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2 Jonas Rumpf et al.1 Introdution1.1 MotivationCatastrophies aused by tropial ylones are not only a threat to humanlives but also a massive �nanial risk to insurane and reinsurane ompa-nies. These ompanies need to assess as preisely as possible the risk andextent of losses in areas a�eted by tropial ylones. Sine reliable data onylone traks is only available for a relatively short period of time, it is notsu�ient to make a risk assessment based solely on historial storm traks.Therefore, as one possible approah to this problem, a basin-wide stohastisimulation model for the western North Pai� as outlined in Rumpf et al.(2006) is introdued. To the authors' knowledge, this is a novel onept forthis oean basin. Approahes with similar ideas for the North Atlanti andthe South Pai� have been disussed in James and Mason (2005), Vik-ery et al. (2000), and most reently in Emanuel et al. (2006) and Hall andJewson (2007).1.2 OverviewAfter a short desription of the available data, an explanation is given inSetion 2 as to why and how this data is homogenised by splitting it into 6di�erent lasses. Setion 3 is onerned with modelling the starting pointsof the ylone traks as an inhomogeneous Poisson point proess and thejusti�ation for this hoie of model. The atual trak model, in whihresampling methods play an important role, is explained in Setion 4. Analgorithm for the simulation of ylone traks is spei�ed in Setion 5, alongwith some sample results of the algorithm and a brief disussion of theassessment of these results. After providing a brief insight into the methodsof risk assessment applied to the simulated traks in Setion 6, the paperonludes with an outlook on possibilities for further model development.1.3 DataThe available data onsists of the traks of all tropial ylones reordedduring the period 1945�2004 in the western North Pai�. Sine there is no`de�nitive' dataset for this oean basin in the same way as the HURDATbest trak is for the North Atlanti (see Jarvinen et al. (1984)), we use dataMunih Re has ompiled from di�erent soures, mainly the Japanese Me-teorologial Ageny (JMA), the Joint Typhoon Warning Center (JTWC)and Unisys Weather. Figure 1 shows the traks of all 1,519 storms on-sidered. Eah trak is given as a polygonal trajetory onneting between2 and 100 points of measurement. Besides the date and time of measure-ment, the storm's urrent position (latitude and longitude) and its urrentmaximum windspeeds are given for eah point. The measurements within



Stohasti Modelling of Tropial Cylone Traks 3eah individual storm are taken at regular intervals of 6 h, so the storm'stranslational speed an be easily alulated. All observations fall into anobservation window that is delimited by the equator in the south, 60◦N inthe north, 100◦E in the west, and the date line in the east.2 Classi�ationAs an be easily seen from Figure 1, there are strong inhomogeneities in theshapes of the ylone traks. To improve the quality of the simulation, thestorm traks are therefore split into 6 more homogeneous lasses. Sine theshape of a storm trak is a spatial harateristi, we split the observationwindow into 4 di�erent zones, to orrespond roughly to the map's majorareas of land and sea, respetively; see Figure 2. Traks are then lassi�edon the basis of the zones they touh. The lassi�ation proedure onsistsof two parts: First, storm traks are split into lasses 0, 1, 2, and 3 aordingto the riteria listed in Table 1. Then, lass 4 is reated with those stormsfrom lass 2 that have their starting point in zone 1, and lass 5 is reatedwith storms of lass 1 whih have their starting point east of 122◦E, i. e.in the South China Sea. This partiular hoie of lasses has the desirableproperties of reating a deent amount of homogeneity among the trakshapes with not too many lasses. The authors do reognize, however, thatthe vague notion of homogeneity among trak shapes introdues a ertainamount of arbitrariness, though this is not onsidered a detriment to themodel, sine no information is lost and a helpful tool for the simulation isgained.Two of the resulting lasses of storm traks an be seen in Figures 3and 4, respetively. The lass sizes are given in Table 2. A more intuitivedesription of the lassi�ation riteria an be given as follows:� Class 0 ontains all the storms whose traks are situated ompletely inthe open sea in the southeastern part of the observation window.� Class 1 ontains the storms, whose traks start in the southeastern partof the observation window and then head mostly northwest in an almoststraight line towards the Philippines, the South China Sea, and the Asianontinent; see Figure 3.� Class 2 ontains the storms whose traks start in the eastern part of theobservation window. After initially heading northwest, they head to theright towards the northeast and in one way or the other a�et Japanand/or the Korean Peninsula; see Figure 4.� Class 3 ontains storms whose traks are situated ompletely in the opensea in the eastern part of the observation window and whih move furtherup north than those of lass 0.� Class 4 ontains those storms that start o� from the South China Seaand then head northeast towards Japan in a nearly straight line.



