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Abstract. We consider two integral transforms which are frequently used in integral
geometry and related fields, namely the cosine and the spherical Radon transform. Fast
algorithms are developed which invert the respective transforms in a numerically stable
way. So far, only theoretical inversion formulas or algorithms for atomic measures have
been derived, which are not so important for applications. We focus on the two and three-
dimensional case, where we also show that our method leads to a regularization. Numerical
results are presented and show the validity of the resulting algorithms. First, we use synthetic
data for the inversion of the Radon transform. Then we apply the algorithm for the inversion of
the cosine transform to reconstruct the directional distribution of line processes from finitely
many intersections of their lines with test lines (2D) or planes (3D), respectively. Finally we
apply our method to analyze a series of microscopic two- and three-dimensional images of a
fibre system.

AMS classification scheme numbers: 45Q05,65N21,60D05,44A05,44A12

1. Introduction

In this paper, we consider two integral transforms in RY, namely, the spherical Radon
transform and the cosine transform which are closely related. For even functions f on the
(d — 1)-dimensional sphere the spherical Radon transform is defined as

REM=—— [ fl@)yo, nes,
wdfzydqmﬁ

where dw is the spherical surface area measure. Here, the constant w; ; := a)d,z(yd‘z),
which is the surface area of the (d —2)-dimensional unit sphere, guarantees that the transform
maps constant functions to themselves. Not to be confused with the integral operator

SMf(x,r)= [ f(z)da(z), where S(x,r) = {y: |x—y| = r} and da is the normalized area
z€8(x,r)
measure, which is also called spherical Radon transform. The cosine transform is given by

cfm= [ Im.o)lf(@do, nest.
pd—1
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Our aim in this paper is to invert both transforms in a numerically stable way. Therefore
we use the method of the approximate inverse to develop fast numerical reconstruction
algorithms. Our method can be applied for arbitrary dimensions, but we restrict our
calculations to the most interesting cases d = 2,3 for the cosine transform, and d = 3 for
the Radon transform, respectively.

One should remark that the method presented in this paper can also be applied to the
following family of transforms, although this is not explicitly discussed in the rest of the

paper:
T = [, hne)f@do, et

where f € L2(7971), and h € L*[0, 1]. For example, the choice of 2(x) = v/1 —x2 leads to
the well-known sine transformation.

The cosine transform plays an important role in many applications. For example, the
directional distribution of a stationary line or fibre process can be estimated from intersections
of its lines (or fibres) with test planes. For a fibre process Z, the intensity of ZN 1~ is called
the rose of intersections, denoted by g(n), and it is well-known that it is the cosine transform
of the directional distribution of & up to a multiplicative constant. In case of E having a
directional distribution with density ¢ w.r.t. the spherical surface area measure this can be
written as

A
g(n) = ——Co(n), (1)
W1

where A denotes the intensity of . Thus, an even measure on the unit sphere has to be
estimated from finitely many values of its cosine transform. For this purpose, stable numerical
inversion algorithms are needed. In the final section we apply our method to microscopic
images of the gas diffusion layer of a fuel cell, see Figure 1, to estimate the rose of directions
for the fibres.

Mag= 200X 100ym Toray untefl. B Date :7 Apr 2006

(a) 2D image of a GDL (b) Skeleton of a 3D image of a
GDL, generated with Avizo

Figure 1. Images of a gas diffusion layer (courtesy of the Centre for Solar Energy and
Hydrogen Research, Ulm)

In 2005 Kiderlen and Pfrang ([1]) presented three non-parametric algorithms to estimate
the rose of directions of a spatial fibre system. They are based on least square or other
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optimization problems. To be able to determine the rose of directions numerically, they
restrict their considerations to atomic measures. Hoffmann [2] used in 2007 also a least
square estimator to invert the sine transform. There exist convergence results and a proof
of consistency ([3]) for these algorithms. But on the other hand all these algorithms only lead
to discrete reconstructions, which are concentrated only on a finite number of points and look
often artificial. Continuous reconstructions, which provide the chance of better model fits, are
missing so far in the literature.

The spherical Radon transform is frequently considered in tomography, for instance for
the reconstruction of convex bodies from the area of their projections onto 2-dimensional
subspaces, or in connection with intersection bodies, see also [4].

The paper is organized as follows. In the next section, we present some properties
of the integral transforms under consideration. After this, we introduce the concept of the
approximate inverse in Section 3.1. Since in many applications the solutions of inverse
problems have to be non-negative (as e.g. in the case of probability density functions), we
turn to the question of positiveness of our solution in Section 3.2. In Section 4 we calculate
reconstruction kernels for the cosine transform (d = 2), and in Section 5 for both the spherical
Radon and the cosine transform (d = 3). In Section 6 we characterize mollifiers, which lead
to regularizations. Finally, we provide some numerical tests in the last two sections. First
we illustrate our results for the spherical Radon and cosine transform with simulated data
(Section 7), then we use image data of a gas diffusion layer of a PEM fuel cell to estimate the
directional distribution of its fibres (Section 8).

