Limit theorems for excursion sets of stationary
random fields

Evgeny Spodarev

Abstract We give an overview of the recent asymptotic results on the geometry of
excursion sets of stationary random fields. Namely, we cover a number of limit the-
orems of central type for the volume of excursions of stationary (quasi—, positively
or negatively) associated random fields with stochastically continuous realizations
for a fixed excursion level. This class includes in particular Gaussian, Poisson shot
noise, certain infinitely divisibleg—stable and max—stable random fields satisfying
some extra dependence conditions. Functional limit theorems (with the excursion
level being an argument of the limiting Gaussian process) are reviewed as well. For
stationary isotropi€!—smooth Gaussian random fields similar results are available
also for the surface area of the excursion set. Statistical tests of Gaussianity of a
random field which are of importance to real data analysis as well as results for an
increasing excursion level round up the paper.

1 Introduction

Geometric characteristics such as Minkowski functionals (or intrinsic volumes, cur-
vature measures, etc.) of excursions of random fields are widely used for data analy-
sis purposes in medicine (brain fMRI analysis, see e.qg. [5], [55], [60], [62]), physics
and cosmology (microwave background radiation analysis, see e.g. [41] and refer-
ences therein), and materials science (quantification of porous media, see e.g. [42],
[61]), to name just a few. Minkowski functionals include the volume, the surface
area and the Euler—Poinéatharacteristic (reflecting porosity) of a set with a suffi-
ciently regular boundary.

Among the possible abundance of random field models, Gaussian random fields
are best studied due to their analytic tractability. A number of results starting with
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explicit calculation of the moments of Minkowski functionals is available for them
since the mid seventies of the last century. We briefly review these results in Sec-
tion 4. However, our attention is focused on the asymptotic arguments for (mainly
non-Gaussian) stationary random fields. There has been a recent breakthrough in
this domain starting with the paper [15] where a central limit theorem (CLT) for
the volume of excursions of a large class of quasi—associated random fields was
proved. We also cover a number of hard—to—find results from recent preprints and
PhD theses.

The paper is organized as follows. After introducing some basic facts on excur-
sions and dependence structure of stationary random fields in Section 2, we briefly
review the limit theorems for excursions of stationary Gaussian procedsed)
in the next section. However, our focus is on the recent results in the multidimen-
sional cased > 1 which is considered in Sections 5 and 6. Thus, Section 5 gives
(uni- and multivariate as well as functional) central limit theorems for the volume
of excursion sets of stationary (in general, non—Gaussian) random fields over fixed,
variable or increasing excursion levels. In Section 6, a similar scope of results is
covered for the surface area of the boundary of excursion sets of stationary (but pos-
sibly anisotropic) Gaussian random fields in different functional spaces. The paper
concludes with a number of open problems.

2 Preliminaries

Fix a probability spacéR,.7,P). LetX = {X(t,»),t € RY, o € Q} be a stationary
(in the strict sense) real valued measurablét(im) ¢ RY x Q) random field. Later
on we supprese in the notation. For integrabké we assume to be centered (i.e.,
EX(0) = 0 whereo € RY is the origin point). If the second moment Xfo) exists
then we denote bg(t) = E (X(0)X(t)), t € RY the covariance function of.

Let || - |2 be the Euclidean norm iRY anddist, the Euclidean distance: for two
setsA, B C RY we putdistz(A,B) = inf{|[x—y||2 : x € A)y € B}. Denote byj| - [|e
the supremum norm iRY and bydist., the corresponding distance function.

Let -2 mean convergence in distribution. Denote Afythe complement and
by int(A) the interior of a sef in the corresponding ambient space which will be
clear from the context. Let cafdl) be the cardinality of a finite sét. Denote by
Br(x) the closed Euclidean ball with centenire RY and radiug > 0. Let.#X(-)
be thek—dimensional Hausdorff measureld, 0 < k < d. In the sequel, we use the
notationkj = /#1(B1(0)), j =0,...,d.

To state limit theorems, one has to specify the way of expansion of windows
W, C T, where the random field = {X(t), t € T} is observed, to the whole index
spaceT = RY or Z9. A sequence of compact Borel séWh)nen IS called aVan
Hove sequenc@/H) if W, T RY with

lim Vg (Wh) =0 and lim Y2 (O £ B:(0))

lim im Ve (W) =0, r>0.
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A sequence of finite subsets c Z9, n € N is calledregular growingif
cardU,) —~ and carddU,)/cardU,) —0 asn— o

wheresU, = {j € Z9\Up : dist«(j,Un) = 1} is the discrete boundary b, in Z9.

