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Abstract

Many methods are known to compute the intrinsic volumes of a set given in a
digital image. However, most of these methods have the disadvantage that they are
not multigrid convergent. This means that the computed values do not converge to
the true values for increasing resolution of the digital image. One exception is the
volume which can easily be estimated by counting pixels and the Euler characteristic
for which Kiderlen [14] presented a multigrid convergent estimator for polyconvex
sets with some regularity assumptions. We propose two methods for the computation
of all d+1 intrinsic volumes which are multigrid convergent for UPR-sets under mild
regularity assumptions. The UPR-class contains sets which can be represented as a
finite union of compact sets with positive reach and include polyconvex sets. We
provide numerical results and compare this approach with other methods known in
the literature.

2010 Mathematics Subject Classification: Primary 65D18; Secondary 68U05, 52A38
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1 Introduction

The intrinsic volumes are functionals which describe the global characteristics of a set, for
example volume, surface area or Euler characteristic. They are used in various contexts,
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for example in medicine to classify tissues (see [3]), in cosmology to characterize the
galaxy distribution (see [13]) or in material science to analyse foams and other porous
media (see [9] and [22]).

In the literature, various methods are known to compute the intrinsic volumes of a
polyconvex set from a digital image. For example, the method in [20] is based on a dis-
cretized Crofton formula while the approach in [24] is based on the principal kinematic
formula. In [19] an asymptotically unbiased estimator for the intrinsic volume densi-
ties of a stationary random closed set Ξ is presented and numerical results are given
for Boolean models in the plane. The surface area of a three-dimensional stationary
and isotropic Boolean model is estimated in an asymptotically unbiased way in [21].
Attempts have also been made to estimate tensor-valued Minkowski functionals, see [2]
for an introduction into the subject as well as numerical results. However, most of the
methods to compute the intrinsic volumes have in common that they are not convergent,
see e.g. [15] for error bounds and an improvement of the method in [20]. To make the
term “convergence” more precise we define the notion of multigrid convergence following
[18]. Let M be a family of sets in Rd and let {Kn} be a sequence of discretizations of
K ∈ M on grids with mesh size tn ↘ 0, n → ∞. Let φ be some real valued functional
defined on M. An estimator (functional) bφ : M→ R is called multigrid convergent to
φ for the class M and the chosen digitization model if

lim
n→∞

bφ (Kn) = φ (K) , K ∈M.

Already C.F. Gauss, the Princeps mathematicorum, knew that the area of a disc can
be estimated multigrid convergently by counting the points of a square grid which lie
inside this disc, see [7, pp. 269–291]. But this is not only true for discs. It is well-known
that the intuitive approach of pixel counting yields a multigrid convergent estimator for
the volume. Hence we focus on estimating the lower dimensional intrinsic volumes as
for these it is not obvious how they can be estimated multigrid convergently for a rich
family of sets.

There are algorithms in the literature which are proven to be multigrid convergent for
some of the Minkowski functionals for a class of sets satisfying some restrictive conditions.
For the surface area there is an approach by Coeurjolly et al. in [4]. It is based on the
estimation of surface normals and discrete integration of the surface normal vector field.
They prove multigrid convergence for Jordan surfaces in R3 with continuous derivatives.
Recently, Kiderlen [14] proposed a multigrid convergent estimator of the Euler number
for two-dimensional polyconvex sets with some regularity assumptions and the Gauss
digitization. He also detected an error in [16]. There it was claimed in Section 4.4 that
the conditions which ensure multigrid convergence are fulfilled for any two-dimensional
convex set K without lower dimensional parts. For example, the triangle in Figure 1 has
no lower dimensional parts but it does not fulfil these conditions because the digitization
consists of two separated objects for any grid resolution.

We shall choose the family of finite unions of compact sets with positive reach for
M and denote this class by UPR. We suggest a modification of the method in [16] to
estimate all d+1 intrinsic volumes multigrid convergently. It is based on a generalization
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Figure 1: Counterexample to the statement in Section 4.4 of [16]. In their notation,
K is the solid gray triangle and KF(Gmax) is shaded in red. Hence, Ir

�
KF(Gmax), x

�
=

J
�
KF(Gmax) ∩Br (x) , q1, x

�
= 1 6= 0 which means that the method in [16] is not multigrid

convergent for any convex body without lower dimensional parts.

of Wills functional and a polygonal approximation with arbitrarily large polygons, i.e.
it is not a local approach based on pixel configurations.

The paper is organized as follows. First, we shortly recall some basic definitions in
Section 2. Then we prove the main result in Theorem 2, which shows that, if a UPR-set
K is approximated by UPR-sets Kn in a suitable way, the intrinsic volumes Vj (Kn)
converge to the intrinsic volumes Vj (K). In the last part of Section 2, we propose a
method to compute the intrinsic volumes which is based on a generalization of Wills
functional and Theorem 2. In Section 3 we give details on how to find an approximation
of the unknown set K if only a digital image of K is known. The section is split into three
parts dealing with polyconvex sets, sets with positive reach, and UPR-sets, respectively.
In Section 4 we provide various test cases as well as numerical results and a comparison
with other methods.