2. Some properties of the transforms and analytic inversion results in R?

In this section, we present some basic facts about the two transforms, which are of importance
for our algorithms. An overview of these and other properties can be found in [4, Appendix
C] and [5, Chapter 3]. Denote by C¥(.7¢~1) the space of all even k times differentiable
functions f and by L2(.#%~1) the space of all even square integrable functions. For d > 3
both transforms are closely related. Defining the block operator by

_Ap+d—1 2)
2041 ]
it can be shown that (see [6])
LIC =R. 3)

Here A denotes the Beltrami-Laplace operator on .4 ~!. The following properties hold in the
case d > 3 for the Radon transform and in the case d > 2 for the cosine transform. It is known
that for even bounded integrable functions both transforms are injective. In addition, both
Czl(d+1)/2J (yd—l)

transforms are bijections of C*(.#¢~1) to itself. More precisely, for g € C;

&€ Ce2 L(@+3)/2) (&7 dﬁl) there exist continuous even functions f and f> such that Rf; = g; and
C f> = g» (see [5, Proposition 3.6.4]). Here | x | denotes the integer part of x € R. Furthermore,
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the transforms are self-adjoint in the following sense:

(F.Re) o= [ fl@)Rg(@)d0 = [ RF(@)g(@)d0 = (Rf.8)2 ). d =3 ()

d—1 d—1
(F.C8) = [ flo)Cs(@)do= [ C@)g(@)do =(Cf.ghppon, d=2
pd—1 pd—1

For the cosine transform, this follows directly from Fubini’s theorem, for the Radon transform
see [5]. To qualify the ill-posedness of the transforms we need to introduce Sobolev spaces
on the unit sphere. A function f € L?>(.#?~!) can be expanded with respect to the spherical
harmonics Y,

o N(d—1,0)

f= Z Z JimYim

where N(d — 1,1) = ("*47%) — ("1,*) and the Fourier coefficients are given by
flm = <f s Ylm>

A function f lies in the Sobolev space H* of order s if and only if } ;7 (l 24 1)
lies in L,, and for such functions we introduce the norm
N(d—1,0)

Il =Y (+1)" Y |l

=0 m=1

Strichartz ([7]) showed that for even functions f € H*(.% dﬁl), there exist constants b,c > 0
such that

s/2 Nd 1,0)

Y ) finYim

bil”fHH‘Y S HRf||HA‘+(d—2)/2 beHHV (5)
cilufHH“ < HCfHHH(dH)/z cl| fllzs

(see also [6]). For both transforms there exist analytic inversion formulas even in more general
settings. Helgason obtained in [8] an analytic inversion formula for the spherical Radon

IA A

transform, which was modified in [9] to a more compact form:
Theorem 1. For f € C,(-#) and d > 3 holds:

NG A S Rf(@)|(S. @)| , -1
fe)= (d—3)! o4 (3<u2)> o / L (& 0)2 - )% ses
u=0

While this formula forms a proper basis for theoretical considerations, it can not be used
for numerical calculations, because of their numerical instability.

Other analytic inversion formulas, also for the case f € )24 (&7 d—1 ), are presented in [10].
In this paper, a backprojection algorithm for the inversion of the Radon transform is proposed
and some conditions for a function a are given, such that for f € LE(.74~1)

lim / a<—sm[dge°(§’w)])(Rf)(a))dco:ocf(rﬁ), Ee it

-0 gd—1 €
5//[[71
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holds in the LP-Norm, where dge, denotes the geodesic distance and « is a constant depending
on a. This complies with the theoretical idea behind our algorithms as well.

Unfortunately, it is difficult to find a function a@ which fulfils the conditions. In [10] there
is an example which leads to

—72/2+i
N
(2 +i)}
but the resulting inversion formula does not work numerically, since the function oscillates

very strongly and so a stable numerical calculation is not possible. This is not surprising,
because no regularization is applied.

a(t) =1

3. Approximate inverse

3.1. The method

The method of the approximate inverse, introduced in [11], is a powerful and versatile tool
for deriving fast regularization methods for stabilizing the inversion in various applications,
see for example [12], [13] or [14]. Likht [15] reported already in 1967 that the calculation of
linear functionals of the solution of inverse problems stabilizes the inversion method. Here,
we want to solve T f = g, where T is the spherical Radon transform or the cosine transform
with f,g € L2(.79~"). The idea behind our algorithms is to calculate a "smoothed version"
of the solution, namely

f)i= | f@)eyn 0)do,  nes ©6)
with

fy— f insome sense (cf. Remark 2) as 7\, 0.

We also demand that the mollifier e, : . d=1x #4-1 s R, is even in both arguments and
has the property

/W1 ey(n,@)do=1  foranyn .74, (7)

We restrict our attention to non-negative mollifiers, cf. Subsection 3.2. Nevertheless most
calculations can be also done for mollifiers with negative values. Then, for a given mollifier,
the reconstruction kernel yy is determined by the solution of

Tyy(n,-) =ey(n, ). (8)
Note that ey belongs to the range of T, if it lies in Ck(.79=1) for k sufficiently large (cf.
Section 2). Using (4), we arrive at

fy(n) = (f, ey(rly'»LZ(yd*l) = <f,T‘I/y(777')>L2(yd*1)
= (Tf,wy(N, )12 (ra1) = (& Wy(N,)) 2 a1y = Tyg(M). ©)
Remark 1. The calculation (8) is independent of the given right hand side in 7' f = g. Therefore

it can be carried out before the reconstruction of f starts. This leads to efficient algorithms for
the calculation of fy with (9).



Inversion algorithms for the spherical Radon and cosine transform 6

Remark 2. One can easily see that the convergence in (6) holds pointwise and in the L>-sense,
if f 1s continuous and the support of the mollifier is contained in a ball whose radius tends to
0 as ¥ tends to 0. For a more precise characterization of the convergence see [10].

3.2. Positiveness of the solution

In some applications, inverse problems 7 f = g for probability densities f (with T = R,C)
have to be solved, e.g. for the reconstruction of the directional distribution density f from
its rose of intersection g for T = C. In this case, the numerical solution f of T f = g has to
satisfy the conditions [,q—1 f(®)dw = 1 and f > 0. The first condition can be always met
by a simple renormalization. What about the positivity condition £ > 0? If the data g is not
contaminated by noise (i.e. exact) and we assume that we can integrate exactly, we get for all
ne.landy>0

fy(n) = <g7 W}’(nv» = <87T_1€y(777')> = <T_1ga€y(n7')> = (f&y(’%')) > 07

because we consider only non-negative mollifiers ey (7, -).