4 Jonas Rumpf et al.Start in zone. Touhed zones End in zone Class
0 0 0 0

1 1 1 1

2 2 2 2

3 3 3 3

0 or 1 0 and 1 0 or 1 1

0 or 2 0 and 2 0 or 2 2

0 or 3 0 and 3 0 or 3 3

1 or 2 1 and 2 1 1

1 or 2 1 and 2 2 2

2 or 3 2 and 3 2 or 3 2

0, 1 or 2 0, 1 and 2 0 0

0, 1 or 2 0, 1 and 2 1 1

0, 1 or 2 0, 1 and 2 2 2

0, 1 or 3 0, 1 and 3 0 0

0, 1 or 3 0, 1 and 3 1 1

0, 1 or 3 0, 1 and 3 2 2

0, 2 or 3 0, 2 and 3 0, 2 or 3 2

1, 2 or 3 1, 2 and 3 1 1

1, 2 or 3 1, 2 and 3 2 or 3 2

0, 1, 2 or 3 0, 1, 2 and 3 0 0

0, 1, 2 or 3 0, 1, 2 and 3 1 1

0, 1, 2 or 3 0, 1, 2 and 3 2 or 3 2Table 1 Criteria for the lassi�ation of the ylone traksClass Number of traks Number of data points
0 115 1,939
1 470 11,958
2 470 14,695
3 178 4,086
4 84 2,032
5 202 2,667Total 1,519 37,377Table 2 Class sizes of the storm lasses� Class 5 ontains storms whose traks are almost ompletely limited tothe viinity of the South China Sea. Most of them move in a straightline towards the Asian ontinent.After reating the 6 di�erent storm lasses, all subsequent steps of the mod-elling proess are done separately for eah lass.
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Figure 1 Traks of all storms in the dataset

Figure 2 Observation window split into 4 zones
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Figure 3 Traks of all storms in lass 1

Figure 4 Traks of all storms in lass 23 Points of genesis3.1 Basi modelFor a stohasti model of the traks of tropial ylones, �rst a model forthe points of ylone genesis, i. e. the �rst points of the traks, is needed.Figure 5 shows, as an example, the points of genesis of storms in lass 2.The points are learly distributed inhomogeneously within the observation
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Figure 5 Points of genesis of storms in lass 2window. Therefore, an inhomogeneous Poisson proess is hosen as a model,whih is further justi�ed by the entral properties of this point proess model(see, for example, Stoyan and Stoyan (1994), p. 228):� No interation: The Poisson proess is onsidered to be a model foromplete spatial randomness, in the sense that its points are plaed inthe observation window ompletely independent of eah other. They ex-hibit no interation; neither attration (or lustering) nor repulsion isinorporated into the model. This property re�ets the fat that me-teorology provides no evidene of interations between storms' startingpoints, espeially not over the number of years ontained in the data.However, the authors do reognise that in any given year a lustering ofstorms in a ertain region ould our.� Poisson distribution: In a Poisson proess, the number of points ina given area is Poisson-distributed. This orresponds to the result of aPearson-Fisher-Goodness-of-Fit test, whih does not rejet the hypoth-esis that the number of storms per year in the given data is Poisson-distributed. This result is obtained not only for the numbers of stormsin the di�erent lasses, but also for the total number of storms withinthe observation window (see Setion 3.2).3.2 Tests for Poisson distributionTo test the hypothesis that the number of storms in the data is Poisson-distributed, i. e.
H0 : P ∈ {Poi(λ), λ > 0} vs. H1 : P 6∈ {Poi(λ), λ > 0}, (1)



