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Chapter 1

Introduction

Speaking very broadly, Monte Carlo methods are tools for solving problems using random
numbers. Although this might sound somewhat specific and not very promising, Monte Carlo
methods are fundamental tools in many areas of modern science (ranging all the way from
theoretical physics to political science). There are a number of reasons why Monte Carlo
methods are so useful.

(i) They can be easy. Sometimes it is very straightforward to find an (approximate) answer
to a problem using Monte Carlo methods. In these best cases, little thought or time is
required to obtain such an answer.

(ii) Sometimes they are the only obvious solution to a problem. Most realistic problems
need to be solved numerically. Sometimes it is unclear how to do this using any kind
of deterministic method. However, it is often straightforward to develop a crude Monte
Carlo algorithm to solve the problem.

(iii) They outperform other methods in high dimensions. These days many interesting prob-
lems are very high-dimensional. It can be shown that Monte Carlo methods are often a
very good choice (or, even, the best choice) for high dimensional problems.

1.1 Some simple examples

1.1.1 Example 1

The best way to introduce Monte Carlo methods is to start with some simple examples.
Suppose we want to solve the integral

I =

∫ 1

0

h(u) du,

for some function h. In some cases (e.g., h(u) = u2) we can do this easily with a pen and paper.
However, in other cases, this is not possible. For example, one cannot solve

∫ ∞

0

e−u2

du (1.1)

by hand. One way to solve such an integral is to use numerical integration (for example, the
trapezoidal rule). However, as we will see later in this course, if the integration is in high
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6 CHAPTER 1. INTRODUCTION

dimensions such an approach does not work so well. Alternatively, we can use Monte Carlo. In
order to do this, we need to rewrite 1.1 into something involving random numbers (which are
the necessary ingredient in the Monte Carlo method).

Recall that if U is uniformly distributed on the interval (0, 1), i.e., U ∼ U(0, 1), then the
probability density function (pdf) of U , f(u), is given by

f(u) = I{u ∈ (0, 1)},

where

I{A} =

{
1 if A is true,

0 otherwise.

is the indicator function. Now, observe that

I =

∫ 1

0

e−u2

du = I =

∫ 1

0

e−u2

1 du =

∫ ∞

−∞

e−u2

I{u ∈ (0, 1)} du = Ee−U2

,

where U ∼ U(0, 1). That means we can solve I by calculating the expected value of the random
value e−U2

. Thus, we have turned our problem into one involving random numbers. The next
step is to solve this problem. The critical tool we need in order to do this is the Strong Law of

Large Numbers (SLLN).

Theorem 1.1.1 (Strong Law of Large Numbers). Let {Yn}∞n=1 be a sequence of independent
and identically distributed (i.i.d.) random variables with E|Y1| <∞. Then,

SN

N
→ EY1 almost surely

as N → ∞, where SN = Y1 + · · ·+ YN .

This result tells us that we can estimate the expected value of a sequence of i.i.d. random
variables by generating a sample and taking the sample mean. In the case of our example, the
variable of interest is Y = e−U2

. Thus, if we can generate an i.i.d. sample of replicates of Y ,
we can estimate I. We can do this as follows.

Algorithm 1.1.1. Estimating I =
∫ 1

0
e−u2

du.

(i) Simulate N independent U(0, 1) random variables, U1, . . . , UN .

(ii) Return

Î =
1

N

N∑

i=1

e−U2
i .

This is easily implemented in Matlab.

Listing 1.1: Solving a simple integral

1 N = 10^6;

2 U = rand(N,1);

3 Y = exp(-U.^2);

4 I_hat = sum(Y)/N

The estimates returned by this program are very close to the true answer (roughly 0.7468).
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1.1.2 Example 2

Finding a good estimate of π is a very classical problem (going back, at least, to ancient
Egypt and India). Of course, we have very good estimates now. But it is a nice example of a
problem that can be solved quickly and easily using Monte Carlo methods.

As in the first example, to solve this problem using Monte Carlo methods we need to write
it as a problem involving random numbers. Recalling that π is the area of a circle with radius
1, we observe that

π =

∫ 1

−1

∫ 1

−1

I{x2 + y2 ≤ 1} dv du = 4

∫ 1

0

∫ 1

0

I{x2 + y2 ≤ 1} dv du

= 4

∫ ∞

−∞

∫ ∞

−∞

I{x2 + y2 ≤ 1}I{u ∈ (0, 1)}I{v ∈ (0, 1)} dv du

= 4EI{U2 + V 2 ≤ 1},

where U ∼ U(0, 1) and V ∼ U(0, 1) are independent.
Using the SLLN again, we have the following recipe for estimating π.

Algorithm 1.1.2. Estimating π.

(i) Simulate 2N independent U(0, 1) random variables, U1, . . . , UN and V1, . . . , VN .

(ii) Return

π̂ =
1

N

N∑

i=1

I{U2
i + V 2

i ≤ 1}.

Again, this is easily implemented in Matlab.

Listing 1.2: Estimating π

1 N = 10^6;

2 U = rand(N,1);

3 V = rand(N,1);

4 Y = ((U.^2 + V.^2) <= 1);

5 p_hat = 4 * sum(Y) / N

Here the estimate is OK up to the 3rd decimal place. We will spend a lot of time in this
course focusing on ways to improve the accuracy of Monte Carlo estimators.
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Chapter 2

Generating Uniform Random Numbers

2.1 How do we make random numbers?

The two examples we have considered so far both required, as input, sequences of i.i.d.
U(0, 1) random variables. As it turns out, these are really the essential ingredient in Monte
Carlo. This is because almost any random object can be made using U(0, 1) random objects
as building blocks.

So, to begin, we should think about just how we might go about making a stream of i.i.d.
U(0, 1) random variables. A good method of generating such random numbers should have the
following properties:

(i) The random numbers should have a U(0, 1) distribution.

(ii) The random numbers should be independent.

(iii) The method should be very fast and not require a large amount of computer memory.

Unfortunately, there is a big problem in finding such a method of generating random num-
bers on a computer: nothing about a computer is random. Thus, we are left with two options:

(i) Use a physical device to generate random numbers (e.g., via radioactive decay).

(ii) Generate a sequence of numbers that are deterministic (i.e., not at all random) but “act
like random numbers”.

2.1.1 Physical generation

Although the physical idea sounds like a good idea, it actually does not work well. There
are a few reasons for this.

(i) In order to turn physical data into uniform random variables, we need to know the
distribution of the physical data. Usually we do not know this exactly.

(ii) There are measurement errors which can distort the physical information.

(iii) These methods are slow.

Strangely enough, even though they are not random, numbers made by a computer can often
be much more convincingly random than “real” random numbers.

9



10 CHAPTER 2. GENERATING UNIFORM RANDOM NUMBERS

2.1.2 Pseudo-random numbers

Thus, the best idea in practice is usually to use a deterministic sequence of numbers gener-
ated by a computer that “act like random numbers”. Such numbers are called pseudo-random

numbers. What exactly is means to “act like random numbers” is something of a philosophical
question. However, people now more or less agree that it is sufficient that the numbers fool as
many statistical tests as possible into thinking that:

(i) Each random number is U(0, 1) distributed.

(ii) The random numbers are independent of one another.

It turns out that there are a number of ways to make such numbers.

2.2 Pseudo-random numbers

2.2.1 Abstract setting

Most random number generators can be described by a general algorithm. This algorithm
has the following ingredients:

• A state space, S, which is a finite set.

• A transition function, f : S → S.

• A seed, S0 ∈ S.

• An output space, U (normally U = (0, 1)).

• An output function, g : S → U .

The general random number generation technique is then given in Algorithm 2.2.1.

Algorithm 2.2.1 (Abstract random number generator).
Given the above ingredients,

1. Initialize: Set X1 = S0. Set n = 2.

2. Transition: Set Xn = f(Xn−1).

3. Output: Set Un = g(Xn).

4. Repeat: Set n = n+ 1. Repeat from step 2.

2.2.2 Linear Congruential Generators

One of the simplest and most widely used random number generators is the linear congru-

ential generator. This is described in Algorithm 2.2.4.

Algorithm 2.2.2 (Linear congruential generator).
Given a, c and m,
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1. Initialize: Set X1 = S0. Set n = 2.

2. Transition: Set Xn = (aXn−1 + c) mod m.

3. Output: Set Un = Xn/m.

4. Repeat: Set n = n+ 1. Repeat from step 2.

Here, a is called the multiplier, c is called the increment and m is called the modulus.
Eventually, such a sequence will start to repeat. The length of the sequence before it starts
repeating is called the period.

Example 2.2.1 (A very simple LCG).
Take a = 6, m = 11, c = 0 and S0 = 1. Then,

X1 = 1

X2 = (6 · 1 + 0) mod 11 = 6

X3 = (6 · 6 + 0) mod 11 = 3

...

If we write out the whole sequence, we get 1, 6, 3, 7, 9, 10, 5, 8, 4, 2, 1, 6, . . . (notice the sequence
starts repeating once a number reoccurs). There are a total of 10 numbers before it starts
repeating. That is, the period of the LCG is 11. This generator is easily implemented in
Matlab.

Listing 2.1: A simple LCG

1 N = 12;

2 a = 6; m = 11; c = 0;

3 S_0 = 1;

4 X = zeros(N,1); U = zeros(N,1);

5 X(1) = S_0; U(1) = X(1) / m;

6 for i = 2:N

7 X(i) = mod(a*X(i-1) + c,m);

8 U(i) = X(i) / m;

9 end

10

11 X’

12 U’

What happens if we take a = 3 instead? Then,

X1 = 1

X2 = (3 · 1 + 0) mod 11 = 3

X3 = (3 · 6 + 0) mod 11 = 9

...

If we write out the whole sequence, we have 1, 3, 9, 5, 4, 1, 3, . . .. This has only got a period of
5.
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A natural question to ask when consider an LCG is what determines its period. In particular,
we want to know when an LCG has full period (i.e., for a given choice of m it is not possible to
find a larger period). In general, the maximum period is the size of the state space, S. Now,
for fixed m and c = 0, the largest possible state space is S = {1, . . . ,m− 1} (because, if X = 0
then aX = 0 and the LCG becomes stuck). Thus, the biggest possible period is m − 1. For
c = 0, X = 0 is allowed because aX + c 6= 0. Thus, for c 6= 0, the maximum period is m.

For LCGs with c = 0, we have the following result.

Theorem 2.2.2. An LCG with c = 0 has full period, m− 1, if

(i) S0 6= 0,

(ii) am−1 − 1 is a multiple of m,

(iii) aj−1 − 1 is not a multiple of m for j = 1, . . . ,m− 2.

The example with a = 3 and m = 11 fails because 36−1 mod 11 = 0. For LCGs with c 6= 0,
the following theorem holds.

Theorem 2.2.3. An LCG with c 6= 0 has full period, m, if

(i) c and m are relatively prime (they have no common divisors other than 1),

(ii) every prime number that divides m divides a− 1,

(iii) a− 1 is divisible by 4 if m is.

This theorem is satisfied if c is odd, m is a power of 2 and a = 4m+ 1.

Example 2.2.4 (Minimal standard LCG). Many early LCGs had periods of size 231 − 1 ≈
2.1 × 109. One example is the so-called “minimal standard LCG”. This has a = 75 = 16807,
c = 0 and m = 231. Of course, these days such a small period would be totally inacceptable.

2.2.3 Improvements on LCGs

A significant disadvantage of LCGs is that they have small periods unless m is chosen very
large. This is a significant problem because these days it is common to carry out Monte Carlo
experiments using 1015 or more samples. Clearly the period of a RNG should be at least as
long as the number of samples required in a simulation. As a rule of thumb, if N is the required
sample size then the period should be bigger than N2 or (more conservatively) N3. This means
modern RNGs should have a period of at least 1030 or 1045. Using 64-bit numbers, an LCG
would have a maximum period of 264 ≈ 1.8 × 109 which is clearly too small. For this reason,
researchers developed a number of modifications of the LCG that have much larger periods.
The basic idea of these generators is to increase the size of the state space. The first one we
will consider is the multiple recursive generator.

Algorithm 2.2.3 (Multiple Recursive Generator).
Given a1, . . . , ak and m,

1. Initialize: Set X1 = S
(1)
0 , . . . , Xk = S

(k)
0 . Set i = k + 1.

2. Transition: Set Xi = (a1Xi−1 + · · ·+ akXi−k) mod m.
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3. Output: Set Ui = Xi/m.

4. Repeat: Set i = i+ 1. Repeat from step 2.

We can place this in the abstract framework from above. Here, the state space is S =
{0, 1, . . . ,m − 1}k \ (0, . . . , 0), which is of size mk − 1. A single state is then given by x =
(X(1), . . . , X(k)). The update is of the form

xn = f(Xn−1) = (X
(2)
n−1, . . . , X

(k)
n−1, a

⊺Xn−1),

where a = (ak, . . . , a1). Given the size of the state space, the maximum period of an MRG is
mk − 1.

Alternative, one can obtain a bigger period by combining LCGs with different periods. An
example of this is the Wichman-Hill generator.

Algorithm 2.2.4 (Wichman-Hill Generator).
Given a1, a2, a3 and m1,m2,m3,

1. Set X0 = SX
0 , Y0 = SY

0 and Z0 = SZ
0 . Set n = 2.