If the data g is noisy, one can not guarantee the positiveness of f anymore. However,
in our numerical tests negative values of f are spare and can be neglected, so a possibility
to overcome this is to project f onto the halfcone of non-negative functions after the
reconstruction.

4. Inversion of the cosine transform in 2D

Since the calculation techniques for the reconstruction kernels differ in 2D and 3D, we
consider the case d = 2 in this section separately.

The even functions on .#! correspond one-to-one to the 7-periodic functions. Thus, to
simplify the notation, in this section we consider densities w.r.t. the Lebesgue measure on
the interval [0, 7]. Notice the difference from the three-dimensional case, where we consider
densities on the unit sphere w.r.t. the spherical surface area measure. In the two-dimensional
case the cosine transform can be written in the form

Colx) = /Oﬂ\cos(x—t)](p(t)dt.

Furthermore it is in 2D closely related to the sine transform

$p() = [ Isin(e—n)lo(r

by Co(x) = S¢ (x+m/2). Thus, it suffices to consider the sine transform in the following
which seems to be more common in the 2D case. The following Proposition (see [16, 17, 18])
enables us to calculate the reconstruction kernel.

Proposition 1. Let g € C*(R) be an arbitrary 7-periodic function. Then we have
Sf=8
with

f=5(+g").

| =
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Example. Let us consider the mollifier

—v12\"Y
ey(x,y) =7 'ky (1—(x yzy) ) H{x—yl <7} (10)

as a m-periodic function for v € N and y < 7 /2 (see for example [19]), where

! F(v+1)y/7 32 256
' = [ e@ra= VT g = = 1),
Y _1< ) L(v+3) k' =35k = 55)

Fort = [x—y| < y and v > 3 the reconstruction kernel is then calculated using Proposition 1:

S. Inversion of the spherical Radon and cosine transform in 3D

5.1. Reconstruction kernels for the spherical Radon transform in 3D

In this section we calculate reconstruction kernels for the spherical Radon transform. First of
all we know that the spherical Radon transform commutes with rotations [4, Lemma C.2.7],
1.€.

R(T,f(§)) = ToRf(E), p €503 (11)

with T, f(&) := f(p~1&). So it suffices to design the kernel for only one fixed reconstruction
point ) € .#2. We choose 1 as the north pole for this issue, and in this case the polar
angle 0 of a vector ® € .#’% corresponds to the angle between 1 and ®. From now on we
restrict our attention to mollifiers, which only depend on the geodesic distance dgeo(1, ®) =
arccos({n,)) and not on 1 and  themselves. In other words, we consider only rotationally
symmetric mollifiers, i.e. we have (by using spherical coordinates)

ey(9,0) =ey(0).

For such functions, the equation Rf = g coincides with an Abel equation.

Theorem 2. [4, p. 432-434] Let f,g € C'(.#?) be rotationally symmetric functions with
Rf = g. Then we have

l
_/f ar00082 = g(arcsinx), 0<x<1. (12)
—l

Define G(x) := (arcsmx) and F(t) := f(arccost), we get the Abel equation:

X
2 F(1)
0
This equation is solved by
t
G'(x)

O+t/—dx, 0<r<, (14)

) ) V2 _ 2

with F(0) = G(0), cf. [20, eq. 1.B.5ii].
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Corollary 1. For a chosen C'-smooth rotationally symmetric mollifier ey, the corresponding
reconstruction kernel yy is therefore given by

vV =E,0 t E’(@) de, 15
7<t)_EY( )+t \/1‘27 (15)

with Wy (t) = yy(arccost) and EY(G) = ey(arcsin @).

Of course one can evaluate (15) for any mollifier e, numerically via quadrature methods
[20] or by the approximate inverse in order to determine the corresponding reconstruction
kernel approximatively. However, for some special mollifiers, we are able to solve the
equation analytically. We give two examples in following proposition.

Notice that we always require [.»ey(@)dw =1 for all ¥ > 0, see (7), which can be
rewritten for rotationally symmetric mollifiers e,(0) as

/2
47t/ ey(0)sin0d6 =1 forall y>0. (16)
0

The function erfi is defined by erfi := —ierf(ix), and erf denotes the well known error
function erf(x) = 2/y/T [} exp(—1*)dt.
Proposition 2. (i) Gaussian mollifier: Let

1 in
ey(0) = —exp (—SH;/—ZG) , 6¢€0,m/2]

with normalizing constant

c(y) =2 yexp (—y ) erfi(1/7)
originating from (16).
Then, the reconstruction kernel for the Radon transform in 3D is given by

o150 ()

(i) Truncated polynomial: Let
) :
e;,(e) _ 1 1 g 0 € [0,arcsin(y)],
c1(y)

with ¢ (7) :4n(l+#(\/1 P -1)-21 —y2>.

Then, the reconstruction kernel for the Radon transform in 3D is
1 1— ZCOS 0 if 6 > arccos(7),
1— 2cos 0

0, otherwise.

v, (0) =

c1(y) (cos 6 — \/cos2 6 —y?), if 8 <arccos(y).

Proof. We shall show only (i). Calculatlons in case (ii) are done analogously.
With E,(0) = ey(arcsin6) = C(Y) exp (—62/7%) (15) yields
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Since
2

/ 2xexp (_xz/y ) dx = /Tyexp (_12/}/2) erfi(t/7),
0

22
which follows by the substitution y = v/#2 — x2 and from the integration formula

Jexo (2/7) dz = VL e/

2
(see [21, equation 2.33]), we obtain the reconstruction kernel

2
Vy(0) =¥y(cosB) = ! [1 — ﬁ;OSG exp (—CO;Z 6) erfi <CO;9)} .

]

Remark 3. For v > 2 the calculation of the corresponding reconstruction kernels for mollifiers

v(0) 1 { (1—5";/#>v, 0 € [0,arcsin(y)],

0, otherwise

can be done analogously.