8 Jonas Rumpf et al.where P is the distribution of the number of ylones per year within theobservation window, an asymptoti Pearson-Fisher-Goodness-of-Fit test isperformed, see Cramér (1971), Chapter 30. For this test, onsider the num-bers of storms in the 59 years ontained in the data as realisations u1, . . . , unof independent and identially distributed random variables U1, . . . , Un,where n = 59. These realisations are then grouped into r disjoint subsets
A0 = {0, . . . , a0}, A1 = {a0 + 1, . . . , a1}, . . . , Ar−2 = {ar−3 + 1, . . . , ar−2},
Ar−1 = {ar−2 + 1, ar−2 + 2, . . .}. The values of a0, . . . , ar−2 are hosen inthe following way: Starting with a0, the aj are determined iteratively as theminimal values that ensure that the ondition

pj(λ̂) · n > 5 ∀j = 0, . . . , r − 1, (2)holds, where
p0(λ̂) =

a0∑

i=0

λ̂i

i!
e−

bλ, (3)
pj(λ̂) =

aj∑

i=aj−1+1

λ̂i

i!
e−

bλ ∀j = 1, . . . , r − 2, (4)
pr−1(λ̂) =

∞∑

i=ar−2

λ̂i

i!
e−

bλ (5)denote the Poisson probabilities of the r subsets. Condition (2) requiresthe subsets Ai to eah ontain more than a ertain minimum number ofobservations. While there seems to be a onsensus in the literature that thisis an important ondition for the validity of the Pearson-Fisher test (seee. g. Cramér (1971), p. 420, and Gibbons (1985), p.72f.), the atual valuesstated vary. In hoosing the minimum number in (2) equal to 5, we followGibbons (1985).Note that ondition (2) is expliitly required to hold for j = r−1, therebydetermining uniquely not only the Aj , but also r. The maximum likelihoodestimator λ̂ for the parameter λ of the hypothetial Poisson distributionfrom the grouped data an be approximated by the well-known maximumlikelihood estimator for λ for ungrouped data, the sample mean Un. Thenthe test statisti
Tn(U1, . . . , Un) =

r−1∑

j=0

(Zj(U1, . . . , Un) − npj(Un))2

npj(Un)
(6)is asymptotially χ2

r−2-distributed, where
Zj(U1, . . . , Un) = #{i : 1 ≤ i ≤ n, Ui ∈ Aj}. (7)Therefore, the hypothesis H0 is rejeted at a given level of signi�ane α if

Tn(u1, . . . , un) > χ2
r−2,1−α, (8)



Stohasti Modelling of Tropial Cylone Traks 9Class ūn r Tn(u1, . . . , un)0 1.95 5 7.851 7.97 8 2.492 7.97 8 9.853 3.02 6 5.024 1.42 4 0.055 3.42 6 4.32all 25.75 8 1.97Table 3 Tests for Poisson distribution of the number of storms per yearClass χ2