2. Set Xn = (a1Xn−1) mod m1.

3. Set Yn = (a2Yn−1) mod m2.

4. Set Zn = (a3Zn−1) mod m3.

5. Set

Ui =

(
Xn

m1

+
Yn
m2

+
Zn

m3

)
mod 1

6. Set i = i+ 1. Repeat from step 2.

Note that mod 1 means return the decimal part of a number.
A natural idea is to combine multiple recursive generators. The MRG32k3a generator,

developed by Pierre L’Ecuyer, is one such generator. It is implemented in Matlab and has very
good properties. This generator uses two multiple recursive generators with update functions

Xn = (1403580Xn−2 − 810728Xn−3) mod m1.

with m1 = 232 − 209 and

Yn = (527612Yn−1 − 1370589Yn−3) mod m2,

with m2 = 232 − 22853. These are combined by the output function

Un(Xn, Yn) =

{
Xn−Yn+m1

m1+1
if Xn ≤ Yn,

Xn−Yn

m1+1
if Xn > Yn.

The period of this generator is approximate 3× 1057.
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Chapter 3

Non-Uniform Random Variable
Generation

The basic ingredient in all Monte Carlo simulations is a stream of iid U(0, 1) random num-
bers. We need to transform these into interesting random objects. The first such objects we
will consider are random variables with non-uniform distributions. Two generic methods exists
for generating random variables: the inverse transform method and the acceptance-rejection

method.

3.1 The Inverse Transform

The distribution of a random variable is determined by its cumulative distribution function

(cdf), F (x) = P(X ≤ x). A cdf has the properties given in Theorem 3.1.1.

Theorem 3.1.1. F is a cdf if and only if

(i) F (x) is non-decreasing,

(ii) F (x) is right-continuous (i.e. when there is a jump discontinuity, the function takes the
right-hand value at the location of the jump),

(iii) lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

The inverse cdf corresponding to the cdf F (x) is defined as F−1(y) = inf{x : F (x) ≥ y}.
The inverse cdf is sometimes called the generalized inverse or quantile function.

Theorem 3.1.2. If F (x) is a cdf with inverse F−1(u) = inf{x : F (x) ≥ u} and U ∼ U(0, 1),
then X = F−1(U) is a random variable with cdf F .

Proof. To see this, consider the cdf of F−1(U). This is given by

P(F−1(U) ≤ x) = P(U ≤ F (x)) = F (x),

where the first equality follows from the definition of the inverse cdf and the second equality
follows from the fact that a cdf takes values in [0, 1] and P(U ≤ x) = x for 0 ≤ x ≤ 1.

This leads us to the inverse transform algorithm.

15
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1. Generate U ∼ U(0, 1).

2. Return X = F−1(U).

In order to use the inverse-transform method, we need to find a convenient expression for
the inverse, F−1(u). If X is a continuous random variable then F is bijective. This means we
can find F−1(u) by solving F (x) = u.

Example 3.1.3 (Exponential distribution). Suppose we wish to simulate replicates of an ex-
ponential random variable, X. The cdf of the exponential distribution is given by F (x) =
1− exp(−λx). We can solve for F−1(u) as follows.

F (x) = u = 1− eλx ⇒ x = −1

λ
log(1− u) = F−1(u).

This immediately gives us a recipe for simulating exponential random variables with parameter
λ: generate U ∼ U(0, 1) then return X = − 1

λ
log(1 − U). Note that we can simplify this by

setting X = − 1
λ
log(U). This is because, if U ∼ U(0, 1) then 1 − U ∼ U(0, 1). We can easily

simulate an exponential random variable in Matlab.

Listing 3.1: Matlab Code

1 lambda = 1;

2 X = -1/lambda*log(rand);

Example 3.1.4 (Uniform distribution on U(0, b)). Consider the uniform distribution on U(0, b),
where b > 0. This has the cdf

F (x) = P(X ≤ x) =





0 x < 0
x
b

0 ≤ x < b

1 x ≥ b

.

We can solve F (x) = u to get F−1(u):

F (x) = u =
x

b
for all u ∈ (0, 1) ⇒ x = bu.

Thus, we can generate X ∼ U(0, b) by generating U ∼ U(0, 1) and setting X = bU .

When considering discrete random variables, F−1(u) is a step function (from a programming
perspective, this is a series of if statements).

Example 3.1.5 (Bernoulli distribution). Let X be a Bernoulli random variable with success
probability 1. Then, the cdf is given by

F (x) = P(X ≤ x) =





0 x < 0

1− p 0 ≤ x < 1

1 x ≥ 1

.

The inverse cdf is then given by

F−1(u) =

{
0 u < 1− p

1 u ≥ p
.

In Matlab, this can be written as follows.
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Listing 3.2: Matlab Code

1 p = 0.5;

2 U = rand;

3 if U < 1 - p

4 X = 0;

5 else

6 X = 1;

7 end

In practice, this is often simplified to the following.

Listing 3.3: Matlab Code

1 X = (rand <= p);

Note that this is not exactly inverting the cdf (but does exactly the same thing in the end).

In addition to continuous and discrete random variables, there are random variables that
are neither discrete nor continuous, but rather a mixture of both. Care must be taken when
working with such random variables (an example can be found in your exercises).

3.1.1 The table lookup method

As mentioned above, generating discrete random variables by the inverse transform method
essentially just involves evaluating a lot of if statements. This can become quite computation-
ally intensive. The table lookup method is a method for reducing the time spent generating
a discrete random variable taking values in a finite set. It has a cost, however, as some pre-
computation is required. Such precomputation makes sense if the random variable in question
needs to be generated a lot (as we then save time in the long run). The idea is to arrange all
the possible values of the random variable in a table (often entering a value multiple times)
so that drawing a value uniformly at random from the table results in a random variable with
the correct distribution. In order to implement this method, we first need to be able to draw
uniformly from a finite set {1, . . . , K}.

Example 3.1.6 (Uniform random variables on {1, . . . , K}). Suppose we want to draw a random
variable uniformly from the set {1, . . . , K}. We can use the following lemma to do this.

Lemma 3.1.7. If U ∼ U(0, 1), then X = ⌈kU⌉ is uniformly distributed on {1, . . . , K}.

Proof. We have

P(X = k) = P(⌈KU⌉ = k) = P

(
k − 1

K
< U ≤ k

K

)
=

k

K
− k − 1

K
=

1

K
.

This suggests the obvious recipe: draw U ∼ U(0, 1) then return X = ⌈KU⌉. This is easily
implemented in Matlab.

Listing 3.4: Matlab Code

1 K = 10;

2 X = ceil(K*rand);
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We can now implement the table lookup method. We suppose that we have a random
variable X taking values on the finite set {1, . . . , K} (or any set that can be labeled from 1 to
K). We further require that the probabilities are all rational. In this case, all probabilities can
be written in the form

pi = P(X = i) =
ni

M
for all i ∈ {1, . . . , K},

where M is the same for all values of i. We make a table with M rows in it. The first n1 of
these rows contain the value 1, the next n2 rows contain the value 2 and so on. We then use
the following algorithm to sample values of X:

1. Draw U ∼ U(0, 1).

2. Set I = ⌈MU⌉.

3. Return the value in the Ith row of the table.

Example 3.1.8. Suppose X is a random variable such that

P(X = 0) =
1

3
, P(X = 1) =

1

2
, P(X = 2) =

1

6
.

We can write all these probabilities as ratios involving M = 6. We can then generate from this
distribution using the following code.

Listing 3.5: Matlab Code

1 N = 10^5;

2 M = 6;

3 T = [0 0 1 1 1 2];

4 X = zeros(N,1);

5 for i = 1:N

6 X(i) = T(ceil(rand*M));

7 end

8 hist(X,3)

3.2 Integration on Various Domains and Properties of

Estimators

3.2.1 Integration over (0, b)

We already considered the problem of estimating integrals of functions over the interval
(0, 1). What do we do in the case where the interval is arbitrary?

First, lets consider the problem of estimating ℓ =
∫ b

0
S(x) dx, for some arbitrary function

S. As before, we rewrite this by multiplying the inside by 1 (this time the ratio of a pdf with
itself). Using the uniform density on (0, b) — which is f(x) = 1/b — we write

ℓ =

∫ b

0

S(x)dx =

∫ b

0

(f(x)

f(x)
S(x) dx =

∫ b

0

b

b
S(x)dx = b

∫ b

0

S(x)
1

b
dx = bES(X),
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where X ∼ U(0, b). This suggests an estimator of the form

ℓ̂ =
b

N

N∑

i=1

S(Xi),

where the {Xi} are iid U(0, b) random variables.

3.2.2 Properties of estimators

An important question is whether the above estimator is any good. Two important measures
of estimator quantity are bias and variance. An estimator, ℓ̂, of a quantity ℓ is said to be
unbiased if Eℓ̂ = ℓ. If Eℓ̂ < ℓ, it is negatively-biased. If Eℓ̂ > ℓ, it is positively biased.

It is generally straightforward to check if an estimator is unbiased. In our example, using
the properties of iid random variables, we can write

Eℓ̂ = E

[
b

N

N∑

i=1

S(Xi)

]
=

b

N

N∑

i=1

S(Xi) = bES(X1) = b

∫ b

0

S(x)
1

b
dx =

∫ b

0

S(x) dx,

demonstrating that the estimator is unbiased.
It is usually difficult to get an explicit expression for the variance. In our case, using the

iid properties of the random variables, we can obtain

Var(ℓ̂) = Var

(
b

N

N∑

i=1

S(Xi)

)
=

b2

N2
Var

(
N∑

i=1

S(Xi)

)

=
b2

N2

N∑

i=1

Var(S(Xi)) =
b2

N
Var(S(X1)).

Observe that, in order to calculate Var(S(X1)) we need to know ES(X1) (which is exactly
what we are trying to calculate). In practice, we usually estimate the variance of the estimator
based on the sample.

Example 3.2.1. Suppose we want to estimate
∫ 2

0
e−x2

dx. We can use the estimator above.
This leads to the following Matlab code.

Listing 3.6: Matlab Code

1 N=10^4;

2 b = 2;

3 X = zeros(N,1);

4 Y = zeros(N,1);

5 for i = 1:N

6 X(i) = b*rand;

7 Y(i) = b*exp(-X(i)^2);

8 end

9 ell = erf(2) * sqrt(pi) / 2

10 ell_hat = mean(Y)

11 ell_hat_var = b^2/N * var(Y)

12 ell_hat_std = b/sqrt(N) * sqrt(Y)
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3.2.3 Integration over unbounded domains

We can extend the idea of multiplying the integrand by the ratio of a pdf with itself to
integration problems with possibly unbounded domains. Let X ∼ g be a random variable with
support I (the support of X is {x ∈ R : g(x) > 0}). For example, we could have I = (−∞,∞)
if g is the density of a normal random variable or I = (0,∞) if g is the density of an exponential
random variable.

Then, we can write

ℓ =

∫

I

S(x) dx =

∫

i

S(x)
g(x)

g(x)
dx = E

S(X)

g(X)
,

where X ∼ g. If E|S(X)
g(X)

|, then we can use the SLLN to obtain the estimator

ℓ̂ =
1

N

N∑

i=1

S(Xi)

g(Xi)
,

where the {Xi} are iid with density g.

Example 3.2.2. Suppose we want to estimate ℓ =
∫∞

0
e−x2/2 dx using exponential random

variables. Then, rewriting the integral as above, we have

∫ ∞

0

e−x2/2 e
−x

e−x
dx =

∫ ∞

0

e−x2/2+xe−x dx = Eexp{−X2/2 +X},

where X ∼ Exp(1). This leads to the estimator

ℓ̂ =
1

N

N∑

i=1

exp{−X2
i +Xi},

where the {Xi} are iid Exp(1).

Listing 3.7: Matlab Code

1 N=10^4;

2 X=zeros(N,1);

3 Y=zeros(N,1);

4 for i = 1:N

5 X(i) = -log(rand);

6 Y(i) = exp(-X(i)^2/2 + X(i));

7 end

8 ell = sqrt(pi/2)

9 ell_hat = mean(Y)

10 ell_hat_std = std(Y)/sqrt(N)

In order to this approach to be effective, the density g(x) must be chosen correctly. We will
talk about good choices for g later in this course.
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3.3 The Acceptance-Rejection Method

3.3.1 The continuous case

Suppose we want to sample from a given pdf, f , (which we know at least up to its normalizing
constant). Suppose, furthermore, that this is a non-standard density such that no standard
algorithm for sampling from it exists. The idea of the acceptance rejection method is to instead
sample random variables from a density, g, from which it is easy to sample (e.g., the exponential
density). However, we only accept some of these samples. The decision of whether to accept a
given sample or not is based on a Bernoulli experiment. The probabilities of these experiments
are chosen such that the final sample is a sample from the density f .

The acceptance-rejection algorithm is (at least from one perspective) based on the fact that
if one could sample a random vector (X,U) uniformly from the region under the graph of f ,
then X ∼ f . This is shown by the following lemma.

Lemma 3.3.1. Let (X,U) be a uniform random sample from G = {(x, u) ∈ R2 : f(x) > 0, u ∈
(0, f(x))}. Then, X ∼ f .

Proof. We first write out h(x, u), the joint pdf of (X,U). This is given by

h(x, u) =
I{(x, u) ∈ G)}

|G| = I{(x, u) ∈ G)},

as the area under a density is 1. Now, h(x), the marginal density of X, is given by

∫
h(x, u) du =

∫ f(x)

0

1 du = f(x).