5.2. Reconstruction kernel for the cosine transform in 3D

Proposition 3. Let y,(0) be the rotationally symmetric reconstruction kernel for the Radon
transform in 3D for the mollifier e,(6), which lies in the range of the cosine transform. Then,
the reconstruction kernel for the cosine transform for the same mollifier is given by

W(0) = g (Somg ViE) + ¥(0)4+204(0) ) . 6 € 0.7/

Proof. For a rotationally symmetric function f the block operator (2) can be calculated by

1 [cosBdf °f
Df_ﬁ(sineﬁJran“f)‘ (17

Furthermore, the following equality holds (see [6])
OR'=r'O=c"!

which can be seen using spherical harmonics. Now let ¥, be the reconstruction kernel for the
cosine transform and yy be the kernel for the Radon transform for the same mollifier e, then

Cy, = ey is equivalent to

V,y - C_]efy - DR_IEY - D\P,}/.
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In case of the Gaussian mollifier, the corresponding kernel can be written as

a2
v,(0) VT exp (Cyo—zse)erﬁ (CO;G) cosO T+ Tz] +(2m) !

with

Ty =37 —57%cos?> 6 —2 cos® 0 +2 cos* 6,
T> = 27¥(cos? 0)(1 — cos? 6 +29%) — ¥~

6. Regularization

In this section, we characterize mollifiers, which lead to regularizations. In particular, we
show that the mollifiers introduced in Section 5 fulfil these conditions.

We denote by T the generalized inverse of the operator T, where T is the spherical
Radon transform R or the cosine transform C. Let g = T f be the transform of f, g% := g+ O¢
for some noise d with ||0¢|| < € and Ty as in (9). The error of the reconstruction of f from
the data g® can be estimated from above using the triangle inequality as follows:

Eqoral = ||Tyg® — T gll < | Tyg® — Tygll + |Tyg — T ¢l = Egata + Eapprs (18)
where Eg,, represents the error of the data, i.e. the error resulting from adding €. The error

caused by the approximation 7y is represented by Eqpp,. See [19, Th. 2.4] for an upper bound
for the data error.

Definition 1. A regularization of T" for finding the solution f of Tf = g is a family of
operators {7y}y~0 with a mapping y: R x L?(.#?) — R, such that for all g € D(T™") and
for all g% with ||g — g%|| < € the equality

lim Ty(&gs)gg = T+g

£—0,g6—g
holds (in the L?-sense), and thus, Eiga goes to 0 as € goes to 0.

In order to show that our method leads to a regularization, we want to apply the following
theorem from [22] which provides a suitable characterization of regularizations in the setting
of Sobolev spaces. For both transforms under consideration, we have the norm inequality

alfllg-e < ITfll < a '[|Fllg-e (19)
with constants @ > 0 and a which depend on the dimension d (cf. (5)).

Theorem 3. Let M, : H™% — L? be a family of linear continuous operators such that

(D) IMyflle <k ll-e,  fENT)*

(i) tm ||Myf = fll;2 =0,  fEN(T)

Y—0

(iii) k(y)e—0 for €,7y—0,
where N(T) is the null space of the operator 7. Then T, = MyT " is a regularization of 7 for
finding f.

Here, condition (i) is equivalent to the convergence to 0 of the data error, and (ii) to the

convergence of the approximation error.
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6.1. Two-dimensional case

First, we analyze the two-dimensional case. As in Section 4, we consider 7-periodic
functions to simplify the notation.  For our calculations we introduce the family

{bk(-) = \/Lfexp (2ik-), k € Z}, which is an orthonormal basis of L>[—7 /2, 7/2]. Therefore
we have for f € L*[—7/2,7/2]

=0,
L2[~7/2,m /2]

R /2
ka/_ﬂ/zf(f)bk(f)df

The Parseval identity reads

/2
B amn = [ 0P = ¥ IRE

k=—oo
The Sobolev space H*[—7/2,7/2], 0 < &t < oo is the space of all functions f € L*[—7/2, /2]
with

N
li — fb
sm ‘f Y, Fibx

k=—N

where

[es)

Y (1) AP <o (20)

k=—oo
By H™%[—r/2,7/2] we denote the dual space of H*[—m/2,7/2], where the norm is also
given by (20) when the exponent o is replaced by —a (see [23, Chapter 8]). The convolution

of two m-periodic functions is given by (f*g)(x) = fff/iz f(t)g(x—1)dz. In the following we

consider mollifiers ey, ¥ < 7/2 of the form e(t) = y~'e(t/y), continuated as a 7-periodic
function, where e is a non-negative smooth function with support in [-1,1] and f_ll e(t)dt =1.
One example is the function from Section 4

et)=ky(1-A)"1{r<1}  with k;lz/l (1-x%)"dx.
Theorem 4. Let ey be of the above type, where e is in H*[—m/2,7/2]. Then

(i) Ny fll2injan/m < kW la-af-nppmp), [ €L [—7/2,7/2],

(@) Nim fley«f = fllio-z/22/2 =0, feL?-n/2,m/2].
If k(y)e — 0 for €,y — 0, then Tyg = ey * T g is a regularization for 7.

Proof. With the convolution theorem, i.e. ( f/;g) v = frgr we get

leys Flifap-mjpmm= L 1ers il

k [eS]
= Y 1@l IAl?
k=—o0
= Y (+1) @0l (P +1) Sl
k=—oo
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Combined with
o, o~ > o, , ~
k(y)? = 2‘25{(]‘2“) ’(e}’)k|2} SkZ (1) [(@)l* = lleyllfra;_npn/m <

this proves (i). Furthermore, for y < /2 we use the substitution z =/ to arrive at

) /2 /2 2
U =ers s = [ (10 = [ ra=nertiar) as

_x/2 _x/2
-/ ’:; (f z/;[f(x) Fa e /y) dr)zdx
=7 ([ v st e o

1 1?2
</ ((/11 )= sa-rpPes) ([ )’ | a

/2 rl
:/ / [f(x) — f(x— yz2)]%e(z)dz dx

—n/2J-1
1
= N f(. — 2
= /1 ||f( ) f( ’YZ)HLZ[—TC/Z,TL'/Z} e(z)dZ’

where we have used that the support of e is in [~1,1]. Since || f() = f(- = V)l 2=z /2,2/2) <
2||f||L2[fn:/2,7r/2} and || f(-) — f(-— '}/Z)Hiz[,n/zﬁ/z] goes to zero for all z € [-1,1] as y = 0
(see [24, Theorem 5.21]), Lebesgue’s theorem yields property (ii).