2 Intrinsic volumes and their approximation

It is well known (see e.g. [23]) that there exist non-negative functionals V0, . . . , Vd, called
intrinsic volumes, on the family of d-dimensional convex bodies (i.e. non-empty compact
convex sets) which satisfy Steiner’s formula

Vd (K ⊕Br (o)) =
dX
j=0

rd−jκd−jVj (K) , r > 0 (1)

where Vd denotes the Lebesgue measure, Br (o) is the ball of radius r centered at the
origin o and κj is the volume of the unit ball in Rj . These functionals can be extended
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additively in a unique way to polyconvex sets, i.e. finite unions of convex bodies via the
inclusion-exclusion-formula

Vj

 
m[
i=1

Ki

!
=

mX
k=1

(−1)k+1
X

1≤i1<...<ik≤m
Vj (Ki1 ∩ . . . ∩Kik) (2)

for any j = 0, . . . , d and for any convex bodies K1, . . . ,Km. Some of these functionals
have a nice geometric interpretation. Vd is the usual d-dimensional volume, 2Vd−1 is the
surface area, and V0 is the Euler characteristic which describes the porosity of a set. The
intrinsic volumes are closely related to the Minkowski functionals Wj by the relation

Wj (K) =
κj�
d
j

�Vd−j
for j = 0, . . . , d.

The reach of a compact subset K of Rd, denoted by reach (K), is the largest ε such
that all points in an ε-neighbourhood of K have a unique metric projection in K. A set
K has positive reach if reach (K) > 0. See [6] for details on sets with positive reach and
Figure 2 for examples. Convex bodies can be characterized as sets with infinite reach and
are, as well as polyconvex sets, included in the family UPR of finite unions of compact
sets with positive reach. The intrinsic volumes are well-defined for sets with positive

(a) A set with reach
zero.

(b) A set with posi-
tive, but finite reach.

(c) A set with infinite
reach.

Figure 2: Examples for sets with reach zero, positive and infinite reach, respectively.

reach and Steiner’s formula (1) does also hold under the restriction that r < reach (K).
The inclusion-exclusion-formula (2) is also true for UPR-sets.

The Hausdorff distance ρ of two nonempty compact sets A and B is defined as

ρ (A,B) = inf {α ≥ 0 : A ⊂ B ⊕Bα (o) and B ⊂ A⊕Bα (o)} .

Denote the Euclidean distance between two points x, y ∈ Rd by d (x, y) and the distance
between a point x and a compact set A ⊂ Rd by d (x,A) = inf {d (x, a) : a ∈ A}. Then
it holds that

ρ (A,B) = sup
x∈Rd

|d (x,A)− d (x,B)| (3)

for compacts A,B ⊂ Rd, see [5, Remark 4.14].
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2.1 Multigrid convergent computation of the intrinsic volumes based
on the inclusion-exclusion-formula

In this section we show how multigrid convergence can be achieved for the computation
of the intrinsic volumes via the inclusion-exclusion-formula (2). The following lemma is
needed for the proof of Theorem 2.

Lemma 1. Let K1, . . . ,Km ⊂ Rd be compact sets. Let {Kn
i }n∈N be a sequence of

compact approximations converging to Ki in Hausdorff distance, such that Ki ⊂ Kn
i for

all n ∈ N and for i = 1, . . . ,m. Then it holds that

ρ

 
m\
i=1

Kn
i ,

m\
i=1

Ki

!
→ 0, n→∞.

The present short proof (due to J. Kampf, personal communication) is more elegant
than the original proof by the authors.

Proof. Assume that
Tm
i=1K

n
i does not converge to

Tm
i=1Ki. Then there is an ε > 0 such

that

ρ

 
m\
i=1

Kn
i ,

m\
i=1

Ki

!
> ε

for all n large enough. Furthermore, there is a ball Bs (o) such that
Tm
i=1K

n
i ⊂ Bs (o)

for all n. By Blaschke’s selection theorem (see Theorem 12.3.3 in [23]), there exists a
sequence {nk} with nk → ∞ as k → ∞ such that

Tm
i=1K

nk
i converges towards a limit

set L for k → ∞. This implies that ρ (L,
Tm
i=1K

nk
i ) > ε for sufficiently large k. FromTm

i=1Ki ⊂
Tm
i=1K

nk
i it follows that

Tm
i=1Ki ⊂ L but

Tm
i=1Ki 6= L. Then there exists

a point x ∈ L\
Tm
i=1Ki. In particular, there is a j ∈ {1, . . . ,m} with x /∈ Kj and

therefore there exists a δ > 0 with x /∈ Kj ⊕ Bδ (o). Hence, x /∈ Knk
j ⊕ Bδ/2 (o) and

x /∈ (
Tm
i=1K

nk
i )⊕Bδ/2 (o) for all k large enough. This means that x /∈ L. We arrived at

a contradiction.