Thus, if we could sample uniformly under the graph of f , we could generate random variables
with the desired density. In general, however, this is not to easy to do. Fortunately, the converse
of the above lemma also holds. That is, ifX ∼ f and U ∼ U(0, f(X)), then (X,U) is distributed
uniformly on G. This suggests the following strategy. We could draw random variables from
another density g, which is easy to sample from. We could then obtain samples uniformly
distributed under the graph of g. We could, indeed, get samples under the graph of Cg where
C ≥ 1 is some constant by drawing X̃ from g then U ∼ U(0, Cg(X)). If we could choose C
such that Cg(x) ≥ f(x) for all x : f(x) > 0 then the area under Cg would include all of the
area under f . By taking that part of our uniform random sample which lies under f — that
is, those X̃ where U ≤ f(X̃) — we would obtain a uniform sample in the area under f , giving
us a sample from the desired density. This leads to the acceptance-rejection algorithm:

1. Draw X̃ ∼ g.

2. Draw U ∼ U(0, 1) (note that Cg(X)U ∼ U(0, Cg(X))).

3. If

U ≤ f(X̃)

Cg(X̃)
,

return X = X̃. Otherwise, return to step 1.
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The density g is often called the proposal density. The ingredients of the acceptance-rejection
method are illustrated in Figure 3.3.1.

x

y

g(x) f(x) Cg(x)

Figure 3.3.1: Illustration of the components of the acceptance-rejection method. We sample X̃
from g, then accept it with probability f(X̃)/Cg(X̃).

Of course, the above justification of the acceptance-rejection algorithm is more or less just
heuristic. We should check that it actually works. Theorem 3.3.2 shows that it does.

Theorem 3.3.2. Given a C <∞ such that Cg(x) ≥ f(x) for all x : f(x) > 0, the acceptance
rejection algorithm described above returns a random variable X ∼ f .

Proof. We are outputting X̃ ∼ g(x) conditioned on U ≤ f(X̃)

Cg(X̃)

P

(
X̃ ≤ x

∣∣∣∣∣U ≤ f(X̃)

Cg(X̃)

)
=

P

(
X̃ ≤ x, U ≤ f(X̃)

Cg(X̃)

)

P

(
U ≤ f(X̃)

Cg(X̃)

) .

Using the continuous law of total probability, the numerator can be written as

P

(
X̃ ≤ x, U ≤ f(X̃)

Cg(X̃)

)
=

∫ x

−∞

P

(
U ≤ f(y)

Cg(y)

)
g(y) dy

=

∫ x

−∞

f(y)

Cg(y)
g(y) dy =

1

C

∫ x

−∞

f(y) dy

=
1

C
F (x).
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The denominator can be written as

P

(
U ≤ f(X̃)

Cg(X̃)

)
=

∫ ∞

−∞

P

(
U ≤ f(y)

Cg(y)

)
g(y)dy

=

∫ ∞

−∞

f(y)

Cg(y)
g(y) dy =

1

C

∫ ∞

−∞

f(y) dy

=
1

C
.

So

P

(
Y ≤ x

∣∣∣∣∣U ≤ f(X̃)

Cg(X̃)

)
=

1/C F (x)

1/C
= F (x).

The constant C and the acceptance probability

In order for acceptance-rejection to work we need to be able to find a finite constant C such
that Cg(x) ≥ f(x) for all x ∈ R. We can obtain an obvious choice for such a constant by
rearranging the above inequality to get that C must satisfy

C ≥ f(x)

g(x)
.

This is clearly satisfied by

C = sup
x∈R

f(x)

g(x)
.

We then just need to check that supx∈R f(x)/g(x) < ∞. Note that this will not always be the
case. For example, if we use a normal density for g and an exponential density for f , we have

f(x)

g(x)
∝ e−x

e−x2/2
= ex

2/2−x → ∞ as x→ ∞.

In general, for acceptance-rejection to work, the tails of the density g should go to 0 faster than
the tails of f . That is g(x) should go to 0 faster than f(x) when x→ ∞ and x→ −∞.

The constant C that is chosen is very important, because it determines the probability we
accept a given random variable generated from g. This probability is just the area under f
divided by the area under Cg. That is,

P(accept) =

∫
R
f(x) dx∫

R
Cg(x) dx

=
1

C
.

Clearly, the higher the probability that we accept that random variable, the less work our
algorithm has to do. It would be bad, for example, if our algorithm only accepts every 10
millionth random variable on average. The best possible choice of C is the smallest choice that
satisfies the conditions. Note that this choice is exactly C = supx∈R f(x)/g(x), which is, by
definition, the smallest value that satisfies the inequality.
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Acceptance-rejection and normalizing constants

One of the nice things about acceptance rejection is that we do not need to know the
normalizing constant of the density we are sampling from (which is often something difficult to
calculate). That is, suppose f(x) can be written in the form

f(x)
h(x)

Z
,

where h(x) ≥ 0 for all x and Z =
∫
h(x) dx. Given a gensity g, The obvious choice of C is

C = sup
x

h(x)/Z

g(x)
=

1

Z
sup
x

h(x)

g(x)
=

1

Z
C∗,

wher C∗ = supx
h(x)
g(x)

. Plugging this into the inequality needed for acceptance, we see that

U ≤ f(x)

Cg(x)
⇔ U ≤ h(x)/Z

C∗g(x)/Z
=

h(x)

C∗g(x)
.

Thus we do not need to know Z, only h(x).

Example 3.3.3. Suppose we want to generate an exponential random variable with parameter
1 conditional on it being less than 1. We can write this density as

f(x) =
e−xI{x ≤ 1}
P(X ≤ 1)

∝ e−x
I{x ≤ 1}.

Here, h(x) = e−x and Z = P(X ≤ 1) = 1 − e−1. Let’s use a uniform random variable as our
proposal. That is, lets take g(x) = Ix ∈ (0, 1). We can then calculate C∗. This is given by

C∗ = sup
x∈(0,1)

h(x)

g(x)
= sup

x∈(0,1)

e−x

1
.

As the supremum of e−x on (0, 1) is at x = 0, we have that C∗ = e0 = 1. Thus, we will accept

our proposal X̃ when

U ≤ h(x)

Cg(x)
=
e−x

1
= e−x.

We can implement this in Matlab as follows.

Listing 3.8: Matlab Code

1 N=10^6;

2 X = zeros(N,1);

3

4 for i = 1:N

5 X_tilde = rand;

6 while rand > exp(-X_tilde)

7 X_tilde = rand;

8 end

9 X(i) = X_tilde;

10 end
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3.3.2 The discrete case

Suppose we want to a sample a random variable, X, taking values in some countable set X
with probability mass function (pmf) p, where

P(X = i) = pi.

In some cases, such a distribution could be difficult to sample from. For example, if the size
of X is quite large and the distribution of X is non-standard. In such a case, we can use a
discrete version of acceptance rejection. In order for this to work, we need to be able to simulate
realizations of another random variable, X̃, taking values in X with pmf q. That is,

P(X̃ = i) = qi.

Analogously to the continuous case, for acceptance rejection to work, we need a constant,
C <∞, such that Cqi ≥ pi for all i ∈ X . If so, we can use the following algorithm:

(i) Draw X̃ according to q.

(ii) Draw U ∼ U(0, 1). If
U ≤ pX̃

CqX̃

return X = X̃. Otherwise, go to step 1.

Note that an optimal C can be very difficult to calculate in the discrete setting.
As in the continuous case, we should make sure our algorithm works.

Theorem 3.3.4. Discrete acceptance rejection works.

Proof. Analogously to the discrete case, we have to find

P

(
X̃ = i |U ≤ pX̃

CqX̃

)
=

P

(
X̃ = i, U ≤ p

X̃

Cq
X̃

)

P

(
U ≤ p

X̃

Cq
X̃

)

for all i ∈ X . Let X+ = {i ∈ X : pi > 0}. Then, for all i ∈ X+,

P

(
X̃ = i, U ≤ p

X̃

Cq
X̃

)

P

(
U ≤ p

X̃

Cq
X̃

) =
P

(
U ≤ p

X̃

Cq
X̃
| X̃ = i,

)
P(X̃ = i)

∑
j∈X+

P

(
U ≤ p

X̃

Cq
X̃
| X̃ = j,

)
P(X̃ = j)

=

pi
Cqi
qi∑

j∈X+

pj
Cqj

qj
= pi

If, instead pi = 0, then

P

(
X̃ = i |U ≤ pX̃

CqX̃

)
= 0 = pi.

Thus, we have shown the random variable we simulate has the desired distribution.
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Example 3.3.5 (A Poisson random variable condition on being less than 11). Suppose we
want to generate a Poisson random variable, X, with parameter λ, conditional on the event
{X ≤ 10}. The pmf of X is given by

P(X = i) = pi =
e−λ λi

i!
I{i ≤ 10}

∑10
j=0 e

−λ λj

j!

∝ e−λλ
i

i!
I{i ≤ 10}.

A straightforward choice of the proposal pmf, q, is a uniform distribution on {0, . . . , 10}. That
is, qi ∝ I{i ∈ {0, . . . , 10}. The optimal choice of C∗ (the C calculated ignoring normalizing
constants) is given by

C∗ = max i ∈ {0, . . . , 10} pi
Cqi

.

For general λ, this is very difficult to compute (you can try it yourself). So, to make life easier,
lets take λ = 1. In this case,

C∗ = max i ∈ {0, . . . , 10} pi
Cqi

= max i ∈ {0, . . . , 10}e
−1

i!
= e−1.

For X̃ = i, we accept if

U ≤ pi
Cqi

=
e−1

i!

e−1
=

1

i!
.

Implementing this in Matlab, we have the following

Listing 3.9: Matlab Code

1 N=10^5;

2 X = zeros(N,1);

3

4 for i = 1:N

5 X_tilde = floor(11*rand);

6 while rand > 1/factorial(X_tilde)

7 X_tilde = floor(11*rand);

8 end

9 X(i) = X_tilde;

10 end

11

12 hist(X,max(X)+1)

3.3.3 Multivariate acceptance-rejection

Acceptance-rejection extends easily to multi-dimensional densities. I will only describe the
continuous setting, but note that everything also holds in the discrete setting.

Consider a multi-dimensional density f : Rd → [0,∞). Suppose we want to sample from
this density, but do not know how to. Assume that there exists another d-dimensional density,
g, that we can sample from easily (for example, the multivariate normal density, which we will
discuss later) and that there exists a C <∞ such that Cg(x) ≥ f(x) for all x ∈ Rd. Then, we
can use the same recipe as above. That is:

(i) Draw X̃ ∼ g.
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(ii) Draw U ∼ U(0, 1). If

U ≤ f(X̃)

Cg(X̃)
,

then return X = X̃. Otherwise, go to step 1.

The proof that acceptance-rejection works in a multi-dimensional setting is essentially the same
as in the standard continuous case. Just change the integrals to integrals over Rd.

3.3.4 Drawing uniformly from complicated sets

One of the most useful applications of the acceptance-rejection method is to sampling uni-
formly from a complicated set. I will explain this for the continuous case (but the discrete case
is completely analagous).

Suppose we want to draw uniformly from some set A, but are not able to do so easily.
Suppose, however, that we can draw from a larger set, X , with A ⊂ X . In addition, we impose
the condition that, if X̃ is distributed uniformly on X , then P(X̃ ∈ A) > 0. Putting this in the
framework of acceptance-rejection, observe that

f(x) =
I(x ∈ A)

|A| ∝ I(x ∈ A)

and

g(x) =
I(x ∈ X )

|X | ∝ I(x ∈ X ).

Then, the optimal C is given by

C = sup
x∈X

|X |
|A| =

|X |
|A| > 1.

This is, of course, often hard to determine (as we may not know much about A). However, it

turns out that we do not need C. Given X̃ and U ∼ U(0, 1), we accept if

U ≤ 1

C

f(X̃)

g(X̃)
=

|A|
|X |

I(X̃ ∈ A)/|A|
I(X̃ ∈ X )/|X |

= I(X̃ ∈ A).

That is, we accept if X̃ ∈ A and reject otherwise. Note that the acceptance probability is
|A|/|X |.

Example 3.3.6 (Sampling uniformly from a sphere). An easy way to sample uniformly in the
unit sphere S = {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 1} (which is a little tricky using direct means)
is by drawing uniformly from the cube [−1, 1]3 and then using acceptance-rejection. This can
be done in Matlab as follows:

Listing 3.10: Matlab Code

1 N=10^3;

2 X = zeros(N,3);

3

4 for i = 1:N
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5 X_tilde = 2*rand(1,3) - 1;

6 while(X_tilde(1)^2 + X_tilde(2)^2 + X_tilde(3)^2 > 1)

7 X_tilde = 2*rand(1,3) - 1;

8 end

9 X(i,:) = X_tilde;

10 end

11

12 scatter3(X(:,1),X(:,2),X(:,3))

If we know the size of X and have a reasonable estimate, α̂, of the acceptance probability
(which we can get simply by recording the number of proposals we accept), we can use this to
estimate the size of A. We have

|̂A| = âlpha|X|.
This is very useful as it allow us to estimate the size of the set, which may be of great interest
(for example, it could be the number of solutions to a problem or the number of combinations
of something).

