## Stochastics III - Exercise sheet 3

Due to: 28. 11. 2012 before exercises start

Exercise 1 (3+3 points)
(a) Let $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, Z_{3}\right)^{\top} \sim N\left(\boldsymbol{\mu}, \boldsymbol{I}_{3}\right)$ with expectation vector $\boldsymbol{\mu}=(1,7,-5)^{\top}$ and covariance matrix $\boldsymbol{I}_{3}$. Determine the distribution of

$$
\frac{1}{2} Z_{1}^{2}+Z_{2}^{2}+\frac{1}{2} Z_{3}^{2}-Z_{1} Z_{3} .
$$

(b) Let $\boldsymbol{Z}=\left(Z_{1}, Z_{2}, Z_{3}\right)^{\top} \sim N(\boldsymbol{\mu}, \boldsymbol{K})$ with expectation vector $\boldsymbol{\mu}=(1,-3,2)^{\top}$ and covariance matrix

$$
\boldsymbol{K}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Determine the distribution of

$$
Z_{1}^{2}+Z_{2}^{2}+Z_{3}^{2}+2 Z_{1} Z_{2}-2 Z_{1} Z_{3}-2 Z_{2} Z_{3}
$$

Exercise 2 (3 points)
Reconsider the two-dimensional normally distributed random vector $(X, Y)^{\top}$ of exercise sheet $2 /$ exercise 4, i.e. $(X, Y)^{\top} \sim N(\boldsymbol{\mu}, \boldsymbol{K})$ with

$$
\boldsymbol{\mu}=\binom{1}{2}, \quad \text { and } \quad \boldsymbol{K}=\left(\begin{array}{cc}
5 & 2 \\
2 & 3
\end{array}\right) .
$$

Draw a histogram based on 10000 realisations of $(X, Y)^{\top}$ and compare it with the density function in exercise sheet $2 /$ exercise 4.

Exercise 3 (6 points)
Proof Lemma 1.11 of the lecture course.
Let $Z=\left(Z_{1}, \ldots, Z_{n}\right)^{\top} \sim N(o, K)$ a normally distributed random vector with covariance matrix $K=\left(k_{i j}\right)_{i, j=1, \ldots, n}$. Show that for any $i, j, l, m \in\{1, \ldots, n\}$ it holds

$$
\mathbb{E}\left(Z_{i} Z_{j} Z_{l}\right)=0
$$

and

$$
\mathbb{E}\left(Z_{i} Z_{j} Z_{l} Z_{m}\right)=k_{i j} k_{l m}+k_{i l} k_{j m}+k_{j l} k_{i m}
$$

Exercise 4 (6 points)
Let $X=\left(X_{1}, \ldots, X_{n}\right) \sim N\left(\boldsymbol{\mu}, \boldsymbol{I}_{\boldsymbol{n}}\right)$ be multivariate normally distributed with expectation vector $\boldsymbol{\mu}$ and covariance matrix $\boldsymbol{I}_{\boldsymbol{n}}$. Determine the characteristic function and the expectation of $X^{\top} X$.