The following theorem ensures the convergence of the intrinsic volumes of an UPR-
approximation Kn of an UPR-set K towards the intrinsic volumes of the original set K
whenever the approximation Kn converges to K in Hausdorff distance. No conditions
like “no-touching” or “no lower dimensional parts” are required and the convergence is
guaranteed not only for polyconvex sets but also for UPR-sets.

Theorem 2. Let K =
Sm
i=1Ki ⊂ Rd be a UPR-set consisting of sets Ki with positive

reach. Let {Kn}n∈N with Kn =
Sm
i=1K

n
i ⊂ Rd be a sequence of UPR-approximations of

K such that the following three conditions are fulfilled:

• min
i=1,...,m

inf
n∈N

reach (Kn
i ) > 0

• Ki ⊂ Kn
i for all i = 1, . . . ,m and all n ∈ N

• ρ (Kn
i ,Ki)→ 0 as n→∞ for all i = 1, . . . ,m
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Then it holds that
Vj (Kn)→ Vj (K) , n→∞ (4)

for all j = 0, . . . , d.

Proof. By the inclusion-exclusion-formula it holds that

Vj (Kn) =
mX
i=1

(−1)i+1
X

1≤k1<...<ki≤m
Vj
�
Kn
k1 ∩ . . . ∩K

n
ki

�
. (5)

Lemma 1 implies that

ρ
�
Kn
k1 ∩ . . . ∩K

n
ki ,Kk1 ∩ . . . ∩Kki

�
→ 0 as n→∞.

By (3), this is equivalent to

d
�
x,Kn

k1 ∩ . . . ∩K
n
ki

�
→ d (x,Kk1 ∩ . . . ∩Kki)

uniformly for all x ∈ Rd. Furthermore, it holds that

reach
�
Kn
k1 ∩ . . . ∩K

n
ki

�
≥ ε = min

i=1,...,m
inf
n∈N

reach (Kn
i ) .

Theorem 5.9 in [5] implies that ε ≤ reach (Kk1 ∩ . . . ∩Kki) and that

Vj
�
Kn
k1 ∩ . . . ∩K

n
ki

�
→ Vj (Kk1 ∩ . . . ∩Kki) (6)

as n→∞. Therefore the convergence in (4) follows from (5) and (6).

Now that the theoretical foundations are laid, a practical problem is how to find a
suitable approximation Kn of K and how to compute the intrinsic volumes Vj (Kn). The
latter question is answered in the next subsection with an approach based on Wills-type
functionals. The first question is postponed to Section 3.

2.2 Multigrid convergent computation of the intrinsic volumes based
on Wills-type functionals

For convex bodies K, Wills functional W (K) (first introduced in [26]) is defined by

W (K) =
dX
j=0

Vj (K) .

It can be written as an integral

W (K) =
Z
Rd

exp
�
−πd (x,K)2

�
dx. (7)

As Vitale showed in [25], equation (7) can be proved easily with the help of Steiner’s
formula.

6



On the right hand side of equation (7), the integrand is the tail function of a Weibull-
distributed random variable with parameters (2, π). One possibility to generalise this
formula is to allow for other distributions. Let F denote the tail function of some random
variable ξ with Eξd <∞. For any convex body K it holds thatZ

Rd
F (d (x,K)) dx =

dX
j=0

Eξd−jκd−jVj (K) .

Another generalisation was given recently by Kampf in [11]. For any convex body K
and any integrable function G : [0,∞)→ R with y 7→ yd−1G (y) integrable, it holds thatZ

Rd
G (d (x,K)) dx =

dX
j=0

cjVj (K) (8)

where the coefficients cj , j = 0, . . . , d, are given by

cj =

(
(d− j)κd−j

R∞
0 xd−j−1G (x) dx j = 0, . . . , d− 1,

G (0) j = d.

If K =
Sm
i=1Ki is a UPR-set and the support of the function G is a subset of the interval�

0, min
i=1,...,m

reach (Ki)

�
, we get by the inclusion-exclusion formula (2) and equation (8)

that

dX
j=0

cjVj (K) =
mX
k=1

(−1)k+1
X

1≤i1<...<ik≤m

Z
Rd
G (d (x,Ki1 ∩ . . . ,∩Kik)) dx.

