Stochastics II WS 2017/2018 November 7, 2017

Exercise sheet 3 (total -16 points) till November 15, 2017

Exercise 3-1 (3 points)

Prove that if $\{X(t), t \in \mathbb{R}_+\}$ is a mean square continuous process with càdlàg trajectories then the process $Y(t) = \int_0^t X(s) ds, t \ge 0$ is mean square differentiable and its derivative in mean square sense $Y'(t) = X(t), t \in \mathbb{R}_+$. Find mean value and covariance functions of Y.

Exercise 3-2 (3 points)

A radiation measuring device accumulates radiation with the rate that equals a Röntgen per hour, right up to the failing moment. Let X(t) be the reading at point of time $t \ge 0$. Find the mean and covariance functions for the process X if X(0) = 0, the failing moment has distribution function F, and after the failure the measuring device is fixed (a) at zero point; (b) at the last reading.

Exercise 3-3 (3 points)

Let $\{X(t), t \geq 0\}$ be a stochastic process with independent increments for all $t \in \mathbb{R}_+$ $\mathbf{E}|X(t)|^2 < \infty$. Prove that its covariance function is equal to $K_X(t,s) = F(t \wedge s), t, s \in \mathbb{R}_+$, where F is some non-decreasing function.

Exercise 3-4 (4 points)

Let $\{X(t), t \in \mathbb{R}_+\}$ be a real-valued process with stationary and independent increments, and $\operatorname{Var}(X(1) - X(0)) > 0$. Prove that the processes X and $Y(t) := X(t+1) - X(t), t \ge 0$ are mean square continuous but not mean square differentiable.

Hint: You may use the solution of Cauchy's functional equation f(x+y) = f(x)+f(y). If f is bounded on any interval then the solution has a form f(x) = cx, where $c \in \mathbb{R}$.

Exercise 3-5 (3 points)

Let the mean and covariance functions of the process $X = \{X(t), t \ge 0\}$ be equal to $\mu_X(t) = \frac{t}{1+t}, t \ge 0, K_X(t,s) = e^{-(t-s)^2}, t, s \ge 0$. Prove that X is mean square differentiable. Let X' be its derivative defined in L_2 sense. Please find:

- 1. (1 points) its variaogram $\gamma(t,s), t, s \ge 0$.
- 2. (2 points) $\mathbf{E}[X(t)X'(s)], t, s \ge 0.$