Example 3.3.7 (Pythagorean triples). Suppose we want to estimate the number of Pythagorean
triples where all values are under 100 (counting each permutation separately). That is, we want
to estimate how many integer triples, x, y, z ≤ 100 exist such that x2+y2 = z2. We can sample
such triples using acceptance-rejection (drawing each of x,y and z uniformly at randomfrom
{1, . . . , 100}. We can then estimate the acceptance probability to get an estimate of the number
of triples. This is implemented in Matlab as follows.

Listing 3.11: Matlab Code

1 N=10^3;

2 accept = zeros(N,1);

3

4 for i = 1:N

5 X = ceil(100*rand);

6 Y = ceil(100*rand);

7 Z = ceil(100*rand);

8 if((X^2 + Y^2) == Z^2)

9 [X Y Z]

10 accept(i) = 1;

11 end

12 end

13

14 num_sol_hat = mean(accept) * 100^3.

3.3.5 The limitations of high-dimensional acceptance-rejection

Although acceptance-rejection is a very useful method, it unfortunately often does not per-
form well in high-dimensions. To see an example of this, consider the problem of sampling from
a d-dimensional sphere by sampling uniformly from the hypercube [−1, 1]d. The probability of
acceptance, α, is given by

α =
|{x ∈ Rd : ‖x‖ ≤ 1}|

|[−1, 1]d| =

πd/2

d/2Γ(d/2)

2d
=

πd/2

d2d−1Γ(d/2)
.



3.4. LOCATION-SCALE FAMILIES 29

This goes to zero very quickly as d gets larger. Essentially, the problem is that the error in
an approximating a sphere by a box gets proportionally much bigger in higher dimensions.
This limitation means that in high-dimensional settings, it is often necessary to consider an
alternative method of generating random variables.

3.4 Location-Scale Families

The most efficient methods to generate random variables are usually very specific. That
is, unlike inverse-transform and acceptance-rejection, these methods only work for a specific
distribution. Often, these methods are even more specific: they only work for a given choice of
parameters. For example, as we will see, some algorithms are specifically designed to generate
N(0, 1) random variables.

For this reason, the location-scale property of some distributions turns out to be very useful.
Essentially, this property says that if a distribution is location-scale we can easily transform
random variables generated with one parameter set to random variables generated with another
parameter set.

Formally, a family of probability densities {f(x;µ, σ)} indexed by a location parameter µ
and a scale parameter σ is said to be location-scale if

f(x;µ, σ) =
1

σ
f

(
x− µ

σ
; 0, 1

)
=

1

σ
f̊

(
x− µ

σ

)
,

where f̊ is the ‘standard’ form of the density with location parameter µ = 0 and scale parameter
σ = 1 (e.g., the standard normal density). Note that the location is not always the expected
value and the scale is not always the standard deviation.

The usefulness of the location-scale property comes from the following lemma.

Lemma 3.4.1. Let {f(x;µ, σ)} be a location-scale family. Then, Z ∼ f̊ implies X = µ+σZ ∼
f(x;µ, σ).

Proof. We can check the cdf of X is as desired. We have

P(X ≤ x) = P(µ+ σZ ≤ x) = P

(
Z ≤ x− µ

σ

)
=

∫ x−µ
σ

−∞

f̊(z) dz.

We can change variables from z to u = µ+ σz to get

∫ x−µ
σ

−∞

f̊(z) dz =

∫ x

∞

1

σ
f̊

(−µ
σ

)
du.

Now, using the location-scale property, we can write this as

∫ x

−∞

1

σ
f̊

(
u− µ

σ

)
du =

∫ x

−∞

f(u;µ, σ) du,

which is the desired cdf.
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Example 3.4.2 (The normal distribution). Consider the normal distribution. This is location-
scale with location parameter µ and scale parameter σ. We can see this by writing

f(x;µ, σ) =
1√
2πσ2

exp

{
−(x− µ)2

2σ2

}
=

1

σ

1√
2π

exp

{
−
(
x−µ
σ

)2

2

}
=

1

σ
f̊

(
x− µ

σ

)
,

where f̊ is the density of a N(0, 1) random variable. This leads to the following recipe for
producing N(µ, σ) random variables:

(i) Simulate Z ∼ N(0, 1).

(ii) Return X = µ+ σZ.

Example 3.4.3 (The uniform distribution on (a, b)). Consider the uniform distribution on
(a, b). This is location-scale with location parameter µ = a and scale parameter σ = (b − a).
To see this, observe that the density is

f(x;µ, σ) =
I{x ∈ (a, b)}

|b− a| =
1

|b− a|I
{
x− a

b− a
∈ (0, 1)

}
=

1

σ
f̊

(
x− µ

σ

)
,

where f̊ is the density of a U(0, 1) random variable. This leads to the following recipe for
producing U(a, b) random variables:

(i) Simulate U ∼ U(0, 1).

(ii) Return X = a+ (b− a)U .

Many useful distributions are location-scale, including:

• the normal distribution

• the student-t distribution,

• the Laplace distribution,

• the Cauchy distribution,

• the logistic distribution,

• the continuous uniform distribution.

3.5 Generating Normal Random Variables

The normal distribution is one of the most important probability distributions. For this
reason, quite specialist methods have been developed for generating normal random variables.
These methods usually produced standard normals (i.e., those with a N(0, 1) distribution),
which are then transformed using the location-scale property of the normal distribution.

In practice, normal random variables are usually generated via the inverse-transform method,
using very accurate approximations of the inverse cdf of the standard normal distribution. Such
methods are difficult to implement and should be left to the professionals (i.e., don’t write your
own normal random variable generator). Nevertheless, it is nice to look at a simple and elegant
method that does exist for generating normal random variables.
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3.5.1 Box-Muller method

The Box-Muller method is a very well known (but seldom used) method for generating
normal random variables. It is based on the observation that, if Z1 and Z2 are standard
normals, then the level sets of their joint density

fZ1,Z2
(z1, z2) =

1

2π
exp

{
−(z21 + z22)

2

}

form circles. Thus, working with polar coordinates, two independent standard normals can be
produced by sampling an angle uniformly on (0, 2π) then sampling a radius from the appropriate
distribution.

The algorithm is as follows:

(i) Draw θ ∼ U(0, 2π).

(ii) Draw R2 ∼ Exp(1/2).

(iii) Return Z1 =
√
R2 cos θ and Z2 =

√
R2 sin θ.

Lemma 3.5.1. The Box-Muller algorithm returns two independent N(0, 1) random variables.

Proof. To see this, we can rewrite the joint density of R and θ to get the density of Z1 and Z2

(which will be that of two independent normal random variables). As R and θ are independent,
their joint density is the product of their marginals. Now,

fθ(θ) =
1

2π
.

The pdf of R is a bit more complicated. Observe that P(R2 ≤ r2) = 1−e−r2

2 . As the radius, R,
must be positive, we have that P(R ≤ r) = P(R2 ≤ r2). To get the pdf of R we differentiate.
This gives

fR(r) = r exp

{
−r

2

2

}
.

Thus, the joint density is

fθ,R(θ, R) =
1

2π
r exp

{
−r

2

2

}
.

Carrying out a standard change of variables from polar coordinates (with R =
√
Z2

1 + Z2
2), we

get

fZ1,Z2
(z1, z2) =

1

2π
exp

{
−z

2
1 + z22
2

}
,

which is the joint density of two independent standard normal random variables.

3.6 Big O notation

When discussing algorithms (e.g. for generating specific random variables) it is useful to
be able to measure how much work they require, where work is, e.g., the number of uniform
random variables generated or the number of iterations of the algorithm that are required.
Often, this is easiest to describe in an asymptotic setting (for example as a parameter of the
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algorithm goes to zero or to infinity. One way to describe the way that a quantity grows in an
asymptotic setting is using big O notation (sometimes called Langau notation).

We say f(x) = O(g(x)), or f is of order g(x), if there exists C > 0 and x0 > 0 such that

|f(x)| ≤ Cg(x)

for all x ≥ x0 as x→ ∞ (or, sometimes, for all x ≤ x0 as x→ 0).

Example 3.6.1. The quadratic x2+3x+1 is O(x2), as, for x ≥ x0 = 1, we have x2+3x+1 ≤
x2 + 3x2 + x2 = 5x2, so x2 + 3x+ 1 ≤ Cx2 = Cg(x) where C = 5 and g(x) = x2.

If we can break a function into a sum of other functions (e.g., f(x) = x2+3x = f1(x)+f2(x),
where f1(x) = x2 and f2(x) = 3x), then the order of f is the order of the component function
with the biggest order. In our example, f1(x) = O(x2) and f2(x) = O(x), so f(x) = O(x2).

We use big O notation to describe the behavior of algorithms and also the behavior of errors.
For example, if we measure the dimension of a problem by n — for example, the number of
items in a list that we have to sort — then the work done by an algorithm will typically be a
function of n. Usually, we prefer algorithms with smaller growth rates for the work they have
to do. For example, if algorithm 1 accomplishes a task with O(n) work and algorithm 2 needs
O(n2) work, then we will tend to prefer algorithm 1. However, if the work done by algorithm
1 is f1(n) = 106n and the work done by algorithm 2 is f2(n) = n2, then the second algorithm
is actually better if n < 106, even though its order is worse.

It is worth noting that x2 = O(x2), but it is also true that x2 = O(x3), so the equals sign
is something of an abuse of notation.

Example 3.6.2 (The Standard Deviation of the Monte Carlo Estimator). Consider the quan-
tity

ℓ =

∫

R

S(x) dx =

∫

R

S(x)

g(x)
g(x) dx,

where g(x) is a density such that S(x) = 0 ⇒ g(x) = 0. The standard estimator of this is

ℓ̂ =
1

N

N∑

i=1

S(Xi)

g(Xi)
,

where the {Xi} are iid random variables with density g. The standard deviation of this esti-
mator (which is a rough measure of its error) is given by

1√
N

√
Var

(
S(X1)

g(X1)

)
= O(N−1/2).

This describes the rate at which the error gets smaller as the sample size gets larger.

3.7 Some useful tools from probability

3.7.1 Conditional expectation (discrete case)

Let X be a discrete random variable with state space X and Y be another random variable
with the same state space. If P(Y = y) > 0, we can define the conditional distribution of X
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given the event {Y = y}by

P(X = i |Y = y) =
P(X = i, Y = y)

P(Y = y)
for all i ∈ X .

We can then define the conditional expectation of X given {Y = y} as the expectation of X
with respect to the conditional distribution. That is,

ψ(y) = E[X |Y = y] =
∑

i∈X

iP(X = i |Y = y).

This is deterministic (i.e., it is a fixed number). However, we could replaced the deterministic
argument y with the random variable Y . Then we get

E[X |Y ] = ψ(Y ).

This is called the conditional expectation ofX given Y . Note that this is no longer deterministic
but is instead a random variable. Note that this is well defined because Y will only take values
with non-zero probabilities (this would not be true if Y was continuous).

Example 3.7.1. Suppose someone flips two biased coins. These are modeled by Bernoulli
random variables X1 ∼ Ber(p) and X2 ∼ Ber(p). Let Y be the sum of these two variables (i.e.,
Y = X1 +X2). Then, we can easily define the conditional distribution of Y given X1 = x. For
example,

P(Y = 1 |X1 = 0) =
P(Y = 1, X1 = 0)

P(X1 = 0)
=

P(X2 = 1)P(X1 = 0)

P(X1 = 0)
= P(X2 = 1) = p.

We can then work out the conditional expectations of Y given {X1 = 0} and {X1 = 1}. We
have

E [Y |X1 = 0] = 2 · P(Y = 2 |X1 = 0) + 1 · P(Y = 1 |X1 = 0) + 0 · P(Y = 0 |X1 = 0)

= 2 · 0 + 1 · p+ 0 · (1− p) = p.

and

E [Y |X1 = 1] = 2 · P(Y = 2 |X1 = 1) + 1 · P(Y = 1 |X1 = 1) + 0 · P(Y = 0 |X1 = 1)

= 2 · p+ 1 · (1− p) + 0 · (1− p) = 2p+ (1− p) = 1 + p.

The conditional expectation of Y given X1 is

E [Y |X1] = p+X1.

Lemma 3.7.2 (Tower property). We have that E [E [X |Y ]] = EX.

Proof.

E [E [X |Y ]] =
∑

{y :P(Y=y)>0}

E [X |Y = y]P(Y = y)

=
∑

{y :P(Y=y)>0}

∑

x∈X

x
P(X = x, Y = y)

P(Y = y)
P(Y = y)

=
∑

x∈X

x
∑

{y :P(Y=y)>0}

P(X = x, Y = y)

=
∑

x∈X

xP(X = x) = EX.
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If we condition on a random variable, then we can treat that random variable as a constant
inside the conditional expectation (and, like a constant, if possible we can pull it out of the
expectation). This simplifies many calculations. There are are a number of results formalizing
this. For example,

Lemma 3.7.3. E [XY |Y ] = Y E [X |Y ] .

3.7.2 Probability generating functions

Generating functions are tools in probability theory that are very helpful when trying to
prove facts about the distributions of random variables. There are a number of different types
of generating functions. Probability generating functions (pgfs) are used when the distribution
of interest is discrete.

Let X be a discrete random variable. Then the probability generating function of X is given
by

G(s) =
∑

i∈X

siP(X = i), s ∈ C.