r−2,0.99 H0 rej.? χ2

r−2,0.95 H0 rej.? χ2

r−2,0.90 H0 rej.?0 11.34 no 7.81 yes 6.25 yes1 16.81 no 12.59 no 10.64 no2 16.81 no 12.59 no 10.64 no3 13.28 no 9.49 no 7.78 no4 7.38 no 5.99 no 4.61 no5 13.28 no 9.49 no 7.78 noall 16.81 no 12.59 no 10.64 noTable 4 Tests for Poisson distribution of the number of storms per yearrealling that (u1, . . . , un) denotes a realization of (U1, . . . , Un). As an beseen from Tables 3 and 4, for the tropial ylone data, the hypothesis isnot rejeted exept for storms of lass 0 for the higher α-levels of 0.05 or0.1. This result holds for the di�erent storm lasses as well as for the totalnumber of storms.3.3 Intensity estimationThe distribution of points of an inhomogeneous Poisson point proess withinthe observation window W is determined by its intensity funtion λ(t). Thisfuntion an be interpreted in a way that λ(t)dt desribes the in�nitesimalprobability of a point of the Poisson proess being loated in the in�nites-imally small dis with area dt entred at t (see, for example, Stoyan et al.(1995), p. 42). Sine there is no obvious parametri trend visible in the data(see Figure 5), a non-parametri estimation tehnique was hosen. The gen-eralised nearest neighbour estimator (see Silverman (1986), p.97) is givenby
λ̂(t) = rk(t)−2

m∑

i=1

Ke

{
rk(t)−1(t − Ti)

}
, (9)where rk(t) is the distane to the k-th nearest point of genesis seen fromthe loation t, Ti the loation of the i-th historial point of ylone genesis,



10 Jonas Rumpf et al.and Ke the Epanehnikov kernel:
Ke(t) =

{
2
π (1 − t

⊤
t) if t

⊤
t < 1,

0 otherwise. (10)The parameter k is hosen suh that k = ⌊√m⌋, where m is the number ofhistorial points of genesis.A simpli�ed interpretation of this estimator is given in the following: whilethe kernel Ke determines the size and the shape of the `probability mass'whih is assigned to a measurement point, the bandwidth rk(t) is the radiusover whih this mass is spread. Note that the estimator λ̂(t) is nowhere zero:at all points within the observation window, there is a non-zero probabil-ity mass from exatly k historial points of genesis. This probability massdereases with inreasing distane to the k-th nearest historial point ofgenesis, but in theory never reahes zero. This e�et is intended, beause itallows, if only rarely, for the genesis of tropial ylones within the modelat loations that are far away from most historial initial points of ylones,where there are no physial reasons against ylone genesis. In some areas,of ourse, the intensity is set to zero beause ylone genesis is meteoro-logially impossible there. These areas inlude all loations loser to theequator than 3◦ of latitude, motivated by the negligible Coriolis fore inthese regions, as well as all loations not over sea, beause of their lak ofneessary heat soures for a ylone.4 Cylone traks and wind speeds4.1 Diretion, translational speed and wind speedOne a model for the points of ylone genesis is available, the propagationof the traks is the next step in the modelling proess. Here our model re-lies on the same basi assumption as the models introdued in, for example,Emanuel et al. (2006), Hall and Jewson (2007), and Vikery et al. (2000)that ylones loated in similar areas of the observation window behavesimilarly. An appropriate model of the traks following the points of genesisneeds to inlude the diretion of movement (denoted by X in the follow-ing) and the translational speed (Y ), i. e. the veloity at whih the yloneis moving in the given diretion. By assuming these harateristis to beonstant for intervals of 6 h (see Setion 1.3) and updating them instanta-neously after eah interval, the ylone's loation an be alulated in 6-hsteps, thereby generating a omplete trajetory. For risk assessment (seeSetion 6), additional information is needed, namely the maximum windspeeds attained (Z) at eah of the ylone's positions. To ombine theseharateristis, onsider a 3-dimensional state vetor Si that ontains theirvalues after the i-th trak segment. These values are onsidered to be the