2.1 Excursion sets and their intrinsic volumes

Theexcursion sebf X at levelu € R in the compact observation winddw ¢ RY
is given byA,(X,W) = {t e W : X(t) > u}. The sojourn setunder the leveli is
SI(X,W) = {t e W: X(t) < u}, respectively.

Due to measurability oK, A,(X,W) andS,(X,W) are random Borel sets. ¥
is a.s. upper (lower) semicontinuous thaaX,W) (S,(X,W), respectively) is a
random closed set (cf. [45, Section 5.2.1]).

A popular way to describe the geometry of excursion sets is via ihiginsic
volumes Yy, j =0,...,d. They can be introduced for various families of sets such
as convex and polyconvex sets [54, Chapter 4], sets of positive reach and their finite
unions [22], unions of basic complexes [4, Chapter 6]. One possibility to define
Vj(K), j=0,...,d for aset belonging to the corresponding family is given by the
Steiner formulasee e.g. [53, Section 13.3]) as the coefficients in the polynomial
expansion of the volume of the tubular neighbourh&pe- {x € RY : dist,(x,K) <
r} of K with respect to the radius> 0 of this neighbourhood:

d
YK =Y Ky Vi (K)rd-
r ,Zo iVi

for admissible > 0 (for convexK, these are all positive. The geometric interpre-
tation of intrinsic volume¥;(K), j = 1,...,d — 2 can be given in terms of integrals

of elementary symmetric polynomials of principal curvatures for convexseitish
C2-smooth boundary, cf. [53, Sections 13.5-6]. Without going into details here, let
us discuss the meaning of somé®pfA,(X,W)), j =0,...,din several dimensions.

Ford =1, Vi (Au(X,W)) is the length of excursion intervals akg(Ay(X,W))
is the number of upcrossings of leweby the random procesé within W.

For dimensiong > 2, V4 (Au(X,W)) is always the volume (i.e., the Lebesgue
measure) ofA,(X,W) and Vy_1 (Au(X,W)) is half the surface area, i.e,/2-
A91(A,(X,W)). TheEuler characteristic ¥(Ay(X,W)) is a topological mea-
sure of “porosity” of excursion sef,(X,W). For “basic” setsA (e.g., non—empty
convex sets or sets of positive reach) we\géh) = 1. ThenVy is defined for unions
of basic sets by additivity. One can show thatdo£ 2 it holds

Vo(A) = card{connented components A} — card{holes ofA}.

The existence o¥j (Au(X,W)), j =d,d —1, is clear sinceéd,(X,W) is a Borel
set whose Lebesgue and Hausdorff measures are well defined. Intrinsic vdlumes
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of lower ordersj =0,...,d— 2 are well defined e.g. for excursion sets of sufficiently
smooth (at least?) deterministic functions (cf. [4, Theorem 6.2.2] ) and Gaussian
random fields (cf. [4, Theorem 11.3.3]) satisfying some additional conditions.

2.2 Dependence concepts for random fields

To prove limit theorems for a random fiek] some conditions have to be imposed
on the structure of the dependenceXoMixing conditions that are usually required
(cf. e.g. [20], [13]) are however rather difficult to check for a particular random
field under consideration. For this practical reason, we follow the books [16], [58,
Chapter 10] and introducssociatioras well as related dependence concepts.

A random fieldX = {X(t), t € R} is called associatedA) if

cov (f(X),9(X)) >0

for any finite subset ¢ RY, and for any bounded coordinatewise non—decreasing
functionsf : RCA) _ R, g: R _, R whereX, = {X(t), t € 1}.
A random fieldX = {X(t), t € R%} is called positively PA) or negatively NA)
associatedf
cov(f(X),9(Xs)) 20 (<0, resp)

for all finite disjoint subset$,J ¢ RY, and for any bounded coordinatewise non—
decreasing function§ : RC@d) . R g:RCAd) _, R |tis clear that ifX € A
thenX € PA.

Subclasses oA (PA, NA)- fields are certain infinitely divisible (e.g., max-
stable andx-stable) random fields. In particular, a Gaussian random field with non—
negative covariance function is associated.