By taking derivatives of G(s) and evaluating them at s = 1 we recover the so-called factorial

moments of X.

Theorem 3.7.4. G(k)(1) = E [X(X − 1) · · · (X − k + 1)], where G(k) is the kth derivative of
G.

Example 3.7.5. Geometric distribution Let X have pmf P(X = i) = p(1− p)i−1. Then,

G(s) = EsX =
∞∑

i=1

si(1− p)i−1p

= sp
∞∑

i=1

si−1(1− p)i−1

= sp

∞∑

j=0

(s(1− p))j

=
sp

1− s(1− p)
.

Note that this is only defined when s(1− p) < 1 (i.e., s < (1− p)−1).

Example 3.7.6. Poisson distribution Let X have pmf P(X = i) = e−λ λi

i!
. Then,

G(s) = EsX =
∞∑

i=0

sie−λλ
i

i!

=
∞∑

i=0

e−λ (sλ)
i

i!

= eλ(1−s)

∞∑

i=0

e−λs (sλ)
i

i!

= eλ(1−s).

Theorem 3.7.7. If GX = GY for all s ∈ C then X and Y have the same distribution.
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3.7.3 Moment generating function

Let X be a random variable. The moment generating function (mgf) of X is given by
M(θ) = EeθX , where θ ∈ R. Thus, in the discrete case,

M(θ) =
∑

i∈X

eθiP(X = i)

and, in the continuous case,

M(θ) =

∫

R

eθuf(u) du.

Note that the moment generating function may not exist for all θ ∈ R (as the expectation may
not be finite).

Example 3.7.8 (Geometric distribution). Let X have pmf P(X = i) = p(1− p)i−1. Then,

M(θ) = EeθX =
∞∑

i=1

eθi(1− p)i−1p

= p eθ
∞∑

i=1

(eθ(1− p))i−1

= p eθ
∞∑

j=0

(eθ(1− p))i

=
peθ

1− eθ(1− p)
.

Note that this is only defined for eθ(1− p) < 1 (i.e., θ < − log(1− p)).

Example 3.7.9 (Bernoulli distribution). Let X have a Ber(p) distribution. Then

M(θ) = EeθX = eθP(X = 1) + e0P(X = 0) = peθ + 1− p.

As the name suggests, one can determine the moments of a distribution from its moment
generating function.

Lemma 3.7.10. M (k)(0) = EXk.

Theorem 3.7.11. IfM(θ) exists in a neighborhood of 0 thenM(θ) determines the distribution
of X (and, thus, if two random variables have the same moment generating function, they have
the same distribution).

Example 3.7.12 (Putting things together). A popular bar offers a drink promotion where,
every time someone buys a beer, a biased coin (where the probability of heads if p) is flipped.
If the coin comes up heads, the customer pays for the beer. But, if the coin is tails, the
customer gets the beer for free. If a Poisson (λ) number of people arrive in an hour, what is
the distribution of the number of people who have to pay? This can be written in the form of
a sum of a random number of random variables. More precisely, let X be the number of people
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paying for beer, N be the (random) number of people that arrive in an hour and {Zi} be a
sequence of iid Ber(p) random variables. Then,

X =
N∑

i=1

Zi

Considering the mgf of X, we have (by the tower property)

Eexp{θX} = E [E [exp{θX} |N ]] = E

[
E

[
exp

{
N∑

i=1

θZi

}
|N
]]

.

Now, because we are conditioning on N we can treat it as a constant within the conditional
expectation and, thus, pull it out to get

E

[
E

[
N∑

i=1

exp {Zi} |N
]]

= E

[
E

[
N∑

i=1

exp {θZi}
]]

= E

[
(Eexp {θZ1})N

]

Note that the inner expectation is just the mgf of a Bernoulli random variable, which was
calculated above. Thus, we have

E exp{θX} = E

[(
peθ + 1− p

)N]
.

Observe that this is the formula for the generating function of a Poisson random variable (with
s = peθ + 1− p). Thus,

E exp{θX} = exp
{
λ(1− peθ − 1 + p)

}
= exp

{
pλ(eθ − 1)

}
.

This is the mgf of a Poisson distribution with parameter λp. Thus the number of people that
pay in an hour is a Poisson (λp) random variables.

3.8 Discrete Distributions

3.8.1 The geometric distribution

Consider a sequence of independent Ber(p) experiments (for example, a sequence of coin
tosses). A geometric random variable gives the number of failure before a success occurs.
There are two versions of this distribution. The first counts the success along with the failures.
The pmf for this version is

P(X = i) = p(1− p)i−1 i ∈ {1, 2, . . .}

The second only counts the failures. The pmf of this version is

P(X = i) = p(1− p)i i ∈ {0, 1, . . .}.

Note that the first can be transformed to the second by subtracting 1. Thus, we will only
consider methods for generating the first distribution.

Often, a simple way to find an algorithm for generating a random variable is to think about
what the random variable is describing and mimic that. In this case, the obvious algorithm is
to simulate Bernoulli random variables until a success occurs and then return the number of
variables we simulated. The algorithm is:
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1. Set n = 0.

2. Simulate Z ∼ Ber(p) and set n = n+ 1.

3. If Z = 1, return X = n. Otherwise, go to step 2.

Now that we have some tools, we should think about how much work this algorithm needs
to do. An obvious measure of work here is the number of random variables that needs to be
generated. To make things easy, we will consider the expected number of these variables. Of
course, this is just the expected value of a Geometric random variables, which is 1/p. This
means that

work = O

(
1

p

)
.

What does this mean? Essentially, it says that the work required grows at a rate that is
inversely proportional to the success probability. So, the smaller p is, the more work we need
to do. Imagine if p = 10−6. In this case, we would need to simulate 106 random variables
on average before we produce a geometric random variable. If we needed 1010 such random
variables, this would require 1016 random variables in total, which corresponds to a lot of
computing time.

A better algorithm might be one where the amount of work does not grow as p gets smaller.
Note, however, that such an algorithm might be worse for values of p close to 1.

The work done by the following algorithm does not grow as a function of p:

1. Draw Z ∼ Exp (− log(1− p)).

2. Return X = ⌈Z⌉.

What is the expected work done by this algorithm as a function of p? It does not grow, so

work = O(1).

Note, however, that for p sufficiently close to 1, this algorithm might not be a better choice
than the first one, because we need to do some more work in calculating logarithms.

Of course, we should check that this algorithm works.

Lemma 3.8.1. The above algorithm returns a geometric random variable with parameter p.

Proof. The easiest way to show this is to check the pmf of the variable we produce corresponds
to the pmd of a geometric p random variable. Now, we have

P(X = i) = P (⌈Z⌉ = i) = P (i− 1 < Z ≤ i) .

Using the representation of exponentials in terms of uniforms, we have

P (i− 1 < Z ≤ i) = P

(
i− 1 <

− log(U)

− log(1− p)
≤ i

)

= P (i log(1− p) ≤ log(U) < (i− 1) log(1− p))

= P
(
(1− p)i ≤ U < (1− p)i−1

)

= (1− p)i−1 − (1− p)i = (1− (1− p))(1− p)i−1 = p(1− p)i−1
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3.8.2 Binomial distribution

A binomial (n, p) random variable describes the number of successes in n independent Ber(p)
experiments. The pmf is

P(X = i) =

(
n

i

)
pi(1− p)i−1, i ∈ {0, . . . , n}.

The most obvious way to simulate such a random variable is simply to simulate n Bernoulli
random variables and count the number of successes. The algorithm is

1. Set m = 0 and s = 0.

2. Simulate Z ∼ Ber(p) and set m = m+ 1.

3. If Z = 1 set s = s+ 1.

4. If m = n return X = s. Otherwise, go to step 2.

What is the work done here as a function of the distribution parameters n and p? This algorithm
does not depend on p. But the amount of work clearly grows proportionally to n. Thus,

work = O(n).

For large values of n, it makes sense to look for another algorithm. In the case where n is
large but p is small, we can use geometric random variables to generate binomial random
variables. Observe that the event {X = i}, where X is binomial (n, p), is equivalent to the
event {

∑i
j=1 Zj ≤ n <

∑i+1
j=1 Zj}, where the {Zj} are independent geometric random variables.

This suggests the following algorithm

1. Set m = 0 and s = 0.

2. Draw Z ∼ geometric (p).

3. Set m = m+ Z.

4. If m > n return X = s. Otherwise, set s = s+ 1 and go to step 2.

What is the work done here? It depends on both n and p. The expected number of geometric
random variables we need to generate is one plus the expected value of the binomial random
variable, which is np. Thus,

work = O(np).

Given that p ≤ 1, this is better than the work done by the first algorithm (ignoring the
additional cost of generating the geometric random variables). For p ≪ 1, the algorithm will
be much more effective! For large n, one possibility is to use a normal approximation based on
the central limit theorem. Let Xn be binomial (n, p). Then,

Xn − np√
np(1− p)

D→ Z,

as n→ ∞, where Z ∼ N(0, 1). This suggests the following algorithm.
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1. Generate Z ∼ N(0, 1).

2. Return X = max{0, ⌊np+
√
np(1− p)Z⌋}.

Note that this method of generating binomial random variables is only approximate. For small
n it may be quite incorrect. A rule of thumb for the binomial distribution is that it is roughly
normal for np > 5 and n(1− p) > 5. But much larger values of n should be taken in order to
be certain that things are correct. In practice, more sophisticated algorithms are often used for
large n.

3.8.3 The Poisson distribution

The Poisson distribution is a natural model for the number of independent arrivals in a
period of time (among many other things). The pmf of a Poi(λ) random variable is

P(X = i) = e−λλ
i

i!
, i ∈ {0, 1, . . .}.

One way to simulate a Poisson random variable is to exploit an intimate link between Poisson
and exponential random variables.

Lemma 3.8.2. Let {Zj} be a sequence of iid Exp(λ) random variables and define

X = max

{
n :

n∑

j=1

Zj ≤ 1

}
.

Then, X ∼ Poi(λ).

Proof. We have that

P(X = i) = P

(
i∑

j=1

Zj ≤ 1 <
i+1∑

j=1

Zj

)
=

∫ 1

0

P

(
Zi+1 ≥ 1− u

∣∣∣∣
i∑

j=1

Zj = u

)
f(u) du,

where f is the density of
∑i

j=1 Zj. Now, we know that
∑i

j=1 Zj ∼ Gam(i, λ) is independent of
Zi ∼ Exp(λ). Thus,

∫ 1

0

P

(
Zi+1 ≥ 1− u

∣∣∣∣
i∑

j=1

Zj = u

)
f(u) du

=

∫ 1

0

e−λ(1−u)λ
iui−1e−λu

(i− 1)!
du

=
e−λλi

(i− 1)!

∫ 1

0

ui−1 du =
e−λλi

i!

This suggests the following algorithm.

1. Set s = 0. Set n = 0.
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2. Draw Z ∼ Exp(λ).

3. Set s = s+ Z.

4. If s > 1 then return n. Otherwise, set n = n+ 1 and go to step 2.

The work done by this algorithm is proportional to the expected value of a Poi(λ) random
variable. That is,

work = O (λ) .

As a result, this algorithm is not suitable for large values of λ. An alternative is the following.

1. Set m = ⌊7/8λ⌋.

2. Generate Y ∼ Gam(m, 1).

3. If Y ≤ λ, generate Z ∼ Poi(λ − Y ) and set X = m + Z. Otherwise, generate X ∼
Bin(m− 1, λ/Y ).



Chapter 4

Variance Reduction

4.1 Measuring the Error of an Estimator

Because Monte Carlo methods are based on random numbers, the error of a given estimator
will not be deterministic but rather random. As such, statements about the errors of Monte
Carlo estimators are probabilistic.

When an estimator is unbiased (so its expected value is the correct answer), the most natural
measure of its error is variance (or, equivalently, the easier to interpret standard deviation).
There are a number of reasons why variance is a natural measure of error.

4.1.1 Asymptotic Error Bounds

Variance naturally occurs in one of the most fundamental theorems in probability: the
central limit theorem. This tells us that the value of an empirical average of iid random
variables is asymptotically normally distributed around the expect value of these variables.

Theorem 4.1.1 (Central Limit Theorem). Let {Xi}∞i=1 be a sequence of i.i.d. random values
taking values in R such that EX1 = µ and Var(X1) = σ2, with 0 < σ2 <∞. Then, the random
variables

Zn =

∑n
i=1Xi − nµ

σ
√
N

converge in distribution to a random variable Z ∼ N(0, 1) as n→ ∞.

Thus, if we have an unbiased estimator of the form

ℓ̂ =
1

N

N∑

i=1

,

where the {Xi} are i.i.d. with EX1 = ℓ and Var(X1) < ∞, we can construct confidence
intervals. For example, we know that

P

(
ℓ̂− 1.96

√
Var(X1)

N
≤ ℓ ≤ ℓ̂+ 1.96

√
Var(X1)

N

)
≈ 0.95,

where the ≈ reflects the fact that ℓ̂ is only approximately normal.

41
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4.1.2 Non-Asymptotic Error Bounds

The central limit theorem is an asymptotic result. This means that it is not strictly speaking
true that ℓ̂ is normally distributed for finite N (though, of course, in practice its distribution
is usually very close to a normal distribution). Non-asymptotic results allow us to say definite
things about errors without making the approximations involved in asymptotic results. Of
course, a cost of working in a non-asymptotic setting is that what we can say is usually a
little less precise. The most famous non-asymptotic bounds in probability theory are Markov’s
inequality and its corollary, Chebyshev’s inequality.

