Stochastik III - Übungsblatt 6

Abgabe: 09. 01. 2013 vor Beginn der Übung

Aufgabe 1 (4 Punkte)

Sei ein lineares Modell $Y = X\beta + \epsilon$ gegeben, wobei X eine $n \times m$ - Matrix mit rg(X) = r < m ist. Sei $a \in \mathbb{R}^m$. Zeigen Sie, dass die Funktion $a^{\mathsf{T}}\beta$ genau dann erwartungstreu schätzbar ist, wenn gilt: $a^{\mathsf{T}}X^{\mathsf{T}}X = a^{\mathsf{T}}$.

Aufgabe 2 (4 + 5 Punkte)

Betrachten Sie folgendes lineares Modell:

$$\begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} + \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \end{pmatrix}.$$

- (a) Zeigen Sie, dass $\beta_1 + \frac{1}{3}\beta_2 + \frac{2}{3}\beta_3$ erwartungstreu schätzbar ist.
- (b) Bestimmen Sie den besten linearen erwartungstreuen Schätzer für $\beta_1 + \frac{1}{3}\beta_2 + \frac{2}{3}\beta_3$.

Aufgabe 3 (5 Punkte)

Betrachten Sie das lineare Modell $Y = X\beta + \epsilon$ mit $Y \in \mathbb{R}^6$, $\beta = (\beta_1, \beta_2, \beta_3, \beta_4)^{\top} \in \mathbb{R}^4$, $\epsilon \in \mathbb{R}^6$, $\mathbb{E}\epsilon = 0$, $\mathbb{E}(\epsilon_i \epsilon_j) = \delta_{ij}\sigma^2 > 0$, wobei $\sigma^2 > 0$ und

$$X = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \end{pmatrix}.$$

Zeigen Sie, dass die Menge aller erwartungstreu schätzbaren Funktionen gegeben ist durch

$$\{(a_1 + a_2 + a_3)\beta_1 + a_1\beta_2 + a_2\beta_3 + a_3\beta_4 : a_1, a_2, a_3 \in \mathbb{R}\}.$$

Aufgabe 4 (3 + 2 + 3 Punkte)

Auf der Homepage der Vorlesung befindet sich die Datei medikamente.txt, die folgende Struktur hat:

Wirkungszeit in h	Verabreichung Medikament A	Verabreichung Medikament B
0.98	1	0
1.08	1	0
1.55	0	1

Die Verabreichung der Medikamente wurde wie folgt kodiert:

• 0: Medikament wurde nicht verabreicht

• 1: Medikament wurde verabreicht

Für die Daten soll ein lineares Modell mit normalverteilten Störgrössen verwendet werden, wobei die Wirkungszeit die Zielvariable ist.

- (a) Welche erwarteten Wirkungszeiten haben die Medikamente A und B?
- (b) Weisen Sie nach, dass die Koeffizienten $\beta_1,\,\beta_2$ und β_3 nicht erwartungstreu schätzbar sind.
- (c) Weisen Sie nach, dass die Linearkombination $\beta_2-\beta_3$ erwartungstreu schätzbar ist.

Hinweis: Zur Berechnung der verallgemeinerten Inversen kann ginv() im Paket MASS verwendet werden.

Frohe Weihnachten und einen guten Rutsch ins Jahr 2013!