The application of Theorem 4 finishes the proof. [

Since o = 2 for the cosine transform in 2D, the choice of v greater than three in (10)
leads to e € H*|—m/2, /2] and thus guarantees that our method leads to a regularization.
6.2. Three-dimensional case

To derive a regularization for our estimator, we define the operator My in Theorem 3 as the
spherical convolution

Myf () = (erx )6 = [ er))f )y

where we assume that the mollifier ey is even, continuous and non-negative, which means that
ey* f is even as well.

First we analyze the data error. For this purpose, we need the notion of the Legendre
coefficients of a function g € L?[—1, 1] which are defined as

1
Lug :=21(g, P21y = 27 /_ EP()dr, neN, @1

where {P, },cn are the Legendre polynomials on [—1, 1], see e.g. [5].
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For g € L?[—1, 1] it holds that ([25, p. 116])
N on+1

g—z 4r

n=0

lim
N—soo

(Lng)Pu

which is equivalent to the Parseval identity

> 2n+1 2
el = X g (g <=

Using polar coordinates (x,y,z) = (V1 —t?>cos ¢, 1 —12sin@,1),0< ¢ <271, —1 <t <1, the
"longitude-independent’ part of the Beltrami Laplace Operator is given by (see [25, p. 116])

D, = 8t(1 —t )az _2t8t +(1 -1 )Bﬂ
For the Legendre polynomials we have (see [5, 25])
D.P,(t) = —n(n+1)P,(2), te[—1,1]

and it is not difficult to see that the operator D is selfadjoint w.r.t. the L?-inner product. Thus,
for a function g € C*[—1,1] it holds

(L0l = (27: / D£g<r>Pn<r>dr)2 - (zn / 11g<r>D£Pn<r>dr)2

1 2
= (n+1)% (27: / g(t)Pn(t)dt) =2 (n+ 1) (L,g)*
-1
and therefore for fixed /

2n+1
w0 > 2271 Dlg|%, | =22 12 - (L Dlg) (22)

= (4m)~! Z 2271 2n+ D (n+ 1) (Lyg)*

n=0
> (4m) max {2 (L) } 2 () max { (2 1) (Lg)”}

since all sumands are positive.

Lemma 1. Let ey € C'[=1,1], ¥ > 0, I € N with 27|ey|| 1y ;y = 1 and f € L*(.?). Then
there is a constant ¢ = ¢(ey) such that

ley* fllz(z2) < €l f -

Proof. Using the Funk-Hecke-Theorem ([5, 25]), we have for spherical harmonics Y,
(ey* f,Yui) / / ey((x, ) f(y)dy Y (x)dx

/ (/ er((,3)) Yok <x>dx)f<y>dy

. 278 (Lney) Yu () f(y)dy

= 27[<Lne7/) <fa Ynk> .
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Finally we get using Holder’s inequality

2n+1
Hey*fHLz 72) =) Z (e f,Yur)?
neven k=
5 20, 7212n+1 5
=4m> Y | (Luey)® (PP +1)7 (P 1) 7 Y (f, V)
neven k=1
7212n+1
=¢ Z (n2+1) Z <fa nk>
n even k=1
< & fll -2

where é(y) = 41> max,;>o { (n*+1)

(Lney)z}. Since e, € C¥ for all ¥, we know from (22)
that

é(y) < max{221+377:3||Dfey|]i2[_171],47r2} < oo,
because Loey < 2717”67/HL1[_1,1} —1. =

Next we analyze the approximation error.

Lemma 2. Let ey be an even continuous non-negative function with 27 f_ll ey(t)dt = 1. Then
the following statements are equivalent:
(i) limlleysf = fllizn =0, f L)
(if) limLyey=1, neN
Y—0
. p
(iti) lim [ ey(t)dt=0, pe€][0,1)
y—=0.J0

Proof. The equivalence of (i) and (ii) can be shown analogously to the proof of Theorem 3.2
in [26]. The rest of the proof follows ideas presented in [25].

(ii) — (iii)

Since ey is non-negative, the following inequality holds (note P»(t) = %(SIZ —1))

0< /0 ’ e (1)t < / ? eyt)dr < ——— / "3 (1= P)ey )

—p 3(1-p2) J-p
< ;/1 (1132~ )] ey(t)dr < ———— (Loey— Laey)
“3-p) a2 T T 3m(1—py) T
and the right hand side converges to zero due to (ii).

(iii) — (i)

We show that for all € > 0 and n € N the inequality
l—e<limL <1
> Yl_rf(l) 2n€y =
holds. The upper bound L,ey < 1 clearly holds, since |P,(r)| < 1 for t € [—1,1]. Because of
Py, (1) = 1, there exists some 6 with

Py (1) > +/1—¢/2, t € (0,1].
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With p = § property (iii) implies that for some ¥;
o
4n[;eﬂﬂdt

and therefore the inequality

<eg/2, Y<n

) )
4n/‘eﬂORmUﬁhzz—4n/‘eﬂﬂdtz—f/z r<m
0 0

holds. Since using again property (iii) leads to

1 1 1
— =1 t)dr =21 t)dt
o }/LI)I(I) 7167( ) ylil’(l) s 67( )

we have for all y < p:

1
47r/8 ey(t)dt > /1 —¢€/2.