Stohasti Modelling of Tropial Cylone Traks 11sum of an initial value and the hanges in these values after eah step:
Si = S0 +

i∑

j=1

∆Sj =




Xi

Yi

Zi



 =




X0

Y0

Z0



 +

i∑

j=1




∆Xj

∆Yj

∆Zj



 (11)Sine a stohasti model is being developed, all of the harateristis
X0, Y0 and Z0 as well as ∆Xj , ∆Yj , ∆Zj are onsidered to be random vari-ables. The distributions of these random variables depend on the storm'surrent loation t within the observation window W . To generate a reali-sation of S0 at a ertain loation, data is resampled from the distributionsof the historial measurements of X0, Y0 and Z0 near that loation, i. e. theprobability distribution funtion of X0 at loation t is estimated by

FX0
(x, t) =

#{l : 1 ≤ l ≤ kX0
, x

(0)
l (t) ≤ x}

kX0

, (12)where x
(0)
l (t), l = 1, . . . , kX0

, denote the kX0
historial realisations of X0losest to the loation t. In short, the distribution of the initial diretionof a trak in the model is determined by all historial initial diretions ofstorm traks. Similar formulae are used in order to estimate the loation-dependent distributions of Y0 and Z0, respetively. In analogy to this, theprobability distribution funtions of a hange in diretion ∆Xj0 is given by

F∆X(x, t) =
#{l : 1 ≤ l ≤ k∆X , ∆xl(t) ≤ x}

k∆X
, (13)where ∆xl(t), l = 1, . . . , k∆X , now denote the k∆X historial realisationsof ∆Xj ∀j losest to the loation t. This means that the distribution ofany hange in diretion ∆Xj0 depends on the historial realizations of allhanges in diretion ∆Xj of tropial ylones, no matter after whih stepof a storm they ourred. A similar formula is used for ∆Yj .To onform with reality, ertain boundary onditions are imposed on theomponents of Si. For example, the translational speeds Yi must be non-negative at all times. Also note that all alulations involving the diretionof a ylone are made `mod 360◦' to keep the value of the Xj within theinterval [0◦, 360◦), where 0◦ is onsidered North.For the hanges in wind speed ∆Zj , a modi�ed version of the probabilitydistribution funtion given in (12) is onsidered. To re�et the fat that thewind speeds of stronger storms tend to derease, while weaker storms tendto intensify in their early stages, the distribution of the hanges in windspeed was made dependent on the previous wind speed z:

F∆Z(x, t, z) =
#{l : 1 ≤ l ≤ k∆Z , ∆zl(t, z) ≤ x}

k∆Z
, (14)where the ∆zl(t, z), l = 1, . . . , k∆Z , denote k∆Z historial realisations ofthose ∆Zj losest to the loation t that had previous wind speeds in thesame range (`low', `medium-low', `medium-high', `high') as z.



12 Jonas Rumpf et al.4.2 Termination probabilitiesSine the proposed model reates syntheti ylone traks in 6-h steps, amehanism is needed to determine whether the trak should be terminatedafter the urrent step or if it should be ontinued. This is done stohastiallyvia a Bernoulli experiment with a suess probability p(t, Z) depending onthe storm's urrent loation and wind speed. Here, the event `suess' isonsidered equivalent to `the ylone terminates'. The termination proba-bility is determined as the maximum of two probabilities pZ and pt, sinethis approah to ombining the two probabilities delivered the best resultsin eliminating spurious syntheti storm traks penetrating unrealistiallydeep into the Asian ontinent.Although in theory tropial ylones should only be onsidered as suhas long as their wind speeds exeed 62 km/h (34 knots), the wind speeds atthe last points of measurement of the ylones vary greatly in the availabledata. Therefore, to math the data, a urve of the form
pZ = c · e−λZα (15)depending on a ylone's urrent wind speed Z was �tted to historial ter-mination probabilities, whih have been determined as follows: all points ofmeasurement and their respetive wind speeds are grouped into 10 km/h-wide bins. The termination probability of every bin is then given as thefration of ylone termination points among all points in this bin. To avoidartefats resulting from imperfet data, points with speeds less than 30km/h are omitted. The urve given in (15) is then �tted to the resulting 28points using a least-squares method. It is well known that tropial ylonesbehave di�erently over land than they do over sea. For example, ylonesare subjet to higher frition and a lower energy supply over land than theyare over sea. Therefore, this proedure is applied separately to the pointsof measurement over land and to those over sea. As an example, the datapoints and the �tted urve for the storms of lass 2 over land and over seaare shown in Figures 6 and 7, respetively. A possible lak in �t of the urveto the data is onsidered aeptable beause of the fat that only the generalform of the urve is needed for the model. In partiular, an exat repliationof the data is not intended, onsidering the goal of reating a larger datasetfor risk assessment and bearing in mind the existene of imperfetions in thedata. Additionally, �tting errors are also ompensated in part by the seondtermination probability, whose alulation is desribed in the following.To aount for the fat that the weakening of tropial ylones and theirwind speeds is signi�antly in�uened by the geographial onditions atthe storm's urrent loation, a seond probability pt is alulated for allloations t in the observation window. Similarly to the probabilities givenin (12), pt is alulated as the fration of termination points among the nnearest points of measurement of the loation t.
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Figure 6 Curve �tted to historial termination probabilities of storms of lass 2over land

