (b) Wie lautet die bedingte Wahrscheinlichkeitsfunktion $p_{X_2|X_1=1}$? (1,5)
- (c) Sind X_1 und X_2 unabhängig? (1)

Aufgabe 4

Es sei $X \sim \operatorname{Exp}(\lambda)$ für ein $\lambda > 0$. Ferner die Zufallsvariable $Y = e^{-\lambda X}$ eine Transformation von X. Zeige, dass $Y \sim \operatorname{U}(0,1)$ gilt.