As Guderlei et al. point out in [8], Hadwiger’s characterization theorem can be
applied to d + 1 functionals F0, . . . , Fd to obtain a system of d + 1 linear equations of
the type

Fi (K) =
dX
j=0

αijVj (K) , i = 0, . . . , d (9)

for any convex body K with coefficients αij ∈ R depending on the functional Fi. The
generalisation to UPR-sets by the inclusion-exclusion-formula is straightforward. If the
functionals F0, . . . , Fd are chosen in such a way that the matrix (αij)i,j=0,...d is invertible,
we can get the intrinsic volumes of K as the solution of (9).

We use this idea together with the generalized Wills functional to construct a multi-
grid convergent estimator for the intrinsic volumes under conditions which are slightly
different from those in Theorem 2. Namely, it is not any longer required that Ki ⊂ Kn

i

for all i = 1, . . . ,m and all n ∈ N. But on the other hand, the function G in (8) has to
fulfill certain conditions. The differences between Theorem 2 and Proposition 3 lead to
different error rates as can be seen from the examples in Section 4.
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Proposition 3. Let K =
Sm
i=1Ki ⊂ Rd be a UPR-set consisting of sets Ki with positive

reach. Let {Kn}n∈N with Kn =
Sm
i=1K

n
i ⊂ Rd be a sequence of UPR-approximations of

K such that the following two conditions are fulfilled:

• r = min
i=1,...,m

§
inf
n∈N

reach (Kn
i ) , reach (Ki)

ª
> 0

• ρ (Kn
i ,Ki)→ 0 as n→∞ for all i = 1, . . . ,m.

Let G : [0,∞) → R be a continuous function with compact supp (G) ⊂ [0, r). Then it
holds that

lim
n→∞

Z
Rd
G (d (x,Kn)) dx =

Z
Rd
G (d (x,K)) dx. (10)

Proof. As ρ (Kn
i ,Ki) → 0 for all i = 1, . . . ,m, we have ρ (Kn,K) → 0 by [23, Theorem

12.3.5]. By (3), this implies that d (x,Kn) → d (x,K) uniformly in x. The continuity
of G implies that G (d (x,Kn)) → G (d (x,K)) for all x ∈ Rd. As G is continuous and
supp (G) ⊂ [0, a] for some a < r, G is bounded, i.e. there exists a constant c0 > 0 with
|G (y)| ≤ c0 for all y ∈ [0,∞). The compactness of K and Kn and ρ (Kn,K) → 0
imply that there exists a c > 0 such that K,Kn ⊂ Bc (o) for all n ∈ N. Hence,
supp (G (d (·,K))) ⊂ Bc+a (o), supp (G (d (·,Kn))) ⊂ Bc+a (o) and����ZRd

G (d (x,Kn)) dx

���� ≤ Z
Bc+a(o)

|G (d (x,Kn))| dx ≤ c0Vd (Bc+a (o))

for all n ∈ N. By Lebesgue’s theorem, the limit and the integration in (10) can be
interchanged and the proof is complete.

Under the conditions of Proposition 3, for d+1 pairwise different numbers r0, . . . , rd >
0 we get the following system of linear equations:

lim
n→∞

0BBBBBB@
mP
k=1

(−1)k+1 P
1≤i1<...<ik≤m

R
Rd

G
�
r0d

�
x,Kn

i1
∩ . . . ∩Kn

ik

��
dx

...
mP
k=1

(−1)k+1 P
1≤i1<...<ik≤m

R
Rd

G
�
rdd

�
x,Kn

i1
∩ . . . ∩Kn

ik

��
dx

1CCCCCCA
=

�
r−d0 c0 . . . r00cd

...
...

r−dd c0 . . . r0dcd

��
V0 (K)

...
Vd (K)

�
(11)

Since the numbers r0, . . . , rd are chosen pairwise different, the matrix of coefficients�
rj−di cj

�
i,j=0,...,d

is regular and (11) can be solved easily to yield the vector of intrinsic

volumes. Hence we can compute the intrinsic volumes Vj (K) if we can compute the
integrals on the left side of (11) exactly. Therefore the function G and the approximating
sequence Kn have to be chosen in a suitable way such that the above conditions on G
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Figure 3: Partition of the Euclidean plane with respect to a given polygon P .

and Kn are fulfilled. For example, we can choose the piecewise linear function G (x) =
(b− ax)1[0,b/a] (x) for some a, b > 0 such that

b/a < r = min
i=1,...,m

§
inf
n∈N

reach (Kn
i ) , reach (Ki)

ª
.