A random fieldX = {X(t),t € R9} with finite second moments is callegiasi-
associatedQA) if

|cov (f(X),9(X)| < Z Z]Lipi(f)l-ipi (9) [cov (X (i), X (]))]
i€l je

for all finite disjoint subsets J c RY, and for any Lipschitz functiong: RC&rd)
R, g: RCY) _, R whereLip; () is the Lipschitz constant of functiohfor coor-
dinatei. It is known that if square integrabk € A(PA,NA) thenX € QA, cf. [16,
Theorem 5.3].

A real-valued random fielX = {X (t),t € RY} is called (BL, §)-dependentf
there exists a hon—increasing sequefice {Gr}remga 6: | 0 asr — o such that
for any finite disjoint sets, J ¢ RY with dist, (1,J) =r € R}, and any bounded
Lipschitz functionsf : RCd) R, g: RCAAY) _, R one has

\COV(f(Xu)vg(XJ))ISZ Lipi (f) Lip;j (g) [cov (X (i), X (j))] 6
i€l je
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It is often possible to choog as theCox—Grimmett coefficient

6 = sup |cov (X (y), X (t))]dt
yeRrd /RABY(Y)

whereB2(y) = {x € R9: ||x—y|l» < r}. It can be easily seen thatXf ¢ QA and
its covariance function is absolutely integrableRfhthenX is (BL, 8)—dependent.

3 Excursions of stationary Gaussian processes

Excursions of stochastic processes is a popular research topic in probability theory
since many years, see e.g. [10] and references in [27]. The vast literature on this
subject for different classes of processes suchégy Ldiffusion, stable, Gaussian
ones, etc. can be hardly covered by one review. For this reason, we concentrate on
the excursions of (mainly stationary) Gaussian processes here.

Let X = {X(t),t > 0} be a centered real valued Gaussian proce3&idfa poly-
nomial of degreen with iid N(0,1)-distributed coefficients then the mean number
of real roots of the equatioX(t) = 0 was first obtained by M. Kac [28]. It initiated
a substantial amount of papers on the roots of random algebraic polynomials, see
[12] for a review. ForCl-smooth stationary Gaussian processesxpectation of
the number of upcrossings of a levaby X in time interval[0, 1] has been studied in
[50, 51], [14], etc. Higher order factorial moments are considered in [17], see also
references therein, and [7, 8]. For reviews (also including results on non—-Gaussian
stationary processes) see [33, Sections 7.2-7.3] and [6, Chapter 3]. In [1] and [2],
the notion of the number of upcrossings of leudbr random processes has been
generalized to the Euler-Poinéacharacteristic of excursion sets of random fields.

The first proof of a central limit theorem for the number of zeros of a stationary
Gaussian process within an increasing time interval was given in [40]. Cuzick [18]
refined the assumptions given in [40] and proved a central limit theorem for the num-
ber of zerod\x (T) = 2Vp(Ao(X; [0, T])) of a centered separable stationary Gaussian
processX = {X(t),t > 0} in the time intervalO, T] as well as analogous results for
integralsfoT g(X(t)) dtasT — . He used approximations lg-dependent random
processes with spectral representation as a method borrowed from [40]. In more de-
tail, letC(t) be twice differentiable witkc(0) = 1,C"(0) = — A, and variograny of
X’ be given byy(h) = C”(h) —C"(0) = 1/2E(X'(h) — X’(0)), h > 0.

Theorem 1([18]). If C, C" are square integrable oR., [§ y(t)/tdt < e for some
e >0and
VarNx(T)/T — 02>0 as T— 4w Q)

then .
T Y2(Ny(T) —ENx(T)) -5 N(0,062) as T— 4o

where
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62— gt (Azl/zju/ (E (|X/(0)X’(t)1|_x((:(2))(; X)) =0 (E|x/(o))2> dt) .
0

Condition (1) is difficult to check and is substituted in [18, Lemma 5] by a more
tractable sufficient condition involvinG andA,. Piterbarg [48] managed to prove
the above theorem by substituting condition (1) with

[tcol+ ]+ w) de< e,
0

He approximates the point process of upcrossingX aff level u by a strongly
mixing point process.