Theorem 4.1.2 (Markov’s inequality). Given a random variable, X, taking values in R, a
non-negative function g : R → [0,∞) and a constant a > 0, we have

P(g(X) ≥ a) ≤ Eg(X)

a
.

Proof. It is clear that g(X) ≥ aI(g(X) ≥ a), so Eg(X) ≥ EaI(g(X) ≥ a) = aEI(g(X) ≥ a) =
aP(g(X) ≥ a).

If we set g(x) = (x− EX)2 and a = ǫ2, where ǫ > 0, we have

P((X − EX)2 ≥ ǫ2) ≤ (X − EX)2

ǫ2
⇒ P(|X − EX| ≥ ǫ) ≤ Var(X)

ǫ2
.

This is Chebyshev’s inequality.

Theorem 4.1.3 (Chebyshev’s inequality). Given a random variable X taking values in R with
Var(X) <∞ and ǫ > 0, we have

P(|X − EX| ≥ ǫ) ≤ Var(X)

ǫ2
.

Note that in both the asymptotic and non-asymptotic settings, we usually do not know the
actual value of Var(X1) as this would presumably require us to know EX1, which is the very
quantity we are trying to estimate. Thus, we usually have to replace the above bounds with
weaker ones (involving bounds on Var(X1)). In practice, we can usually estimate Var(X1) and
Std(X1) using the empirical variance estimated from {Xi}Ni=1 but care needs to be taken in
doing so, as we will see later.

4.1.3 Estimating Probabilities

Now that we can generate a few different types of random variables, we can begin thinking
about using Monte Carlo to answer some interesting questions. One thing that we often wish
to estimate is the probability of a given event occurring. For example, we might want to know
the probability that it rains tomorrow or the probability that a company goes bankrupt in the
next 12 months. This can be done in a reasonably straightforward manner using Monte Carlo
methods. As usual, the key to estimating such a quantity is to write it as an expectation.
Observe that

ℓ = P(X ∈ A) = EI(X ∈ A).
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Thus, we can estimate ℓ with the estimator

ℓ̂ =
1

N

N∑

i=1

I(Xi ∈ A),

where the {Xi} are iid random variables with X1
D
= X. The variance of such an estimator is

Var(ℓ̂) =
1

N
Var(I(Xi ∈ A)).

Now, observe that I(Xi ∈ A) is a Bernoulli random variable with success probability ℓ. Thus,
Var(I(Xi ∈ A)) = ℓ(1− ℓ) and, as a result,

Var(ℓ̂) =
1

N
ℓ(1− ℓ)

and

Std(ℓ̂) =
1√
N

√
ℓ(1− ℓ).

Because ℓ is generally small, it is hard to interpret what the size of Std(ℓ̂) means in terms of
the error. For this reason, the standard deviation of the estimator is generally normalized by
the quantity of interest. This gives the relative error

RE =
1√
N

√
ℓ(1− ℓ)

ℓ
.

Note that,

RE =
1√
N

√
ℓ(1− ℓ)

ℓ
≤ 1√

N

√
ℓ

ℓ
=

1√
N

1√
ℓ
,

so, for fixed N ,

RE = O

(
1√
ℓ

)

and, for fixed ℓ,

RE = O

(
1√
N

)
.

If we fix the relative error (i.e., set RE = ǫ) we have

N =
1

ǫ2
ℓ(1− ℓ)

ℓ2
=

1

ǫ2
1− ℓ

ℓ
≤ 1

ǫ2
1

ℓ
.

So, as a function of ǫ, we have

N = O

(
1

ǫ2

)

and, as a function of ℓ, we have

N = O

(
1

ℓ

)
.

Using the Chebyshev inequality, we obtain

P

(
|ℓ̂− ℓ| > ǫ

)
≤ Var(ℓ̂)

ǫ2
=
ℓ(1− ℓ)

Nǫ2
.
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This is not so meaningful, however, as we do not know a priori how small we want |ℓ̂ − ℓ| to
be. A more meaningful bound (which we obtain using the Chebyshev inequality with constant
ℓǫ) is

P

(
|ℓ̂− ℓ|
ℓ

> ǫ

)
≤ (1− ℓ)

Nǫ2ℓ
,

which allows us to estimate the probability that, say, the error is more than 10% of the true
value of ℓ (this is done by setting ǫ = 0.1).

Example 4.1.4 (Estimating an exceedance probability (and estimating the relative error)).
Suppose we wish to estimate ℓ = P(X > γ), where γ ∈ N and X ∼ Poi(λ). We can do this as
follows.

Listing 4.1: Matlab Code

1 N = 10^4;

2 lambda = 10; gamma = 16;

3 indics = zeros(N,1);

4

5 for i = 1:N

6 X = poissrnd(lambda);

7 indics(i) = (X > gamma);

8 end

9

10 ell = 1 - poisscdf(gamma, lambda)

11 ell_hat = mean(indics)

12 RE = sqrt(ell * (1 - ell)) / (ell * sqrt(N))

13 RE_hat = std(indics) / (ell_hat * sqrt(N))

4.2 More on Conditional Expectation and Conditional

Variance

We here give a rough description of conditional expectation for continuous random vari-
ables. For more details on conditional probability and expectation, consult a good probability
textbook.

Suppose X and Y are continuous R-valued random variables with joint distribution f(x, y).
Then, for x such that f(x) > 0, we can define the conditional density of Y given {X = x} by

f(y |X = x) =
f(x, y)

f(x)
.

Using the pdf, the conditional expectation of Y given {X = x} is given by

ψ(x) = E[Y |X = x] =

∫

R

yf(y |X = x) dy.

The conditional expectation of Y given X is then given by

E[Y |X] = ψ(X).
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Note that, as in the discrete case, the conditional expectation E[Y |X] is a random variable. It
satisfies the tower property (which is a defining property of conditional expectation). That is,

Eψ(X) = E [E [Y |X]] = EY.

Again, as in the discrete case, we can treat any X inside E[Y |X] as if it were a constant.
Using conditional expectation, we can define the conditional expectation of a random vari-

able X given another random variable Y . This is given (analogous to the standard definition
of variance) by

Var(X |Y ) = E
[
X2 |Y

]
− E[X |Y ]2.

A key result about conditional variance is the following.

Theorem 4.2.1 (Law of Total Variance). Let X and Y be two random variables on the same
probability space. Then

Var(X) = E[Var(X |Y )] + Var (E[X |Y ]) .

Proof. The easiest way to show this is to expand the right side. Observe that,

E[Var(X |Y )] + Var (E[X |Y ])

= E
[
E[X2 |Y ]

]
− E

[
E[X |Y ]2

]
+ E

[
E[X |Y ]2

]
− E [E[X |Y ]]2

= E
[
E[X2 |Y ]

]
− E [E[X |Y ]]2

= E[X2]− E[X]2

= Var(X).

4.3 Conditional Monte Carlo

It is always desirable to maximize the accuracy of a given estimator (for a fixed computa-
tional cost). Doing so allows us to be more confident about the correctness of our result and it
also, hopefully, allows us to use less samples (i.e. less computer time) to achieve a desired level
of accuracy. As the above discussion demonstrates, in order to make Monte Carlo methods
more accurate we should aim to find a Monte Carlo estimator with a smaller variance than
the standard Monte Carlo estimator. The first variance reduction technique we will consider is
called conditional Monte Carlo.

We know from the tower property that E[E[X |Y ]] = EX. This suggests that, so long as
we can generate realizations of the random variable Y and calculate E[X |Y ], we can estimate

ℓ = EX

using the estimator

ℓ̂cond =
1

N

N∑

i=1

E[X |Yi],

where the {Yi}Ni=1 are iid replicates of Y .
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Why is this estimator better than the standard Monte Carlo estimator (assuming that we
can easily generate Y and calculate E[X |Y ])? To see this, first consider what the variance of

ℓ̂cond looks like:

Var
(
ℓ̂cond

)
= Var

(
1

N

N∑

i=1

E[X |Yi]
)

=
Var (E[X |Y ])

N

Now, observe that, by rearranging the law of total variance, we see that

Var (E[X |Y ]) = Var(X)− E[Var(X |Y )] ≤ Var(X).

As the variance of the standard Monte Carlo estimator is given by

Var
(
ℓ̂
)
=

Var(X)

N
.

Thus, Var(ℓ̂cond) ≤ Var(ℓ̂).

Example 4.3.1. Suppose you want to estimate ℓ = P(X1 +X2 > γ) where X1 ∼ Exp(λ1) and
X2 ∼ Exp(λ2). Now, observe that

ℓ = EI(X1 +X2 > γ) = EI(X2 > γ −X1).

Thus, we can consider the conditional expectation

E [I(X2 > γ −X1) |X1] =

{
1 if γ −X1 < 0,

e−λ2(γ−X2) otherwise.

We then estimate EE [I(X2 > γ −X1) |X1] by generating realizations of X1 ∼ Exp(λ1) and
averaging over the results. This is implemented in the following Matlab code (along with the
conditional estimator given X2 and the standard Monte Carlo estimator).

Listing 4.2: Matlab Code

1 N = 10^6; gamma = 5;

2 results = zeros(N,1);

3 results_cond1 = zeros(N,1);

4 results_cond2 = zeros(N,1);

5

6 lambda_1 = 1;

7 lambda_2 = 2;

8

9 for i = 1:N

10 X_1 = -log(rand) / lambda_1;

11 X_2 = -log(rand) / lambda_2;

12

13 results(i) = (X_1 + X_2 > gamma);

14

15 if (gamma - X_1 < 0)

16 results_cond1(i) = 1;

17 else

18 results_cond1(i) = exp(-lambda_2*(gamma-X_1));
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19 end

20

21 if (gamma - X_2 < 0)

22 results_cond2(i) = 1;

23 else

24 results_cond2(i) = exp(-lambda_1*(gamma-X_2));

25 end

26 end

27

28 clc

29 std_ell_hat = mean(results)

30 std_var_hat = var(results) / N

31 cond1_ell_hat = mean(results_cond1)

32 cond1_var_hat = var(results_cond1) / N

33 cond2_ell_hat = mean(results_cond2)

34 cond2_var_hat = var(results_cond2) / N

A sample run of the above estimator with λ1 = 1 and λ2 = 2 gives the following results
(where ℓ̂1 is the conditional estimator given X1 and ℓ̂2 is the conditional estimator given X2).

V̂ar(ℓ̂) = 1.33× 10−8 V̂ar(ℓ̂1) = 8.90× 10−9 V̂ar(ℓ̂2) = 3.07× 10−10.

Notice that the variance of the estimator conditioned on X2 is much smaller than the variance
of the other conditional estimator. It is worth thinking about why this might be. Note that,
because λ1 < λ2, X1 will generally be larger than X2. Thus, by only considering the ‘random-
ness’ coming from X2 (which is what we do when we condition on X2) we remove most of the
randomness from the system – and, thus, the variance should be smaller.

More precisely, observe that in order to minimize the variance of the conditional estimator
we want to condition on a Y such that

E[Var(X |Y )] = EX2 − E[E[X |Y ]2] ≤ Var(X)

is maximized. Because EX2 − E[E[X |Y ]2] ≤ Var(X), we know that E[E[X |Y ]2] ≤ EX2.
Thus, if we can find a Y such that E[E[X |Y ]2] ≈ EX2, we will have almost perfect variance
reduction. One way to satisfy this condition is to take Y independent of X. Although this
seems a bit strange it actually makes a lot of sense – what it means is that we know how to
calculate E[X |Y ] = EX (i.e. we know the answer already). A general rule of thumb is to try
to condition on the variable that gives the least information about X while still allowing us to
calculate the conditional expectation.

In summary, conditional Monte Carlo is a powerful method which can theoretically result
in estimators with variance arbitrarily close to zero. However, it suffers from some limitations.
In particular, one must be able to easily generate replicates of Y and then calculate E[X |Y ].
Note that, in some settings, it might still be worthwhile to use conditional Monte Carlo when
E[X |Y ] needs to be calculated numerically.

4.4 Antithetic sampling

Antithetic sampling is a simple technique that can often reduce the variance of an estimator
by a non-trivial amount. The basic idea is to try to ensure that the samples spread out
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sufficiently over the sample space. This is done by generating negatively correlated (antithetic)
pairs of random variables.

Suppose, again, that we want to estimate

ℓ = EX.

In antithetic sampling, instead of generating replicates of X, we generate pairs of correlated

random variables, Z(1), Z(2), such that Z(1) D
= Z(2) D

= X (i.e., so that both Z(1) and Z(2) have
the same marginal distribution as X). We then use the estimator

ℓ̂anti =
1

M

M∑

i=1

Z
(1)
i + Z(2)

2
,

where (Z
(1)
1 , Z

(2)
1 ), . . . , (Z

(1)
m , Z

(2)
M ) are iid replicates of (Z(1), Z(2)). This is clearly an unbiased

estimator of ℓ.