It fulfills the conditions of Proposition 3. If the approximating sets Kn
i are polytopes,

the sets Kn
i1
∩ . . .∩Kin

k
appearing in the left hand side of (11) are also polytopes. Hence,

each integral in the left hand side of (11) can be computed by partitioning the domain of
integration as follows. Let Fj (P ) denote the set of j-dimensional faces of a polytope P
and π (x) the metric projection of a point x ∈ Rd onto P . Then, for any j ∈ {0, . . . , d},
it holds thatZ

Rd
G (rjd (x, P )) dx =

dX
i=0

X
F∈Fi(P )

Z
π−1(relint(F ))

G (rjd (x, P )) dx, (12)

where relint (F ) denotes the relative interior of the face F , i.e. the interior of F with
respect to its affine hull. Figure 3 gives a sketch of the situation in the plane. The
integrals on the right hand side of (12) can be computed easily by computing the (j-
dimensional) volume of the faces and changing to spherical coordinates if necessary.
The details on how to choose the approximation Kn appropriately are given in the next
section.

3 How to approximate the set K

In view of Theorem 2 and Proposition 3, a practical problem is to find a sequence
of UPR-sets Kn approximating the set K and satisfying the conditions of Theorem 2
and Proposition 3, respectively. This will be addressed for polyconvex sets in Section
3.1, for sets with positive reach in Section 3.2, and for general UPR-sets in Section 3.3,
respectively. Throughout this section, we consider the case d = 2.
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Generally, methods for the computation of intrinsic volumes can be divided into two
classes. If the approximation Kn is given by a union of small construction bricks, e.g.
all 0- to d-dimensional facets of cubes of fixed size or circles of fixed size, it is called a
local approach, see for example the approach by Ohser and Mücklich in [20]. If this is
not the case we speak of a global approach. The conditions in Theorem 2 are certainly
not fulfilled for a local approach. In that case the number m of components Kn

i would
grow to infinity as n grows which is a contradiction to the assumption that the number
of components in K equals the number of components in the approximation for each
step. Therefore we need a global approach which will be presented in the following.

3.1 Algorithm for polyconvex sets

Let K =
Sm
i=1Ki be a polyconvex set with convex components Ki. If only a digital

image of K is known, an approximation of K which fulfils the conditions of Theorem 2
can be constructed as follows.

• Let Kn be a digitization of K on a square grid with mesh size tn ↘ 0 (n→∞)
such that ρ (Kn,K) ≤ ctn where the constant c is independent of n. In case of the
Gauss digitization, sometimes also called hit-or-miss digitization Kn = K ∩ tnZ2,
this implies an additional assumption on the set K, namely that K is topologically
regular, i.e. the closure of the interior of K equals K. Otherwise the Hausdorff
distance between K and Kn can be arbitrarily large or Kn can even be empty,
e.g. if K is a line segment. Whereas for the outer Jordan digitization Kn =�
K ⊕

�
− tn

2 ,
tn
2

�2� ∩ tnZ2, it holds that ρ (K,Kn) ≤
√

2tn by definition.

• The union of pixels Kn can be transformed into a simple but possibly non-convex
polygon K

n
with the help of digital straight segments (DSS). In order to do this

the boundary of Kn is traced and divided into several DSS parts which are line
segments of maximal length that are close to the boundary. It means that the
boundary lies in a neighbourhood of the line segment of radius tn. The concept of
digital straight segments is described in detail e.g. in [17] where an algorithm for
their construction is given. The representation of the boundary in terms of digital
straight segments is not unique. It may vary depending on the starting point and
the orientation of the construction.

• For high resolution of the discretization, each of the finitely many concavity points
on the boundary of K will have an associate concave vertex on the boundary of
the polygon K

n
. Because of the construction of the set K

n
, the distance between

these two points is at most (c+ 1) tn. The polygon K
n

can be decomposed into
finitely many (say, m) convex components K

n
i . The decomposition of a non-convex

polygon in convex components is a non-trivial problem and the best solution in
term of minimizing the number of convex components is not an easy task, see [12].
Anyhow we do not need a minimal convex decomposition, but any algorithm can
be used.
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• The sets K
n
i fulfill the conditions of Proposition 3:

– The sets K
n
i are convex and hence have infinite reach.

– It holds that

ρ
�
K
n
i ,Ki

�
≤ ρ

�
K
n
i ,K

n
i

�
+ ρ (Kn

i ,Ki)

≤ tn + ctn = (c+ 1) tn ↘ 0 as n→∞.

• The sets K
n
i do not fulfill the conditions of Theorem 2 because it is not guaranteed

that Ki ⊂ K
n
i for all i = 1, . . . ,m. Hence, define fKn

i = K
n
i ⊕B(c+1)tn (o). The setfKn =

Sm
i=1

fKn
i is an approximation of K satisfying the assumptions of Theorem

2:

– The sets fKn
i are convex and hence have infinite reach.

– It holds that Ki ⊂ fKn
i because of the dilation in the definition of fKn

i .

– It holds that

ρ
�fKn

i ,Ki

�
≤ ρ

�fKn
i ,K

n
i

�
+ ρ

�
K
n
i ,K

n
i

�
+ ρ (Kn

i ,Ki)

≤ (c+ 1) tn + tn + ctn = 2 (c+ 1) tn ↘ 0 as n→∞. (13)

To summarize, we describe the multigrid convergent algorithm to compute the in-
trinsic volumes of polyconvex sets step by step.