Theorem 2([18]). Let X be a stationary Gaussian process with covariance func-
tion C being integrable ofR, . For any measurable function:gR — R such that
Eg?(X(0)) < o and gx) —g(0) is not odd it holds

T2 </OTg(X(t))dtTEg(X(O))> 4. N@©0,6%) as T+ (2)

wherec? > 0.

It is clear that the choicg(x) = 1{x € R : x > u} for anyu € R leads to the central
limit theorem for the lengtWy (Ay(X; [0, T])) of excursion intervals oX in [0, T].

Elizarov [21] first proved a functional central limit theorem for the sojourn
times of the stationary Gaussian process under the levéh our terms, for
V1(Si(X;[0,T])) if excursion levelu is allowed to vary withinR. Additionally, an
analogous result for local times

. 1
Nim = (Va(Sire (6 0.T1)) = Va(Su-£(X:0,T])))

was given. Both results were proved in the functional siizl6el] after the substi-
tutionu — f(x), x € [0,1] wheref € C[0,1] is a monotonously increasing function
with f(0) = —oo, f(1) = co.

Belyaev and Nosko [9] proved limit theorems fi(Ay(X;[0,T])), T — o as
u — oo for stationary ergodic process¥ssatisfying a number of additional (quite
technical) assumptions. In particular, these assumptions are satisiad &n er-
godic Gaussian stationary process with twice continuously differentiable covariance
function such that

IC”"(t)—C"(0)| <a/|loglt||*"*, t|O

for some constantg, € > 0.
Slud [57] gave a multiple Wiener-atrepresentation for the number of crossings
of aCl—functiony by X. In [31], methods of [40] and [18] are generalized to the
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case of functionals oX, X’ andX”. CLTs for the number of crossings of a smooth
curve y by a Gaussian procedsas well as for the number of specular points of

X (if X is a Gaussian process in time and space) are given in [32]. For a review
of results on moments and limit theorems for different characteristics of stationary
Gaussian processes see [30]. In [27], CLTs for the multivariate non-linear weighted
functionals (similar to those in (2)) of Gaussian stationary processes with multiple
singularities in their spectra, having a covariance function belonging to a certain
parametric family, are proved.

4 Moments ofV; (Ay(X,W)) for Gaussian random fields

We briefly review the state of the art f&V; (Ay(X,W)) of Gaussian random fields
X. For recent extended surveys see the books [4] and [6]. For stationary (isotropic)
Gaussian fieldX, stratifiedC?>~smooth compact manifold§ c RY and anyu € R,
formulae forEV; (Au(X,W)), j =0,...,d are given in [4, Theorems 13.2.1 and
13.4.1].

Apart from obtaining exact (or asymptoticas- c) formulae forEVj (Ay(X,W)),
j =0,...,d, the possibility of an estimate

‘P (supX(t) > U) —EVo (Au(X,W))| < g(u) (3)

tew

(the so—calledEuler-Poincaé heuristig with g(u) = o(1) asu — o is of special in-
terest. It has been proved in [4, Theorem 14.3.3] @iih) = coexp{ —u?(1+ «)/2}

for some positive constants anda if X is a (non)stationary Gaussian random field
with constant variance on a stratified maniféldasu — . Lower and upper bounds
for the density of supremum of stationary Gaussian random fkl@ghich imply
relation (3)) for anyu € R are given in [6, Theorem 8.4]. Similar bounds are proven
in [6, Theorem 8.10] for non—stationary Gaussian random figldgith a unique
point of maximum of variance in ifiV) asu — oo.

In [59], asymptotic behavior oEV; (Au(X,[a,b]?)), j = 0,d — 1,d of non-
stationary sufficiently smooth Gaussian random fields is studied as the excursion
levelu — . The variance of these fields is assumed to attain a global maximum at
a vertex offa, b]9. It is shown that the heuristic (3) still holds true.

A interesting rather general formula for the mean surface area of Gaussian excur-
sions is proven in [24]. L&tV be a compact subset B with a non-empty interior
and a finite Hausdorff measure of the boundary.Xet {X(t), t € W} be a Gaus-
sian random field with meam(t) = EX(t) and variances?(t) = VarX(t). For an ar-
bitrary (but fixed) excursion level€ R introduce the zero sét;(l(O) of the gradient
of the normalized fieldX —u) /o by 05 (0) = {t e W : O((X(t) —u)/a(t)) = O}.

