Exercise 1 (theory) (2 points)

Suppose we have a “black box” which on command can generate the value of a gamma random variable with parameters $\alpha = \frac{3}{2}$ and $\lambda = 1$. Explain how we can use this black box to approximate $E((X + 1)^{-2})$, where X is an exponential random variable with mean 1. Write out your estimator and show that it is unbiased.

Recall that the Gamma distribution with parameters $\alpha, \lambda > 0$ has the density

$$f(x; \alpha, \lambda) = \frac{\lambda^\alpha x^{\alpha-1} e^{-\lambda x}}{\Gamma(\alpha)} I\{x > 0\}.$$

Exercise 2 (theory) (1 + 1 + 2 points)

Consider a random variable $X \sim \text{Exp}(\lambda)$ with $\lambda \in (0, \infty)$. Estimate $P(X > 10)$ by means of importance sampling. Use exponential tilting, i.e., assume that the importance sampling density $g(x)$ belongs to the following parametric family of distributions:

$$\{g(\cdot; \theta) : \theta \in (-\infty, \lambda)\} \quad \text{with} \quad g(x; \theta) = e^{\theta x - \kappa(\theta)} f(x) \quad \text{and} \quad \kappa(\theta) = \log \left(E e^{\theta X} \right).$$

a) Calculate the probability $P(X > 10)$ by hand and write out the importance sampling density $g(x; \theta)$.

b) Find the zero variance density $g^*(x)$.

c) Find the variance minimization parameter θ_{VM} for this problem (by hand).

Exercise 3 (programming) (1 + 2 + 3)

Consider the setting described in Exercise 2. Write a Matlab program to estimate $P(X > 10)$ for $\lambda = \frac{1}{2}$ using

a) standard Monte Carlo

b) importance sampling with θ_{VM} as calculated in Exercise 2

c) importance sampling, estimating θ_{VM} using an initial sample
and compare the estimators by estimating their relative errors. Use a sample size of at least $N = 10^5$ in each case.

Exercise 4 (theory) (2 + 3 points)

Let N be a random variable with values in \mathbb{N} and let Y_1, Y_2, \ldots be i.i.d. random variables which are independent of N. Consider

$$X = \sum_{i=1}^{N} Y_i,$$

i.e., the sum of a random number of random variables.

a) Show that $\mathbb{E}X = \mathbb{E}N \cdot \mathbb{E}Y_1$.

b) Let g_N be the probability generating function of N and let M_Y be the moment generating function of Y_1. Show that the moment generating function of X is

$$M_X(t) = g_N(M_Y(t)).$$

Exercise 5 (theory) (4 points)

Consider a discrete-time stochastic process $\{X_n\}_{n \in \mathbb{N}}$ with values in \mathbb{Z}. Which of the following random variables are stopping times?

(i) $\tau_1 = \inf \{n \geq 0 : X_n + X_0 = 5\}$

(ii) $\tau_2 = 10$

(iii) $\tau_3 = \sup \{n \geq 0 : X_n \in \{1, 2, 3\}\}$

(iv) $\tau_4 = \inf \{n \geq 0 : Y_{\lceil n/2 \rceil} \geq 4\}$

Justify your answer.

Exercise 6 (programming) (2 + 3 points)

Consider an incompetent businessman. His company starts off with 10000 € but makes a loss, on average, each day. More precisely, the profit or loss on the ith day is described by a random variable $Y_i \sim N(-30, 10000)$. If his company can get 11000 € in the bank, he is able to sell his company to a competitor. If his company’s bank account drops below 0 €, he goes bankrupt.

a) Write a Matlab program to estimate the probability that the business man sells his company before he goes bankrupt using standard Monte Carlo and a sample size of at least $N = 10^4$. Estimate the standard deviation of your estimator.

b) The event that the business man sells his company before he goes bankrupt happens quite rarely. Write a Matlab program to estimate this probability using importance sampling. Estimate the standard deviation of your estimator and compare it to your results from a).

Please don’t forget to register for the “Vorleistung” in the university portal: http://campusonline.uni-ulm.de