• Extract the boundary of the black phase in the image. The result consists of
several 4-connected sequences of pixels, one sequence per object or hole (collection
of white pixels surrounded by black pixels) in the image.

• Compute the digital straight line segments (DSS) along the boundaries. They
make up several (possibly non-convex) polygons.

• Find the holes in the figure by finding closed DSS contours which are enclosed by
another closed DSS contour.

• Resolve the holes by cutting the outer polygon which has a hole into two parts or
more if it has several holes.

• Decompose the polygons into convex components by cutting off convex corners.
This method does not yield the minimum number of convex parts but is consider-
ably easier than computing a minimal decomposition.

• Compute the intrinsic volumes of all polygons and apply Proposition 3 to get an
approximation for the intrinsic volumes of K.

• In order to apply Theorem 2, dilate the convex polygons by a ball whose radius
depends on the chosen digitization model but is independent of K.
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• Compute the intrinsic volumes of all dilated polygons. The area of a dilated
polygon can be computed by Steiner’s formula (1), the boundary length of a dilated
polygon is given by the boundary length of the polygon plus the perimeter of a
circle with the dilation radius, and the Euler number does not change. By means of
the inclusion-exclusion formula we get an approximation for the intrinsic volumes
of K.

3.2 Algorithm for sets with positive reach

If K has positive reach, the algorithm of Section 3.1 cannot be applied directly because
the number of convex components in the approximating sequence will grow to infinity,
and thus the conditions of Theorem 2 are violated. But by first applying the algorithm of
Section 3.1 and then post-processing its results we achieve multigrid convergence for sets
with positive reach. We consider only the approximation Kn in the sense of Theorem
2 here. The differences in the case of Proposition 3 are only of notational but not of
conceptual nature.

• Let K be a compact set with positive reach and let fKn =
Smn
i=1

fKn
i be the result of

the algorithm described in the previous section. Note that the number of convex
components mn grows to infinity if K has concavities and that K

n
itself might

have concave corners.

• Let 0 < ε < reach (K) /2 and define õKn =
�fKn ⊕Bε (o)

�
	 Bε (o). This means

that concave boundary points of fKn get smoothed, see Figure 4(a) for an example.
Hence õKn has positive reach. To be more precise, reach

�õKn
�

= ε if reach
�fKn

�
=

0, and reach
�õKn

�
= reach

�fKn
�

otherwise.

• The following Lemma shows that all conditions of Theorem 2 are fulfilled (with
m = 1).

Lemma 4. With the notation above, it holds that

– reach
�õKn

�
≥ ε for all n ∈ N,

– K ⊂ õKn for all n ∈ N,

– ρ
�
K,õKn

�
→ 0 as n→∞.

Proof. The first two statements are obvious. We only prove that ρ
�
K,õKn

�
→ 0.

It holds that
ρ
�
K,õKn

�
≤ ρ

�
K,fKn

�
+ ρ

�fKn,õKn
�
.

By (13), we have ρ
�
K,fKn

�
→ 0. Hence, it remains to prove that ρ

�fKn,õKn
�
→ 0

as n→∞. We have fKn ⊂ õKn and õKn differs from fKn only in concave boundary
points of fKn, see Figure 4(a). Hence

ρ
�fKn,õKn

�
= inf

¦
r > 0 : õKn ⊂ fKn ⊕Br (o)

©
= max

concave
corners i

{d (Bn,i, Cn,i)}

12



where d (Bn,i, Cn,i) denotes the distance between the points Bn,i and Cn,i, see
Figure 4(b). Let αn,i denote the angle in the i-th concavity of the boundary offKn and let βn,i = (π − αn,i) /2. Then it holds that d (An,i, Bn,i) = ε/ cos (βn,i)− ε
and hence d (Bn,i, Cn,i) = ε (1− cos (βn,i)). For increasing n, fKn does not only
converge to K in Hausdorff distance, but also the approximation of the boundary
of K by DSS segments gets better. This means that the angles between the linear
segments of the boundary of fKn which correspond to a concavity of K with locally
positive reach converge to π for n → ∞. Hence, βn,i → 0 for all i and therefore

ε (1− cos (βn,i)) → 0 for all concave boundary points of fKn. This completes the
proof.

Applying Theorem 2 we get Vj
�õKn

�
→ Vj (K) for n→∞.

(a) Example of a polygon ÜKn

(shaded in grey). Compared to ÜKn,ôKn contains additionally the grey
hatched part.

(b) This figure illustrates the defini-
tion of the angles αn,i and βn,i as well
as the points An,i, Bn,i, and Cn,i.