Theorem 3([24]). Assume that X CY(W) a.s.,EVq4_1 (Ox*(0)) < @ ando(t) >0
forallt e W. Then
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. Y
EVs-1 (GAOW) = > [ exp[—“‘z(gza‘;)}EHD((X(O—u)/o(t)) dt.

2

Asymptotic formulae forEV; (Ay(X,W)), j =0,...,d asu — o of three sub-
classes of stable random fields (subgaussian, harmonizable, concatenated—harmonizable
ones) are given in [3].

5 Volume of excursion sets of stationary random fields

The first limit theorems of central type for the volume of excursion sets (over a
fixed levelu) of stationary isotropic Gaussian random fields were proved in [26,
Chapter 2]. There, the case of short and long range dependence (Theorem 2.2.4 and
Example 2.2.1, Theorem 2.4.6) was considered. The CLT followed from a general
Berry-Esg&en-type bound for the distribution function of properly normed integral

functionals
/B o G(X(t))dt (4)

asr — o whereG: R — R is a function such tha G?(X(0)) < o satisfying some
additional assumptions, cf. also [36]. To get the voluméA, (X, B;(0))) out of (4),
setG(x) = 1(x > u). The isotropy ofX was essential as one used expansions with
respect to the basis of Chebyshev-Hermite polynomials in the proofs. The cases of

G(x) = 1(|x| = u), max{0,x}, |x|

as well as ofG depending on a parameter and of weighted integrals in (4) are con-
sidered as well.

In a remark [26, p. 81], it was noticed that similar CLTs can be expected for
non-Gaussian mixing random fields. The aim of this Section is to review the recent
advances in proving such CLTs for various classes of stationary random fields that
include also the (not necessarily isotropic) Gaussian case.

For instance, random fields with singularities of their spectral densities are con-
sidered in [37]. In Section 3.2 of that book, non—central limit theorems for the vol-
ume of excursions of stationary isotropic Gamma correlatedy@agndom fields
over a radial surface (i.e., the lewelis not constant anymore, but a function of
[t||l2, wheret € RY is the integration variable in (4)) are proved. (Non)central limit
theorems for functionals (4) of stationary isotropic vector—valued Gaussian random
fields are given in the recent preprint [34]. There, the case of long and short range
dependence is considered as well as applicatios—tandt—distributed random
fields.

The asymptotic behavior of tail probabilities

P(/ ex<t)dt>x), X — o
JW
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for a homogeneous smooth Gaussian random Hedth a compactv  RY is con-
sidered in [38], see [39] for further extensions.

5.1 Limit theorems for a fixed excursion level

The main result (which we call methatheoreican be formulated as follows.

Theorem 4 (Methatheorem).Let X be a strictly stationary random field satisfying
some additional conditiorend uc R fixed. Then, for any sequence of V H-growing
sets W c RY, one has

Va (A (X Wh)) — P(X(0) 2 0)-Va ) 4, - g 52 (5)
Va (Wh) ,

as n— oo, Here
o2(u) = /R cov(1{X(0) > u}, 1{X (t) > u}) dit. )

Depending on the class of random fields, these additional conditions will vary. First
we consider the family of square—integrable random fields.

5.1.1 Quasi-associated random fields

Theorem 5 ([15]). Let X= {X (t),t € RY} € QA be a stationary square-integrable
random field with a continuous covariance function C such j@ét)| = & (|t|, %)
for somen > 3d as||t||, — . Let X(0) have a bounded density. TheA(u) € (0, )
and Theorem 4 holds true.

Let us give an idea of the proof. Introduce the random feld {Z(j), j € 29}
by
Z(i>=/ X(t) > ubdt—P(u), jez )
b j+[07l]d

HereW (u) = P(X(0) > u) is the tail distribution function oX (o). It is clear that the
sum ofZ(j) over indicesj € W, N Z9 approximates the numerator in (5). One has
to show tha¥ can be approximated by a sequencéRif, 6)-dependent stationary
centered square-integrable random fiefgsy | 0, on 74. The proof finishes by
applying the following CLT taZ, for eachy > 0.