It follows for y < min{y;, % }:
Lr,ey =41 (/06 ey(t)Poy,(t)dt + /51 ey(t)Pzn(t)dt>
>4r (/06 ey(t)Poy,(t)dt ++/1 — 8/2/61 ey(l‘)dt)

—&/24+1—¢/2
>1—¢ Il
Combining the results of Theorem 3 and Lemma 1 and 2 we get the following theorem.
Theorem 5. Let Myf = (ey* f)(x) be a spherical convolution such that

(i) ey€C¥[~1,1] for some [ € N with 2] > «

@)lm/eydt pelol)
(iii) &(y)e —0fore,y—0
with &(y) = 472 max,>0 { (n2—|— 1)21 (Lney)z} as in Lemma 1. Then 7}, = MYT+ is a
regularization of 7.
Consider the examples of mollifiers from Section 5 in polar coordinates:
2 V
1 (1_?) ) te[vl_yzal]’

@ &)= 5w

0, otherwise,
with v € Nand ¢y (), such that 27|ey |1y ;= 1,

~ _42
(b) (1) = yexp (~155).
with ¢(y) = 273/ 2y exp (—y~2)erfi(1/y).
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Both mollifiers are non-negative and have by construction the property

1
t=2leyll =27 [ les(o)ldr = [ epl(x))ay.

For the spherical Radon transform (19) is fulfilled for o = % and in case of the cosine

transform for @ = %, therefore we get the following corollary.

Corollary 2. Both mollifiers lead to a regularization for the spherical Radon transform. For
the cosine transform only those, which lie in c* [—1,1], i.e. all mollifiers of type (a) with v >4
and all mollifiers of type (b).

Proof. We only have to show property (ii) of the last theorem for these mollifiers. For type
(a) this is clear because it has limited support. For type (b) the result follows using L.’Hospital.
For p € [0,1) we have

[P N 112
lim [ ey(t)dt = lim —/ exp (—7> dr
0

v—0.J0 y—>OC(Y)
p 1-2
= lim Jo exp <_ 7 )dt _ §"exp (%) dy
r=0 47tf01 exp (—1;—{2) de 710 47rf01/yexp (y2)dy

2
P b
L'H 72 exp((Y) )

=" (47) " lim

7. Numerical experiments with synthetic data

In this section we present some numerical tests. We mostly use cylinder processes which
can be introduced as follows. We denote by a cylinder a line dilated with a ball of a certain
radius. The directional distribution of a stationary cylinder process is the distribution of the
direction of a typical cylinder. The intensity of a cylinder process is the mean total length of
the underlying line process in a unit volume. For a rigorous definition of cylinder processes
and their directional distribution see [27] or [28].

As already mentioned in the introduction, it is a well-known approach to estimate the
directional distribution of a cylinder process by counting intersections with test planes and
applying an inversion of the cosine transform to retrieve the directional distribution. In the
following we perform numerical simulations and apply the method introduced in this paper to
the data. We also apply other approaches and compare the results.

7.1. Inversion of the cosine transform in 2D

For the 2D case, we compare our approach to other methods for the estimation of the
directional distribution, namely a Fourier method as described in [29] and a method suggested
by Digabel (see [30]). An overview of such estimators can be found in [31]. For our tests we
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assume that we can access the data, i.e. the estimation of the rose of intersections, at the angles
”T’f), n=20,...99, and use the same points to evaluate the results. For all reconstructions, we
use the same parameters. Depending on the degree of distortion resulting from the estimation
of the cosine transform of the density, the smoothing is sometimes a little too much or too
less. For our approach we use the polynomial kernel with parameters v =5 and y = 0.4. The
parameter for Digabel’s method has been chosen such that the results are similar to the ones
of our approach.

A first analysis (see Figure 2) shows the results of the methods applied to a theoretical
cosine transform of a density, in this case a mixture of a von Mises and a beta distribution.
The von Mises density on the interval [0,27) is defined as fym(x) = W, for
u € [0,2x), k > 0, where Ij is the modified Bessel function of order zero. Thus, the function
Fm(x) = fum(x) + fum(x + 7) is a probability density on [0, 7). The beta density on [0, 1] is
defined as fg(x) = B(éﬁ)xa_l (1—x)B~1, where ., 8 > 0, and B is the beta function. To get
a density function on [0, ) we have simply rescaled it accordingly. For the density presented

here, we chose the parameters k¥ = 10, it = 1 for the von Mises distribution, and o =2, B = 10

for the beta distribution, respectively.

S ‘
- —— simulation density

---- approximate inverse
g i +  Digabel's method

Fourier approach

0.4 0.6

0.2

o
o T T T

0 1 2 3

Figure 2. Comparison of the three reconstruction methods on theoretical data

In our first simulation study we simulate a line process in the unit ball with intensity
10000 and count the intersections with the set of test lines analytically. For each direction
we consider only one test line, namely the one through the origin, which produces highly
distorted data. The results can be found in Figure 3.

For our second simulation study we have considered cylinder processes with radius 3
and intensity 25 in the unit square. These processes have been voxelized with a resolution
of 1000 x 1000 pixels, i.e. a cylinder is 6 pixels thick. Then, the images are skeletonized
using the software Avizo which produces a set of line segments as result. Using this set we
have estimated the rose of intersections taking an average over 10 simulations. Since the
intensity is always underestimated considerably we renormalized the graphs to get a valid
density function. The results are depicted in Figure 4.
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Figure 3. Comparison of the methods on simulated data in the unit ball,
intersections counted analytically
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Figure 4. Comparison of the methods on simulated voxel data in the unit square,
intersections counting based on skeletonization

7.2. Numerical integration on the sphere />

In this section, we turn to the three-dimensional case, where a numerical integration over . 2
is necessary, since only discrete values of g are available in applications. Thus, in order to use
the approximate inverse, we need a discretization of the integral

(v ) = [ g(@)y(n,0)d0. @3)
72

This integrand is an even function, so is suffices to integrate over the positive hemisphere.
The best known integration formulas over the sphere are the product formulas. They can be
easily modified to integrate only over the positive hemisphere and they have invariances for
rotations along the z-axis, which leads to reduction of storage for the reconstruction kernel.
But on the other hand these rules on the sphere have the disadvantage, that the points are badly
geometrically distributed (the points cluster at the poles) and the meshes are of different size
and shape.