Figure 4: Example for the set fKn and the construction of the set õKn.

• In R2, Vj
�õKn

�
can be computed with the help of fKn and some geometry. Figure

4(b) illustrates the differences between fKn and õKn in a concave boundary point
of fKn. The intrinsic volumes of õKn can be computed as follows:

– The Euler characteristic does not change, i.e.

V0
�õKn

�
= V0

�fKn
�

(14)

13



because the dilation / erosion radius to smooth the concavity of fKn is small.

– The boundary length of õKn is smaller than the boundary length of fKn. It
holds that

V1
�õKn

�
= V1

�fKn
�
− ε

X
concave
corners i

(tan (βn,i)− βn,i) . (15)

– The area of õKn is greater than the area of fKn, because the grey hatched parts
in Figure 4(b) are added, i.e.

V2
�õKn

�
= V2

�fKn
�

+ ε2
X

concave
corners i

(tan (βn,i)− βn,i) , (16)

To summarize, we first apply the algorithm of Section 3.1 to get Vj
�fKn

�
and then

compute Vj
�õKn

�
using the correction terms given in (15) and (16). This enables the

multigrid convergent computation of Vj (K), j = 0, 1, 2, for sets K with positive reach.

3.3 Algorithm for UPR-sets

The approach to compute the intrinsic volumes of a general UPR-set is basically the same
as described in Sections 3.1 and 3.2. But the difficulty in dealing with UPR-sets K is
that two kinds of concavities might occur, those with (local) reach zero and those with
(locally) positive reach. In the following, we show how to distinguish the two types of
concavities of K if only the digitization Kn is known.

• Let K be a UPR-set and let fKn =
Smn
i=1

fKn
i be the result of the algorithm in Section

3.1.

• Denote the outer (with respect to fKn) angle of the i-th concavity point on the
boundary of fKn by αn,i (see Figure 4(b)) and let 0 ≤ γ ≤ π.

• If αn,i ≤ π − γ, we assume that the current point on the boundary of fKn corre-
sponds to a boundary point of K which has local reach zero. Therefore this point
of fKn will not be smoothed.

• If π − γ < αn,i < π, we assume that the current point on the boundary of fKn

corresponds to a point on the boundary of K with (locally) positive reach. We
smooth this boundary point of fKn as described in the previous section. For each
concave boundary point of fKn we can decide separately if it is smoothed or not
because the dilation of fKn is not carried out in practice. Instead, the effects of
this dilation on the intrinsic volumes are computed with the help of (14)–(16).

• Note that αn,i ≥ π cannot occur because fKn consists of dilated polygons and hence
doesn’t have convex vertices.
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Of course, for fixed resolution, there are many examples for sets where the above heuristic
goes wrong. But for concave boundary points of K with locally positive reach the angles
αn,i converge to π for n → ∞. Hence, for increasing resolution, concavities of K with
locally positive reach can be distinguished from those with local reach zero.

Remark 5. All three slightly different versions of the algorithm to construct an approxi-
mation of K and compute its intrinsic volumes given in this and the previous two sections
can be combined into one depending on the parameter γ.

• If it is known or assumed that K is polyconvex, choose γ = 0. No concavity points
on the boundary of fKn will be smoothed.

• If it is known or assumed that K has positive reach, choose γ = π. All concave
boundary points of fKn will be smoothed.

• If it is known that K is truly a UPR-set (i.e. it has reach zero but is not polyconvex)
or if nothing can be assumed about the shape of K and therefore the most general
case has to be taken, choose some 0 < γ < π. In our experiments, γ = 0.01 turned
out to be a reasonable choice. Depending on γ, a concavity point on the boundary
of fKn will possibly be smoothed.

4 Numerical results

In this section we give numerical results for various two-dimensional test cases and pro-
vide diagrams showing the convergence of our method in comparison to other methods.
The test cases are grouped into

• convex test sets: disc, square, square rotated by π/8, square rotated by π/4, see
Figure 5(a),

• polyconvex test sets: L-shape, intersecting discs, frame, touching discs, see Figure
5(b),

• test sets with positive reach: halfmoon, ring, see Figure 5(c),

• UPR test sets: butterfly, infinity, see Figure 5(d).

The radius of the circular figures and the sidelength of the rectangular figures, re-
spectively, is fixed to one and the resolution t−1n ranges from 10 to the maximum possible
(about 3,000 to 4,000, depending on the test set) with 4GB of RAM.

For all test cases the Euler characteristic V0 (K) is computed without error. How-
ever, if the set K has very small holes with incircle radius less than 2tn, the holes are
not present in the approximating set Kn and therefore the Euler characteristic is not
computed exactly. As far as we know, other algorithms to compute the Euler charac-
teristic have similar problems with very small holes, so it is reasonable to say that the
resolution of the image is not good enough in these cases.
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(a) Convex test sets: disc, square, square rotated by π/8,
square rotated by π/4, f.l.t.r.