Theorem 6 ([16], Theorem 3.1.12)Let Z= {Z(j), j € Z} be a(BL, #)-dependent
strictly stationary centered square-integrable random field. Then, for any sequence
of regularly growing sets Jc Z9, one has

S(Un) /+/card(Up) & .4 (0,62)
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as n— oo, with
o?=3 cov(Z(0),Z(j)).
jezd
We give two examples of random fields satisfying Theorem 5.

Example 1([15]). Let X = {X(t), t € RY} be a stationarghot noise random field
given byX(t) = Sien &9 (t —X) whereIT, = {x;} is a homogeneous Poisson point
process ifRY with intensity A € (0,), {&} is a family of i.i.d. non—negative ran-
dom variables withE £? < « and characteristic functiop; . Assume thafT, and
{&) are independent. Moreover, let RY — R, be a bounded and uniformly con-
tinuous Borel function withp(t) < go(||t]|2) = & (|t]|2*) as]|t||2 — e for a func-
tiongo: Ry — Ry, a > 3d, and

/

Then Theorem 5 holds true.

exp{/l/ﬂ.@ (z(sp(t) — 1) dt}‘ ds< .

Example Z[15]). Consider a stationary Gaussian random file {X (t),t € R}
with a continuous covariance functi@f-) such thafC(t)| = & (||t||;*) for some
o > d as||t||, — . LetX (0) ~ .4 (a,7?). Then, Theorem 5 holds true with

?(u) 1/ /p(t) L o %% gsa
c%(u) = — e 19 ds
2w JrdJo  VJ1-¢& b

wherep(t) = corr(X(0),X(t)). In particular, foru = a one has

o2(a) = % /R arcsin(p(t)) dt

5.1.2 PA- or NA-random fields

What happens if the fiel does not have the finite second moment? In this case,
another set of conditions for our methatheorem to hold was proven in [29, Theorem
3.59].

Theorem 7.Let X = {X(t), t € R9} € PA(NA) be stochastically continuous satis-
fying the following properties:

1. the asymptotic variance?(u) € (0, ) (cf. its definition in(6)),
2. P(X(0) = u) = 0for the chosen level @ R.

Then Theorem 4 holds.

The idea of the proof is first to show that the random figle- {Z(j), j € 9}
defined in (7) isPA (NA). Second, use [16, Theorem 1.5.17] to prove thas
(BL, 8)—dependent. Then apply Theorem &to
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A number of important classes of random fields satisfy Theorem 7. For instance,
stationary infinitely divisible random fieldé = {X(t), t € RY} with spectral repre-
sentation

X(t):/E'ft(x)A(dx), teRr?

whereA is a centered independently scattered infinitely divisible random measure
on space&e andf; : E — R areA-integrable kernels, are associated and hétce

by [16, Chapter 1, Theorem 3.27]. The finite susceptibility conditidfu) € (0, )

can be verified by [29, Lemma 3.71]. Further examples of random fields satisfying
Theorem 7 arstablerandom fields which we consider in more detail following [29,
Section 3.5.3].

Max—stable random fields

LetX = {X(t), te Rd} be a stationary max-stable random field with spectral rep-
resentation
X(t) =maxgifi(yi), teR,
e

wheref; : E — R, is a measurable function defined on the measurable $gage
for all t € RY with

Lrouay =1 ter,

and{(&,Vi) }ien is the Poisson point process (0 o) x E with intensity measure
E2dE x u(dy). It is known that all max—stable distributions are associated and
hencePA by [49, Proposition 5.5.29]. The field is stochastically continuous if
|| fs — fi|| .2 — 0 ass— t (cf. [23, Lemma 2]). Conditiors?(u) € (0, ) is satisfied
if
/ / min{ fo(y), fe(y)} i (dy) dt < o.
R4 JE

a—stable random fields

LetX = {X(t), t € R%} be a stationarg-stable random fielde{ € (0,2), for sim-
plicity o # 1) with spectral representation

X(t) = /E f(X)A(dX), teRY

whereA is a centered independently scatteoeestable random measure on space
E with control measuren and skewness intensity : E — [-1,1], fi :E — R,

is a measurable function ofE, m) for all t € RY. By [52, Proposition 3.5.1]X is
stochastically continuous ifz | fs(x) — ft(x)|*m(dx) — 0 ass — t for anyt € RY.
Conditionc?(u) € (0, ) is satisfied if
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1/(14+a)
> dt < co.

