Exercise sheet 3 (total – 16 points) till November 15, 2017

Exercise 3-1 (3 points)

Prove that if \(\{X(t), t \in \mathbb{R}_+\} \) is a mean square continuous process with càdlàg trajectories then the process \(Y(t) = \int_0^t X(s) \, ds, t \geq 0 \) is mean square differentiable and its derivative in mean square sense \(Y'(t) = X(t), t \in \mathbb{R}_+ \). Find mean value and covariance functions of \(Y \).

Exercise 3-2 (3 points)

A radiation measuring device accumulates radiation with the rate that equals \(a \) Röntgen per hour, right up to the failing moment. Let \(X(t) \) be the reading at point of time \(t \geq 0 \). Find the mean and covariance functions for the process \(X \) if \(X(0) = 0 \), the failing moment has distribution function \(F \), and after the failure the measuring device is fixed (a) at zero point; (b) at the last reading.

Exercise 3-3 (3 points)

Let \(\{X(t), t \geq 0\} \) be a stochastic process with independent increments for all \(t \in \mathbb{R}_+ \) \(\mathbb{E}|X(t)|^2 < \infty \). Prove that its covariance function is equal to \(K_X(t, s) = F(t \wedge s), t, s \in \mathbb{R}_+ \), where \(F \) is some non-decreasing function.

Exercise 3-4 (4 points)

Let \(\{X(t), t \in \mathbb{R}_+\} \) be a real-valued process with stationary and independent increments, and \(\text{Var}(X(1) - X(0)) > 0 \). Prove that the processes \(X \) and \(Y(t) := X(t+1) - X(t), t \geq 0 \) are mean square continuous but not mean square differentiable.

Hint: You may use the solution of Cauchy’s functional equation \(f(x+y) = f(x) + f(y) \). If \(f \) is bounded on any interval then the solution has a form \(f(x) = cx \), where \(c \in \mathbb{R} \).

Exercise 3-5 (3 points)

Let the mean and covariance functions of the process \(X = \{X(t), t \geq 0\} \) be equal to \(\mu_X(t) = \frac{t}{1+t}; t \geq 0, K_X(t, s) = e^{-|t-s|^2}, t, s \geq 0 \). Prove that \(X \) is mean square differentiable. Let \(X' \) be its derivative defined in \(L_2 \) sense. Please find:

1. (1 point) its variogram \(\gamma(t, s), t, s \geq 0 \).

2. (2 points) \(\mathbb{E}[X(t)X'(s)], t, s \geq 0 \).