(b) Polyconvex test sets: L-shape, intersecting discs, frame, touching discs, f.l.t.r.

(c) Test sets with posi-
tive reach: halfmoon, ring,
f.l.t.r.

(d) UPR test sets: butterfly, infinity,
f.l.t.r.

Figure 5: Test sets

The results for the boundary length depend on the chosen variant of the algorithm,
i.e. the variant based on Theorem 2 and the one based on Proposition 3, respectively.
This is exemplified in Figure 6(a). We plotted the moving average of 21 values, i.e. for
each resolution t−1n , the mean of the relative errors at resolutions ranging from t−1n −10 up
to t−1n +10 is shown instead of the relative error at the resolution t−1n . The solid (dashed)
lines show the relative errors of V1 for the algorithm based on Theorem 2 (Proposition
3). For all four convex test sets the computed boundary length is too large for the first
variant (solid lines) because the original set K is a subset of the approximation Kn and
the intrinsic volumes are monotone on the family of convex sets. But for the second
variant (dashed lines) the dilation step in Section 3.1 can be omitted because it is not
necessary that Ki ⊂ Kn

i (see Section 2.1). This results in underestimated boundary
lengths for the convex test sets. For other test sets the results for both variants of the
algorithm are of the same magnitude, hence we show only the results for the algorithm
based on Theorem 2. The approximation of the boundary length of touching discs is
considerably too small, see Figure 6(b)). This is due to the fact that the sharp peaks
of the complement the two discs are always cut off when creating DSS segments. For
test sets with positive reach and for UPR-sets the boundary length is approximated very
well as can be seen in Figures 6(c) and 6(d). Compared to the widely used method
by Ohser / Mücklich in [20], our approach has a larger error for some test sets with
small discretization resolutions, see Figure 7(a). But since our algorithm is multigrid
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(a) Relative error of V1 vs. resolution for
convex test sets (moving average of 21 val-
ues).

(b) Relative error of V1 vs. resolution for
polyconvex test sets (moving average of 21
values).

(c) Relative error of V1 vs. resolution for test
sets with positive reach (moving average of
21 values).

(d) Relative error of V1 vs. resolution for
UPR test sets (moving average of 21 values).

Figure 6: Comparison of relative errors of V1 for various test sets.

convergent, this changes as the resolution increases.
The area functional computed by the algorithm attains excessively large values for

all test images. This is exactly what one expects because the set K is approximated from
outside. Anyhow, the focus of this work is to estimate the lower dimensional intrinsic
volumes multigrid convergently, as the area can easily be estimated by counting the
number of black pixels in an image. See Figure 7(b) for a comparison of errors of V2 for
the UPR test cases.

In all figures it can be seen that the error of the approximation decreases (in absolute
value) as the resolution increases. Furthermore, the results in the UPR test cases do
hardly change for different choices of the parameters γ (the angle threshold) and ε (the
smoothing radius). We propose to choose γ = 0.01 and ε = 0.1 which leads to good
results for the test sets in Figure 5. However, ε has to be chosen with respect to the
condition ε < reach (K) /2, see Section 3.2.
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(a) Comparison of errors of V1 of the method
by Ohser / Mücklich (see [20]) and our ap-
proach (moving average of 21 values).

(b) Comparison of errors of V2 by pixel
counting and our method (moving average
of 21 values).

Figure 7: Comparison of relative errors of V1 and V2 for UPR-sets with two algorithms.

5 Summary and conclusions

We proposed an algorithm to estimate all intrinsic volumes for a UPR-set K and proved
that it is multigrid convergent. It is based on a polygonal approximation of the set K
which is constructed out of a digital image of K. The proof of multigrid convergence
holds in any dimension but so far the algorithm is only implemented in 2D. The problem
in higher dimensions is to find an approximation of the set K which fulfils all conditions
of Theorem 2 or Proposition 3 and is easy to handle. The algorithm can also be applied
to compute the specific intrinsic volumes of Boolean models or other random sets whose
realizations in a bounded observation window are almost surely UPR-sets. Then an edge
correction like plus-sampling or the associated point rule has to be applied, see Chapter
2 in [1] for an overview. The method of approximating the unknown set K could also be
used to make estimators for tensor-valued Minkowski functionals multigrid convergent.
We will not go into details here; see [10] and references therein for an introduction into
the theory of Minkowski tensors and [2] for an application to spiral galaxy data.
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50:495–519, 2009.

[12] M. Keil and J. Snoeyink. On the time bound for convex decomposition of sim-
ple polygons. International Journal of Computational Geometry & Applications,
12(3):181–192, 2002.

[13] M. Kerscher, J. Schmalzing, J. Retzlaff, S. Borgani, T. Buchert, S. Gottlöber,
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