/Rd </Emin{ fo(x)|%, | fe(x)|*} m(dx)

5.2 A multivariate central limit theorem

If a finite number of excursion levelg € R, k=1,...,r is considered simultane-
ously, a multivariate analogue of Theorem 4 can be proven. Introduce the notation

Su(Wh) = (Vg (Auy (X, Wh)) - Vet (A (X W) T () = (P (W), P ()

Theorem 8([15], [29]). Let X be the above random field satisfying Theorem 4.
Then, for any sequence of V H-growing sefsd\R¢Y, one has

Va (Wh) ™ (Su(Wh) — %/(u) Vi (Wh)) - 4/ (0,Z(w)
as n— oo. Here,X(U) = (0im(U))] peq With
Gim(U) = /d cov (1{X(0) > U}, 1{X (t) > Um}) dt.
R
If X is Gaussian as in Example 2, we have

Oim(U) =

1 p) 1 (u — a)Z — 2r(u — @) (Um — @) + (Um — a)z
E/Rd /o \/We)(p{_ 202(1- &) } dsdt

However, the explicit computation of the elements of makifor the majority of
fields X (except for Gaussianity) seems to be a very complex task. In order to over-
come this difficulty in statistical applications of the methatheorem to testing, the
matrix X can be (weakly) consistently estimated from one observation of a station-
ary random fieldX, see [47], [58, Section 9.8.3] and references therein.

Statistical version of the CLT and tests
LetX be a random field satisfying Theoremug,c€ R, k= 1,...,r and(Wh)nen be @

sequence of H-growing sets. LeCn = (Enim)| 1,1 be a weakly consistent estimator
for the nondegenerate asymptotic covariance matfiy, i.e., forany,m=1,... r

A P
Cnim — Oim(U) asn — oo,

Then
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G2V (Wh) ™72 (S, (Wh) — #(u) Vg (k) = A (O,1). ®)

Based on the latter relation, an asymptotic test for the following hypotheses can be
constructed:

Ho: X is a random field satisfying Theorem 4 with tail distribution functiif-)

vs.Hs : negation of H. As a test statistic, we use
To =V (Wh) ™ (Su(Wh) — P (u) Ve (Wh)) " Gt (Su(Wh) — P(U) Vg (Wh))

which is asymptotically>—distributed by continuous mapping theorem and relation

(8): Ty LN X7 asn — . Hence, reject the null-hypothesis at a confidence levei’1
if T > 2?2, wherey?, , is the(1—v)—quantile ofy—law.

5.3 Functional limit theorems

A natural generalization of multivariate CLTs is a functional CLT where the excur-
sion levelu € R is treated as a variable, which also appears as a (“time”) index in
the limiting Gaussian process. In order to state the main results, introduSé&dhe
rokhod space [R) of cadlag functions oriR endowed with the usual Skorokhod
topology, cf. [11, Section 12]. Denote by the weak convergence D(R).

Define the stochastic processgs= {Yn(u), u€ R} by

Ya(u) = nTl/z (vd (Au(X,[0,n]%)) —nd‘P(u)), ueR. (9)

Introduce the condition

(%) Forany subsel = {ty,...,t} C RY and its partitiorT = T; UT, there exist some
constants(T),y > 0 such that

cov <ti|;L Pap(X(t)) 7tj|€_]r2 Pab (X(tj))> <c(T) (l—|—distoo(T17T2))f(3d+ )

whereg, p(x) = 1(a < x < b) — P(a < X(0) < b) for any real numbera < b.
The following functional CLT is proven in [43, Theorem 1 and Lemma 1].

Theorem 9.Let X = {X(t), t € RY} be a real valued stationary random field with
a.s. continuous sample paths and a bounded density of the distributioiopf X
Let condition(x) and Theorem 4 be satisfied. Then=¥Y as n— o where Y=
{Y(u), ue R} is a centered Gaussian stochastic process with covariance function

Cr(U,v) = /R Lcov(1{X(0) > u}, 1{X (1) >V}) dt. uveER.
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In particular, conditior(x) is satisfied ifX € A is square integrable with covariance
functionC that admits a bound

() < S X+ te)*

for all t € RY and some; > 0, A > 9d. The proofs are quite technical involving a
Mbricz bound for the moment of a supremum of (absolute values of) partial sums
of random fields orZ9, cf. [46, Theorem 2].