To overcome this problem, there are many approaches in the literature. Well-known
examples are the so-called spherical t-designs [32] or the cubature formulae from Fliege
and Maier [33]. But here we will use the integration technique called extremal systems
of points on the sphere for the integration [34]. Approximations for these point sets and
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the corresponding integration weights can be found at the page http://web.maths.unsw.
edu.au/"rsw/Sphere/Extremal/New/index.html. These point sets are designed for
integration over the whole sphere. Unfortunately, they are not symmetric w.r.t. the origin,
so we can’t easily take advantage of the fact that our integrand is an even function. This
problem should be investigated in the future.

Remark 4. Since the reconstruction kernel is analytically given on the whole sphere and it has
only small support, it is possible to stabilize the integration by creating artificial data points
g (for example by a kernel smoother with a uniform or an exponential kernel) and use an
integration formula with more points.

7.3. Inversion of the spherical Radon transform in 3D

Figure 5 shows the reconstruction kernels as functions of the polar angle 0 for the Gaussian
mollifier. In the following we use 900 points of the corresponding transform to calculate our
reconstructions.

20

10

0 1 2 3 0 1 2 3
(a) Spherical Radon transform (b) Cosine transform
(y=0.1) (y=0.22)

Figure 5. Reconstruction kernels for the Gaussian mollifier as functions of the polar angle

We use synthetic data to illustrate the results of our numerical inversion algorithm for the
spherical Radon transform. We consider the function

f(x,v,2) =cos(3n(z—y)) + cos(3mx),

see Figure 6(a). In Figure 6, the reconstructions from the values of the Radon transform
(Figure 6(d)) are given. In this section we use the same colour map in these figures as for the
function itself. Both reconstruction kernels lead to good results, but the reconstruction with
the Gaussian kernel is smoother and works a little bit better in this example. One can see in
the plots that some of the values, especially in regions with high jumps, are too small.

Now we perturb the Radon transform of f with normal noise, i.e. we add a centred,
rotation invariant Gaussian random field X with continuous covariance function and
Cov(X(t1),X(t2)) = 0 for all dgeo(t1,12) > r, where we choose r to be small enough such that
the values of the field at two arbitrary measurement points are uncorrelated. The (constant)
standard deviation of the field is chosen as o = 0.3. Then we use the Gaussian kernel
for the reconstruction with the same regularization parameter as above, see Figure 7. This
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o

(b) Gaussian kernel (y=0.1) (¢) Truncated polynomial kernel

(y=0.2)

1

0.5

0
0

-0.5

(d) Radon transform of f (e) Defect f — fy (f) Defect f — fy
(evaluated on 900 points) (Gaussian kernel) (Truncated polynomial kernel)

Figure 6. Reconstructions from exact data

clearly illustrates that our algorithm works well with disturbed data (because of the build-in
regularization).

'
e

-2

(a) Radon transform of f with (b) Reconstruction of f from
normal noise (o = 0.3) noisy data (y=0.1)

Figure 7. Reconstruction from noisy data with Gaussian kernel

For the last test we assume that we can observe the Radon transform on only 225 data
points. In this case we also get a good reconstruction (Figure 8). If the reconstruction kernel
is pre-calculated, which is possible independently of the right hand side g, all reconstructions
can be performed in less than two seconds of computing time on a PC (CPU: E8400, RAM:
4 GB). So the computational costs are very low and also higher resolutions can be handled
within a reasonable time.
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(a) Radon transform (b) Reconstruction (y=0.12)
(evaluated on 225 points) (and stabilized integration)

Figure 8. Reconstruction from few data

7.4. Inversion of the cosine transform in 3D

7.4.1. Reconstruction of a phantom function In this subsection we illustrate the results of
our algorithms for the inversion of the cosine transform in case of synthetic data. Figure 9
shows a test phantom and its cosine transform. Due to the higher ill-posedness of the cosine
transform compared to the Radon transform, the inversion is more difficult. To have a better
view of the results, we have changed the colour map a little in Figure 10. In case of exact data,
the three circles on the equator can be reconstructed and also the circular ring near the poles.
But for noisy data, the error being about one percent, the left of the three circles is not visible
in the reconstruction anymore. Here, we used only 900 data points for the reconstruction. If
we increase the number of data points to 3600, all circles can be spotted in the reconstruction
(see Figure 10).

0.65

(a) Phantom (b) Cosine transform of the phan-
tom

Figure 9. Phantom function on the unit sphere used for the inversion of the cosine transform
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03 0.3 03
02 0.2 02
0.1
0.1 0.1
0
0 0
(a) Reconstruction from exact data (b) Reconstruction from noisy (c) Reconstruction from noisy
data (900 directions) data (3600 directions)
(o0 =0.01) (o0 =0.01)

Figure 10. Reconstructions of the phantom from its cosine transform.

7.4.2. Reconstruction of directional distributions In this subsection, we use our algorithm
for the inversion of the cosine transform to estimate the directional distribution of stationary
cylinder processes from intersections of their cylinders with planes. We have carried out
simulation studies in two different settings to show the effectiveness of our method.

In the first experiment we have simulated cylinder processes in the observation window
b(0,1). We assume that all information about each cylinder of the process is available for the
counting of the intersections. Thus, for each measuring direction 1 we have intersected the
process with the orthogonal plane - and analytically determined the number of intersections.
Finally, we use the method described in Section 5 and (1) to estimate the directional
distribution of the cylinder process. For all reconstructions, we use the regularization
parameter Y = 0.22.