In order to do this, we need to be able to generate Z(1) and Z(2) such that they are negatively
correlated and have the correct marginals. This can often be done using the inverse transform
method. Recall that, if U ∼ U(0, 1), then 1 − U is also U(0, 1). Thus, if F is the cdf of X,
then F−1(U) and F−1(1−U) both produce variables with distribution F . They are also clearly
negatively correlated (though it can be difficult to calculate this correlation exactly).

What is the variance of this estimator? If we choose M = N/2 (so that we use the same
number of samples as a standard MC estimator with sample size N), then (using the fact that
Z(1) and Z(2) have the same marginal distribution as X)

Var
(
ℓ̂anti

)
=

1

(N/2)2

N/2∑

i=1

1

4
Var

(
Z(1) + Z(2)

)

=
2

N

1

4

[
Var(Z(1))− 2Cov(Z(1), Z(2)) + Var(Z(2))

]

=
1

N

1

2

[
Var(X)− 2ρ

√
Var(X)

√
Var(X) + Var(X)

]

=
1

N
(1− ρ)Var(X),

where ρ ∈ [−1, 1] is the correlation coefficient. Thus, if the correlation is negative, the variance
will be smaller than that of the standard Monte Carlo estimator.

Example 4.4.1 (Expected length of the shortest path).
Consider the network illustrated in Figure 4.4.1. In this network, the ‘length’ of every edge is
given by random variable (note these lengths do not have a geometric interpretation). These
‘lengths’ could, for example, represent the lifetimes of components or the length of time taken
for certain industrial processes. Suppose we want to find the shortest path between A and B
when X1, . . . , X5 are iid U(0, 1) random variables. This is given by

ℓ = EX = EH(X1, . . . , X5) = min{X1 +X4, X1 +X3 +X5, X2 +X3 +X4, X2 +X5}.

We can generate an antithetic version of X using H(1−X1, . . . , 1−X5).
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BA

X4X1

X3

X5X2

Listing 4.3: Matlab Code

1 N = 10^5;

2 M = N / 2;

3

4 results = zeros(N,1);

5 results_anti = zeros(M,1);

6 Zs = zeros(M,2);

7

8 for i = 1:N

9 U = rand(1,5);

10 Paths = [U(1) + U(4), U(1) + U(3) + U(5), ...

11 U(2) + U(3) + U(4), U(2) + U(5)];

12 results(i) = min(Paths);

13 end

14

15 for i = 1:M

16 U = rand(1,5);

17 Paths = [U(1) + U(4), U(1) + U(3) + U(5), ...

18 U(2) + U(3) + U(4), U(2) + U(5)];

19 Z_1 = min(Paths);

20 U = 1 - U;

21 Paths_2 = [U(1) + U(4), U(1) + U(3) + U(5), ...

22 U(2) + U(3) + U(4), U(2) + U(5)];

23 Z_2 = min(Paths_2);

24 results_anti(i) = (Z_1 + Z_2) / 2;

25 Zs(i,:) = [Z_1 Z_2];

26 end

27

28 ell_hat = mean(results)

29 std_hat = std(results)/sqrt(N)

30 ell_hat_anti = mean(results_anti)

31 std_hat_anti = std(results_anti)/sqrt(M)

32 cor_matrix = corr(Zs);

33 rho = cor_matrix(1,2)
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4.5 Stratified Sampling

Stratified sampling is an extension of the idea of anithetic sampling in the sense that it
seeks to ensure that the samples are spread appropriately across the state space. The idea is as
follows. Suppose we can wish to estimate ℓ = ES(X) where S(·) is some function and X is a
random variable / vector with a straightforward distribution (most problems can be written in
this form with a little work). Further suppose that we can divide the range of X into disjoint
sets A1, . . . , AK (for example, if X ∼ U(0, 1) we could divides its range into A1 = (0, .5] and
A2 = (.5, 1)). These sets are called strata. Then, we can write

ℓ = ES(X) =
K∑

i=1

E[S(X) |X ∈ Ai]P(X ∈ Ai).

We can estimate this by

ℓ̂strat =
K∑

i=1

piℓ̂
(i),

where pi = P(X ∈ Ai) and ℓ̂ is the standard estimator of ℓi = E[S(X) |X ∈ Ai]. That is,

ℓ̂(i) =
1

Ni

Ni∑

j=1

S(X
(i)
j ),

where {X(i)
j } is a sequence of iid random variables drawn from the conditional distribution of

X given that X ∈ Ai. Thus, in full one can write the estimator in the form

ℓ̂strat =
K∑

i=1

pi
1

Ni

Ni∑

j=1

S(X
(i)
j ).

Assuming we have a division of the range of X into sets A1, . . . , AK , we should try to choose
the sample sizes, N1, . . . , NK , in order to minimize the variance. How can we do this?

In order to decide, we first need to calculate the variance of the stratified sampling estimator.
This is given by

Var
(
ℓ̂strat

)
= Var

(
K∑

i=1

pi
1

Ni

Ni∑

j=1

S(X
(i)
j )

)

=
K∑

i=1

p2i
1

Ni

Var
(
S(X(i))

)
=

K∑

i=1

p2i
σ2
i

Ni

,

where σ2
i = Var(X(i).

4.5.1 Proportional allocation

The first strategy we consider is to allocate samples to the ith strata proportional to the
probability that X is in Ai. That is, we take

Ni ≈ piN,
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where N is the total sample size. What is the variance in this case?
We know that

Var
(
ℓ̂strat

)
=

K∑

i=1

p2i
σ2
i

Ni

.

So, plugging in Ni = piN , we obtain

Var
(
ℓ̂strat

)
=

K∑

i=1

p2i
σ2
i

piN
=

K∑

i=1

pi
σ2
i

N
.

Now, we need to compare this to the variance of the standard MC estimator. In order to
do this, we need to rewrite Var(ℓ̂) in terms of the pi and Ai. Observing that

Var(ℓ̂) =
ES(X)2 − (ES(X))2

N
.

Now,

ES(X)2 =
K∑

i=1

piE[S(X)2 |X ∈ Ai] =
K∑

i=1

pi(σ
2
i + ℓ2i ) =

K∑

i=1

piσ
2
i +

K∑

i=1

piℓ
2
i

and

ES(X) =
K∑

i=1

piE[S(X) |Y ] =
K∑

i=1

piℓi.

So,

Var(ℓ̂) =
ES(X)2 − (ES(X))2

N
=

∑K
i=1 piσ

2
i +

∑K
i=1 piℓ

2
i −

(∑K
i=1 piℓi

)2

N
.

Observe that this differs from Var(ℓ̂strat) by
∑K

i=1 piℓ
2
i − (

∑K
i=1 piℓi)

2. So, if we can show that

K∑

i=1

piℓ
2
i ≤ (

K∑

i=1

piℓi)
2

then we have shown that Var(ℓ̂strat) ≤ Var(ℓ̂). In order to show this, we simply apply Jensen’s
inequality. Thus, proportional sampling results in an estimator that always has a variance less
than or equal to the variance of the standard Monte Carlo estimator. This is a very useful
result, because it is often very straightforward to apply proportional sampling. Note that, in
general, piN will not be an integer. However, rounding these values will not make a significant
different if N is sufficiently large.

4.5.2 Optimal allocation

In order to determine the optimal allocation of samples to each strata, we set Ni = qiN and
again consider the variance of the stratified estimator, which is given by

Var(ℓ̂strat) =
K∑

i=1

p2iσ
2
i

N
=

K∑

i=1

p2iσ
2
i

q2iN
.
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We can optimize this, under the constraint that
∑K

i=1 qi = 1 by solving

∂

∂qi

[
K∑

i=1

p2iσ
2
i

q2iN
+ λ

(
K∑

i=1

qi = 1

)]
= 0

for q1, . . . , qK and

∂

∂λ

[
K∑

i=1

p2iσ
2
i

q2iN
+ λ(

K∑

i=1

qi = 1)

]
= 0.

This gives

q∗i =
piσi∑K
i=1 piσi

for i = 1, . . . , K,

which can be seen to be a minimize by checking second order conditions. Thus, the optimal
allocation is to allocate the sample to the ith strata proportional to its variance times the
probability that X takes a value in this strata. Of course, to use this allocation we need to
know the conditional variances for each strata. In general, finding these is a more difficult
problem than the original problem, so the optimal allocation is not useable in practice (though
it does give a good indication of what an efficient allocation should look like).

What is the variance of the optimal allocation scheme? Plugging in for Ni, we see that

Var(ℓ̂strat) =
K∑

i=1

p2iσ
2
i

Npiσi/
∑K

j=1 pjσj
=

(
∑K

i=1 piσi)(
∑K

j=1 pjσj)

N
=

(
∑K

i=1 piσi)
2

N
.

As expected, this is bounded above by the variance of the proportional allocation scheme, as

(
∑K

i=1 piσi)
2

N
≤

K∑

i=1

pi
σ2
i

N

by Jensen’s inequality. Note that, in general, piσiN will not be an integer. However, rounding
these values will not make a significant different if N is sufficiently large.

4.6 Control variates

Recall that we saw, in the case of conditional Monte Carlo, that we reduce the variance of
an estimator by reducing the randomness as much as possible. This is the basic idea of control
variates, where we try to use as much information as possible about the quantity we want to
estimate, ℓ = ES(X). If we use this information properly, then the difference between what
this information tells us and what we wish to estimate will hopefully be small (and thus have
a small variance).

In order to use control variances, we write

ℓ = ES(X) = ES(X)− αEH(X) + αEH(X) = E[S(X)− αH(X)] + αh,

where H(X) is the control variate, which is chosen such that h = EH(X) is a quantity that we
know. This gives the estimator

ℓ̂cont =
1

N

N∑

i=1

[S(Xi)− αH(Xi)] + αh,



4.6. CONTROL VARIATES 53

where the {Xi} are iid replicates of X.
In order to use control variates effectively, we need to choose an appropriate value of α.

As usual, we do this by writing out the variance of our estimator and taking derivatives. The
variance is given by

Var(ℓ̂cont) =
Var(S(X)− αH(X))

N
=

Var(S(X))− 2αCov(S(X), H(X)) + α2Var(H(X))

N
.

Solving for
d

dα

Var(S(X))− 2αCov(S(X), H(X)) + α2Var(H(X))

N
= 0,

we find that the optimal choice of α for minimizing the variance (where second order conditions
show that it is indeed a minimizer) is

α∗ =
Cov(S(X), H(X))

Var(H(X))
.

Note that this is the same as the regression coefficient that would be obtained if we tried to
describe S(X) using the simple linear regression model S(X) = α0 + α∗H(X) + ǫ.

Plugging α∗ into the variance formula, we see that (using the optimal α)

NVar(ℓ̂cont)

=

[
Var(S(X))− 2

Cov(S(X), H(X))

Var(H(X))
Cov(S(X), H(X)) +

Cov(S(X), H(X))2

Var(H(X))2
Var(H(X))

]

=

[
Var(S(X))− 2

Cov(S(X), H(X))2

Var(H(X))
+

Cov(S(X), H(X))2

Var(H(X))

]

=

[
Var(S(X))− Cov(S(X), H(X))2

Var(H(X))

]

= NVar(S(X))(1− ρ2).

Thus, the variance of the control variates estimator (assuming the optimal α is used) will be less
than the variance of the standard Monte Carlo estimator so long as ρ, the correlation between
S(X) and H(X) is not equal to zero.

Note that (as always seems to be the case with variance reduction) we do not know usually
know α∗, as it requires us to know the covariance of H(X) and S(X), which is typically hard
to calculate than ES(X). However, we can obtain a rough estimate of α∗ by simulating a small
number of values of H(X) and S(X) and estimating their covariance. We then carry out the
main simulation using new samples.

Example 4.6.1 (A simple integration example). Suppose we wish to estimate

ℓ =

∫ ∞

0

e−x2

dx = ES(X),

where S(X) = e−X2

and X ∼ U(0, 1). A good choice of control variate is H(X) = e−X as we
know that

h = EH(X) =

∫ ∞

0

e−x dx = 1− e−1.

The control variate approach is easily implemented in Matlab.
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Listing 4.4: Matlab Code

1 N_init = 10^3;

2 N_ctrl = 10^5;

3 N = N_init + N_ctrl;

4

5 SH = zeros(N_init,2);

6 results_ctrl = zeros(N_ctrl,1);

7 results = zeros(N,1);

8

9 for i = 1:N_init

10 X = rand;

11 SH(i,1) = exp(-X^2);

12 SH(i,2) = exp(-X);

13 end

14

15 cov_mat = cov(SH);

16 alpha_star_hat = cov_mat(1,2) / cov_mat(2,2);

17

18 for i = 1:N_ctrl

19 X = rand;

20 results_ctrl(i) = exp(-X^2) - alpha_star_hat * exp(-X);

21 end

22

23 for i = 1:N

24 X = rand;

25 results(i) = exp(-X^2);

26 end

27

28 ell_hat_ctrl = mean(results_ctrl) + 1 - exp(-1)

29 std_hat_ctrl = std(results_ctrl) / sqrt(N_ctrl)

30 ell_hat = mean(results)

31 std_hat = std(results) / sqrt(N)



Chapter 5

Importance Sampling

Importance sampling is the most powerful of the general variance reduction methods. How-
ever, this power comes at a cost (which is that things can go quite wrong), so care should be
exercised when using it.