Figure 7 Curve �tted to historial termination probabilities of storms of lass 2over seaThe termination probability used in the Bernoulli experiment is thentaken to be
p(t, Z) = max{pZ , pt}. (16)This allows for the quiker termination of storms that have reahed spei�loations while exhibiting unommonly high wind speeds, suh as stormsthat penetrate far inland with high wind speeds. On the other hand, it alsoaounts for the termination of storms that do not reah partiularly highwind speeds in areas where most storms in the data have ontinued to exist.



14 Jonas Rumpf et al.5 Simulation and resultsIn this setion, an algorithm for generating syntheti ylone traks is de-sribed, summarising the di�erent parts of the model and illustrating theirinteration. To reate a omplete set of syntheti storm traks from themodel desribed above, the proedure is as follows for eah of the 6 stormlasses (see Setion 2):0. Initialisation: Find all needed estimators and probabilities as they werede�ned in (9), (12), (13), (14), (15), and (16), respetively, and go to step1.1. Points of genesis:Generate a realisation of the inhomogeneous Poissonpoint proess with the intensity funtion de�ned in (9) and go to step 2.2. Choose a point: From the point proess realisation generated in step 1,pik one point that does not yet have a orresponding ylone trak andgo to step 3. If there are no suh points left, terminate the algorithm.3. Initial segment: Generate a realisation of S0 from the distributionfuntions de�ned in (12) aording to the loation t of the ylone'sstarting point from step 2. With this, �nd the storm's new loation afterits �rst segment and go to step 4.4. Termination probability: Perform a Bernoulli experiment with thesuess probability given by (16) aording to the storm's urrent loa-tion and wind speed. If the result is `suess', terminate the storm trakand go to step 6. Otherwise go to step 5.5. Additional segment: Generate a realisation of ∆Sj from the distribu-tion funtions de�ned in (13) and (14) aording to the storm's urrentloation and wind speed. Add ∆Sj to Sj−1 to get Sj and from this anew loation and wind speed for the storm. Then go to step 4.6. Class veri�ation: Determine the lassi�ation of the generated stormtrak as desribed in Setion 2. If it mathes the lass of storm traksfor whih this algorithm is being performed, aept the storm trak forthe given point of genesis and go to step 2. Otherwise, rejet the stormtrak and go to step 3 with the same point of genesis.Note that the possibility of a storm being rejeted mentioned in step 6 ofthe algorithm is not just theoretial, but that in fat quite a few rejetionsdo happen during simulation. For example, when a storm of lass 1 (seeFigure 3) is being simulated, the random ombination of a starting pointfar to the east, an initial diretion towards the west and several hanges ofthe diretion of movement to the right early on is improbable, but possible.This trak will then be lassi�ed into lass 3 instead of lass 1 (see Table 1)and therefore will be rejeted in step 6 of the algorithm.This algorithm has been implemented using Java, whih reates thepossibility for the generation of a large number of syntheti ylone traks.A sample of syntheti storm traks in lass 1 with the same expeted numberof storms as in the original data is plotted in Figure 8.
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Figure 8 Syntheti traks of storms in lass 1To evaluate the results of the model, 150 samples of syntheti stormtraks, where every sample is onsidered to onsist of 59 years of data, aregenerated by simulating a random number of storms for eah year whih isPoisson-distributed with a parameter given by the mean number of stormsper year in the historial data. Then the number of storms a�eting Japan(whih is the area of highest interest within the observation window), de-noted by Vi, is ounted for eah year. From every sample with sample size
n = 59, the expeted number of storms a�eting Japan per year and thevariane of this number are estimated by the sample mean V n and thesample variane S2