First we consider cylinder processes with a mixed von Mises-Fisher directional
distribution. A von Mises-Fisher distributed random vector has the density fj x(x) =

\/T(
(2m)3/21 5 (x)

of first kind and order r. We consider the following symmetric mixed distribution with
three peaks: f(n) = ¢ L) (fu25(M) + fop25(1)). where u = 1/v/1.02(1,0.1,-0.1)7,
= (0,1,0)" and u3 = /4/17(—1,—1.5,1)T.

Figure 11 shows the estimates. In some experiments, mainly if the intensity of the process

c(x)exp(x(u,x)), where c¢(x) = and I, denotes the modified Bessel function

is low, small negative values may appear in the reconstructions. But they only appear in small
regions, where the value of the density of the directional distribution is nearly zero, so it
should be no problem to neglect these values. Another possibility to overcome this problem
is to increase the regularization parameter until all values are positive. The price for this is a
loss in resolution. In the majority of cases the estimated integral of the reconstruction over
the sphere lies between 0.975 and 1.025 in the case of process intensity 1000. It should be
mentioned that these data sets are generated by only one simulation of the cylinder process,
so they can be seen as strongly perturbed data.

As a second example we consider the directional fibre distribution introduced in [35],
which is used in modelling foams or granular porous media. The density of the directional
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0.6

0.4

0.2

0

(a) Density function (b) Reconstruction (intensity =

1000)
Figure 11. Mixed von Mises-Fisher distribution
distribution, which is independent of the azimuth angle ¢, is given by

p(9,0) P 6 €[0,x]. (24)

Ax[1+ (B2 —1)cos2 0]/
The parameter [ is called anisotropy parameter. In the case B = 1 this is the density of the
directional distribution of an isotropic cylinder process. For increasing f3, the fibres tend to
be more and more parallel to the xy-plane (the material plane). We choose 8 = 3 in our
experiment. Figure 12 shows the density function and its reconstruction based on one or 5
realizations respectively of the corresponding cylinder process.

0.2

0.1

(a) Density function (b) Reconstruction from (c) Reconstruction from
one realization 5 realizations

Figure 12. Reconstruction of the distribution defined in (24)

In a further experiment, we have simulated cylinder processes with radius 0.005 and
different directional distributions and intensity 500 in the unit cube. The union sets of these
cylinder processes have been voxelized with a resolution of 500 voxels per unit length to
generate a setting similar to the analysis of microscopic images.

Counting the intersection points of a plane with the voxelized image is a rather difficult
task, since cylinders which are (almost) parallel to the plane may be counted multiple times,
while overlapping cylinders may be counted only once. Unfortunately, this effect also depends
on the direction of the plane, so with the approach to discretize the plane and count the
intersections in the resulting images it seems impossible to generate estimates without heavy
systematical bias.
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Figure 13. Cylinder process in the unit cube with directional distribution as defined in (24)
(B = 3), intensity 200 and cylinder radius 0.01

To overcome this problem, we have skeletonized the data with the 3D image analysis
software Avizo and estimated the intersection intensities with the resulting skeleton. Here we
have also computed the values for 900 directions.

0.2
0.1
0

0.2
0.1
0

(a) Mixed von Mises distribution (b) Distribution as defined in (24)

Figure 14. Reconstruction from voxelized data

8. Application to real data

In the following, we present the results of our algorithm applied to real microscopic data. For
this purpose, we examine images of the gas diffusion layer of a polymer electrolyte membrane
fuel cell (with kind permission of the Centre for Solar Energy and Hydrogen Research, Ulm).

For both the two- and the three-dimensional data we have first applied the skeletonization
algorithm of Avizo, then estimated the rose of intersections analytically with the resulting set
of line segments, and finally applied our method to approximately invert the cosine transform.
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8.1. Two-dimensional microscopic images

In this section, we analyze 10 electron microscopic images of 10 different gas diffusion layers
of the same kind. One of them can be seen in Figure 1(a). Each has a resolution of 1024 x
696 pixels and shows different layers of the fibre tissue. The fibres are approximately 6 pixels
thick.

0.6

—— smoothed raw data |
---- approximate inverse

04 05

Intensity
0.2 0.3

0.1

0.0

angle

Figure 15. Smoothed data from the line segments of the skeleton and the result of our
algorithm

In Figure 15 we present the result of our reconstruction compared to a kernel density
estimation based on the directions of the lines and weighted with the length of the lines of the
skeleton. This shows that our method works well to reconstruct the directional distribution of
two-dimensional real data, as the result of our method is very close to the original data from
the skeletonization.

8.2. Three-dimensional synchrotron images

Here, we reconstruct the directional distribution of one synchrotron image with a resolution of
approximately 1000 x 1000 x 200 voxels, see also Figure 1(b), where a cut-out of the skeleton
generated by Avizo can be seen.

Because of the production process the directional distribution of the fibres should be
approximately isotropic w.r.t. the x-y plane, which is also shown in our reconstruction. As it
can be seen in the smoothed raw data (i.e. the directions and lengths of the segments) from
the Avizo skeleton in Figure 16(a), again there is an artifact in the reconstruction from the
skeletonization, the values at the axis directions are too low, whereas at the bisector they are
too high. Of course, this can be seen in our reconstruction (cf. Figure 16(b)) as well, although
this is not a problem of our method but of the input data. Thus, this shows that our method
works well on real three-dimensional data.
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0.2

0.15
0.15

0.1
0.1
0.05 0.05

(a) Kernel density estimation, (b) Reconstruction with the approx-
based on the raw data imate inverse method

Figure 16. Reconstruction from real data (y = 0.22), both reconstructions are based on the
skeleton generated by Avizo
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