The easiest way to introduce importance sampling is in the context of rare events. Suppose
we want to estimate

ℓ = Pf (X ∈ A),

where X is an R-valued random variable with density f , A ⊂ R, and Pf is used to denote that
the probability is calculated assuming X ∼ f . Furthermore, suppose that ℓ is small (so the
event {X ∈ A} is rare). In this case, the relative error of the standard Monte Carlo estimator
will be quite high because many samples are required in order to observe enough occurrences
of {X ∈ A}. The idea of importance sampling in this context is to reweight the probabilities of
certain events happening so that {X ∈ A} (which is the important event) happens much more
often. Obviously, this needs to be done properly or the resulting estimator will be biased. This
is done as follows. Suppose we can find a density g such that, when X has density g the event
{X ∈ A} is more likely and such that g(x) = 0 ⇒ f(x)I(X ∈ A) = 0. Then, we can write

ℓ = EfI(X ∈ A) =

∫

R

I(x ∈ A)f(x) dx

=

∫

R

f(x)

g(x)
g(x)I(x ∈ A) dx = Eg

f(X)

g(X)
I(X ∈ A),

where Ef is calculated with X ∼ f and Eg is calculated with X ∼ g. The term f(X)/g(X),
which reweights things so that everything is unbiased, is called the likelihood ratio.

Using this result, we obtain the estimator

ℓ̂IS =
1

N

N∑

i=1

f(Xi)

g(Xi)
I(X ∈ A),

where the {Xi} are iid random variables with density g.

Example 5.0.2. Recall that the basic idea is to choose g such that {X ∈ A} is more likely.
For example, suppose we want to estimate

ℓ = P(X ∈ [5,∞)),

55
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where X ∼ Exp(1). We could make the event of interest more likely by choosing g to be the
density of a Exp(1/5) random variable (so that EgX = 5). Suppose we have f(x) = e−x and
g(x) = λe−λx, then

f(x)

g(x)
=

1

λ
exp{(λ− 1)x}.

This approach is implemented in Matlab for the general problem of estimating ℓ = P(X > γ),
using an exponential distribution with λ = 1/γ.

Listing 5.1: Matlab Code

1 N = 10^5; gamma = 5;

2

3 lambda = 1/gamma;

4 results = zeros(N,1);

5 results_IS = zeros(N,1);

6

7 for i = 1:N

8 X = -log(rand);

9 X_IS = -log(rand) / lambda;

10 results(i) = (X > gamma);

11 results_IS(i) = exp((lambda-1)*X_IS) / lambda * (X_IS > gamma);

12 end

13

14 ell = exp(-5)

15 ell_hat = mean(results)

16 re_hat = std(results) / (sqrt(N) * ell_hat)

17 ell_hat_IS = mean(results_IS)

18 re_hat_IS = std(results_IS) / (sqrt(N) * ell_hat_IS)

19 re_hat / re_hat_IS

More generally, we can use importance sampling to estimate any problem of the form

ℓ = EfS(X),

using an estimator of the form

ℓ̂IS =
1

N

N∑

i=1

f(Xi)

g(Xi)
S(Xi),

so long as g(x) = 0 ⇒ f(x)S(x) = 0.

5.1 The variance of the importance sampling estimator

What can we say about the variance of the importance sampling estimator? We have that

Varg

(
ℓ̂IS

)
= Varg

(
1

N

N∑

i=1

f(Xi)

g(Xi)
S(Xi)

)
=

1

N
Varg

(
f(X)

g(X)
S(X)

)
.
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Now,

Varg

(
f(X)

g(X)
S(X)

)
= Eg

(
f(X)

g(X)
S(X)

)2

−
(
Eg
f(X)

g(X)
S(X)

)2

.

As the importance sampling estimator is, by construction, unbiased, the second term on the
right is simply equal to ℓ2 (which matches exactly the equivalent term in the variance of the
standard estimator). This means that, the variance of the importance sampling estimator will
be small than the variance of the standard Monte Carlo estimator so long as

Eg

(
f(X)

g(X)
S(X)

)2

< EfS(X)2.

We can make this inequality more meaningful by writing the second moment of the IS estimator
as an expectation with respect to f . To do this, observe that

Eg

(
f(X)

g(X)
S(X)

)2

=

∫

R

f(x)2

g(x)2
S(x)2g(x) dx

=

∫

R

f(x)

g(x)
S(x)2f(x) dx = Ef

f(X)

g(X)
S(X)2.

Thus, we will achieve variance reduction so long as

Ef
f(X)

g(X)
S(X)2 < EfS(X)2.

In the special case of rare-event probability estimation, the requirement is that

Ef
f(X)

g(X)
I(X ∈ A) < EfI(X ∈ A),

which will be satisfied is, for example, g gives a large weight to all x such that x ∈ A. We can
event take this further and see that the above condition is equivalent to

Ef

[
f(X)

g(X)
I(X ∈ A)

∣∣∣∣X ∈ A

]
P(X ∈ A) < P(X ∈ A)

⇒ Ef

[
f(X)

g(X)
I(X ∈ A)

∣∣∣∣X ∈ A

]
< 1.

That is, we require that the mean value of the likelihood ratio on the set A should be less than
1.

5.2 The zero-variance density

What is the best possible choice of g? As usual with variance reduction, this choice will
require us to know the answer already. However, it will give valuable insight into good choices
of g.

If S(X) ≥ 0 for all x then, we can choose

g∗(x) =
f(x)S(x)

EfS(X)
=
f(x)S(x)

ℓ
.
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We need to check that this is a density. Clearly, under our assumptions, g∗(x) ≥ 0. Thus, we
simply need to check it integrates to one, which is immediately true because

∫
S(x)f(x) dx = ℓ.

The resulting estimator is of the form

ℓ̂g∗ =
1

N

N∑

i=1

f(Xi)

f(Xi)S(Xi)/ℓ
S(Xi) =

1

N

N∑

i=1

ℓ,

which has zero-variance as it is a constant. Note that we cannot use this estimator in practice,
as we need to know ℓ in order to calculate the likelihood ratio.

In the special case where S(x) = I(x ∈ A), we have

g∗ =
f(x)I(x ∈ A)

P(X ∈ A)
= f(x |X ∈ A).

That is, the zero-variance density is the original density conditioned on the event of interest
happening. This is a very useful thing to know, as we are often able to find a density that is
quite close to the conditional density.

5.3 Exponential tilting

Trying to find the best choice of g is essentially an infinite dimensional optimization problem.
Such problems are generally very difficult (though one can use the calculus of variations and
theory of optimal control). In practice, it is often easy to try to turn the problem into a finite
dimensional one. This can be done by restricting the choice of g to a parametric family of
densities {g(x; θ)}θ∈Θ.

The most useful way to create such a family of densities is by so-called exponential tilting.
Recall that the moment generating function of a random variable X ∼ f is given by

M(θ) = Efexp{θX},

which is defined so long as the expectation on the right is finite. The cumulant generating
function of a random variable is given by

κ(θ) = logEfexp{θX} = logM(θ).

Using this, one can define a family of densities by

f(x; θ) = exp{θx− κ(θ)}f(x),

where θ ∈ Θ = {θ :M(θ) <∞}. One can see these are densities as the exponential function is
non-negative and the density integrates to 1.

Example 5.3.1 (Tilting the normal density). The moment generating function of a normal
distribution with mean µ and variance σ2 is given by

M(θ) = exp

{
µθ +

σ2θ2

2

}
.

So,

κ(θ) = µθ +
σ2θ2

2
.
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This means that the tilted normal distribution is of the form

f(x; θ) ∝ exp {θx− κ(θ)} exp
{
−(x− µ)2

2σ2

}

= exp

{
θx− µθ +

σ2θ2

2

}
exp

{
−(x− µ)2

2σ2

}

= exp

{
− 1

2σ2

(
x− (µ+ σ2θ)

)2
}
,

which is the pdf of a normal distribution with mean µ+σ2θ and variance σ2. Thus, exponentially
tilting a normal distribution is equivalent to shifting its mean by σ2θ.

Using an exponential tilt, one obtains the estimator

ℓ̂θ =
1

N

N∑

i=1

f(Xi)

f(Xi; θ)
S(Xi) =

1

N

N∑

i=1

exp{κ(θ)− θXi}S(Xi).

The obvious question is how to choose θ. There are a number of possibilities here. One is
to try to find the θ that minimizes the variance of the estimator. That is, we choose

θVM = argmin
θ∈Θ

Varg (exp{κ(θ)− θX}S(X)) .

This is equivalent to minimizing the second moment of the estimator. Using the results from
the section on variance above, the problem is thus

θVM = argmin
θ∈Θ

Efexp{κ(θ)− θX}S(X).

In the case where S(x) = I(x ∈ A), this problem reduces further to

θVM = argmin
θ∈Θ

Ef

[
exp{κ(θ)− θX}

∣∣∣∣X ∈ A

]
.

Note that this can be estimated by first using acceptance rejection to sample from f(x |X ∈ A)
then using numerical optimization to find the best choice of θ.

Example 5.3.2. Suppose we wish to estimate ℓ = P(X > γ) where X ∼ N(0, 1). We can
use the variance minimization approach to carry out importance sampling. First, we simulate
a small initial simulation and use numerical optimization to find the optimal parameter. We
then use this paramter to obtain a tilted distribution with which we perform the importance
sampling. The code for the main file is:

Listing 5.2: Matlab Code

1 gamma = 3; mu = 0; sigma = 1;

2 N_init = 10^4;

3 N = 10^5;

4

5 X_init = mu + sigma * randn(N_init,1);

6 X_sample = X_init(find(X_init > gamma));

7 theta_vm = fminsearch(@(theta) second_moment(theta,mu,sigma,X_sample),0);
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8

9 X_is = theta_vm + randn(N,1);

10 results_IS = exp(mu*theta_vm + sigma^2*theta_vm^2/2 - theta_vm*X_is)...

11 .* (X_is > gamma);

12 X_CMC = randn(N + N_init,1);

13 results_CMC = (X_CMC > gamma);

14

15 clc

16 ell = 1 - normcdf((gamma-mu)/sigma)

17 ell_hat_IS = mean(results_IS)

18 re_hat_IS = std(results_IS) / (sqrt(N)* ell_hat_IS)

19 ell_hat_CMC = mean(results_CMC)

20 re_hat_CMC = std(results_CMC) / (sqrt(N+N_init)* ell_hat_CMC)

The optimization code calls a function which returns an estimate of Ef [exp{κ(θ)−θX} |X > γ]
given the sample. The code for this function is given by

Listing 5.3: Matlab Code

1 function [ val ] = second_moment( theta, mu, sigma, X )

2 kappa_theta = mu * theta + sigma^2 * theta^2 / 2;

3 val = mean(exp(kappa_theta - theta*X));

4 end

An alternative way to choose θ is so that the mean of the tilted density is the point of
interest (e.g., in the case where we wish to estimate P(X > γ) we tilt the density so that
EθX = γ. To do this, we make use of the following result.

Lemma 5.3.3. If X ∼ f with cumulant generating function κ, then provided that it is OK to
exchange differentiation and expectation,

d

dθ
κ(θ) = EθX.

Proof. Observe that

d

dθ
κ(θ) =

d

dθ
logEeθX =

1

eκ(θ)
d

dθ
EeθX

=
1

eκ(θ)
E

d

dθ
eθX =

1

eκ(θ)
EXeθX

= e−κ(θ)

∫
x eθxf(x) dx =

∫
x eθx−κ(θ)f(x) dx = EθX.

Using the above lemma, it is clear we can choose the tilted density to have mean γ by
choosing

θms = θ such that
d

dθ
κ(θ) = γ.
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Example 5.3.4. Recall for a normal density the cumulant generating function is given by
κ(θ) = µθ + σ2θ2/2. Thus,

d

dθ
κ(θ) = µ+ σ2θ ⇒ θms =

γ − µ

σ2
.

Using this, we can then estimate P(X > γ) via importance sampling as follows.

Listing 5.4: Matlab Code

1 gamma = 4; mu = 0; sigma = 1;

2 N = 10^5;

3

4 theta = (gamma - mu ) / sigma^2;

5

6 X_is = mu + sigma^2*theta+ sigma*randn(N,1);

7 results_IS = exp(mu*theta + sigma^2*theta^2/2 - theta*X_is) .* (X_is > gamma);

8 X_CMC = mu + sigma * randn(N,1);

9 results_CMC = (X_CMC > gamma);

10

11 clc

12 ell = 1 - normcdf((gamma-mu)/sigma)

13 ell_hat_IS = mean(results_IS)

14 re_hat_IS = std(results_IS) / (sqrt(N)* ell_hat_IS)

15 ell_hat_CMC = mean(results_CMC)

16 re_hat_CMC = std(results_CMC) / (sqrt(N)* ell_hat_CMC)

A first hint of why this approach works very well can be found in the Chernoff bound.

Lemma 5.3.5 (Chernoff Inequality). If X has cumulant generating function κ, then

P(X > γ) ≤ inf
θ>0

exp {κ(θ)− θγ} .

Proof. We have that, for all θ > 0

P(X > γ) = EI(X > γ) = EeθX−θX
I(X > γ)

≤ e−θγ
EeθXI(X > γ) ≤ e−θγ

EeθX = eκ(θ)−θγ.

The bound then follows by taking the infimum over all θ > 0.

Note that, in general, this bound is minimized by choosing θ such that

d

dθ
[κ(θ)− θγ] = 0 ⇒ d

dθ
κ(θ = γ.