n. The simulated data is then ompared to the historialdata by 150 realisations of an asymptoti one-sample test. The test statisti
T (V1, . . . , Vn) given by

T (V1, . . . , Vn) =
√

n
V n − µ0√

S2
n

(17)is approximately N(0, 1)-distributed for su�iently large n (see, for exam-ple, Lehmann and Romano (2005), p. 444). The hypothesis that the ex-peted number of storms a�eting Japan in the simulated data orretlyre�ets the orresponding number from the historial data (denoted by µ0),is therefore rejeted at a given level of signi�ane α if |T (V1, . . . , Vn)| >
z1−α/2 where z1−α/2 denotes the (1 − α/2)-quantile of the standard nor-mal distribution. Table 5 shows that the perentage of samples where thehypothesis is rejeted is approximately α, whih suggests that the modelorretly represents the number of storms a�eting Japan per year.
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α 1% 5% 10%Rejetions 0.7% 5.3% 10.0%Table 5 Test results for the omparison between simulated and historial data6 Risk assessmentFrom a ylone trak onsisting of the storm's loations, translational speedsand maximum attained wind speeds, a two-dimensional wind �eld an bealulated. This wind�eld is obtained using an empirial relation betweenthe maximum wind speed vmax, whih is onsidered to be attained at theso-alled `radius of maximum wind speeds' rmax of the storm and windspeeds v(r) at a radial distane r ≥ rmax from the entre. The general formof this relation is given by

v(r) = vmax ·
(

r

rmax

)−γ , (18)where the exponent γ ∈ (0, 1) and rmax are determined empirially.In the lower troposphere, the wind in a ylone is dominated by thetangential wind speed. Therefore, the ylone wind pro�le (18) is originallyderived using the onservation of relative angular momentum of tangentialwinds (v(r) · r = const) outside of rmax. However in reality, the wind inthe boundary layer is spiraling inwards, and, as a onsequene, it losesrelative angular momentum due to fritional dissipation at the surfae (seeDepperman (1947), Holland (1980)). Due to this fat, the exponent γ < 1is introdued into (18), whih then re�ets a typial typhoon wind pro�leadequately for the purposes of this investigation.With this method, wind speeds aused by a ylone at loations of in-terest are alulated. These wind speeds an then be used to alulate anestimate for the damage the ylone auses at these loations. This reatesa possibility for a long-term risk assessment sine, with the desribed modeland its implementation in the programming language Java, it is possible togenerate a large number of realisti storm traks. For example, one ouldsimulate traks for a time horizon of 10,000 years and then alulate the`10,000-year damage' or damages with return periods of less than 10,000years.7 Summary and outlookA stohasti model for the simulation of tropial ylone traks in the west-ern North Pai� was developed. The model relies mostly on the historialtrak data available. Complex meteorologial aspets of tropial ylonemovement are greatly simpli�ed, thereby reating the possibility for the
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