For max—stable random fields introduced in Section 5.1.2 condiipis satis-
fied if forany T = {ts,...,t%} C RY and its partitionT = T, U T, there exist some
constants(T),y > 0 such that

/Emin{maxfti (y),tr_nerc%xftj (y)} n(dy) <c(T)(1+ distw(Tl,Tz))—<3d+y>' (10)

tieTy

For a—stable moving averages, i.e;-Stable random fields from Section 5.1.2
with f(-) = f(t —-) for anyt € RY, condition (10) should be replaced by

(/Rd min{ma’(f(ti —y), maxf (t; —y)}a m(dy)> 1/(+a)

tieTy tjeT

< o(T) (1+ diste(Ty, T2)) ~ Y

These results are proven (under slightly more general assumptions) in [29, Section
3.5.5] together with analogous conditions for infinitely divisible random fields (that
are too lengthy to give them in a review paper) as well as examples of random fields
satisfying them.

Theorem 9 together with the continuous mapping theorem can be used to test
hypotheses of Section 5.2 with test statistic

T — SUR,cr Yn(U)
= 2R )
EYZ(0)

if a large deviation result for the limiting Gaussian proc¥ss available, cf. [43,
Corollary 1].

5.4 Limit theorem for an increasing excursion level

If the levelu — « one may also expect that a CLT for the volume of the correspond-
ing excursion set holds, provided that a particular rate of convergemde affinity
is chosen in accordance with the expansion rate of the observation window.

First results of this type were proven in [26, Theorems 2.7.1, 2.7.2, 2.8.1] for
stationary isotropic Gaussian random fields with short or long range dependence. A
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generalization to the case of station®4-random fields is given in a recent preprint
[19]:

Theorem 10.Let X = {X(t), t € RY} € PA be a stationary random field with a
continuous covariance function C such thatt)| = ¢ (||t||,*) for someo > 3d
as||t||, — o. Let X(0) have a bounded density g). Assume that the variance of

Vg (A, (X, [0,n)%)) being equal to

62 = / / cov (1{X (0) > Un}, 1{X (t) > un}) dtdx

o] [—x,n—xd

satisfies

02—, n—o. (12)

Introduce y(X) = SUR.x Px(0)(¥), X € R. Choose a sequence of excursion levels
Un — o such that

ndy2/3(un)

On
Then it holds

Va (Au, (X, 10,n))) —nP(X(0) > tn) 4
On

N (0,1) (13)

as N— oo,

Conditions (11), (12) are checked in [19] explicitly for stationary (non-isotropic)
Gaussian as well as shot noise random fields leading to quite tractable simple ex-
pressions. For instance, it suffices to choase O(/logn), n — o in the Gaussian
case.

Student and Fisher—Snedecor random fields are considered in the recent preprint
[34, Section 7]. CLTs for spherical measures of excess

/ 1{X(t) > u(r)} #1(dt)
9B, (0)

of a stationary Gaussian isotropic random fi¥ldver the moving level(r) — oo,
r — oo are proved in [37, Section 3.3]. For yet another type of geometric measures
of excess over a moving level see [35].

6 Surface area of excursion sets of stationary Gaussian random
fields

Limit theorems folVy_1 (Au(X,Wh)) have been first proven for one fixed lewednd
a stationary isotropic Gaussian random fi¥ldh [31] in dimensiond = 2. There,
the expansion dfy_1 (Au(X,Wh)) in Hermite polynomials is used. In higher dimen-
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sions, a multivariate analogue of this result can be proven along the same guidelines,
see [56, Proof of Theorem 1] for a shorter proof. A CLT for the integral of a contin-
uous function along a level cuné®, (X, W) for an a.sC'-smooth centered mixing
stationary random fieldX = {X(t), t € R?} in a rectangl&V is proved in [25].

6.1 Functional limit theorems

Let us focus on functional LTs fory_1 (dAu(X,Wh)) proven in [44] for the phase
spacelL?(R,v) (wherev is a standard Gaussian measur&®jnand in [56] for the
phase spacg(R).

Let X = {X(t), t € RY}, d > 1, be a centered stationary and isotropic Gaussian
random field with a.sC'—smooth paths and covariance funct®r C?(RY) satis-
fying C(0) =1 as well as

9°C(t)
at 8tj

1 Jjoc)|, 2
|C(t)|+1_c(t)i; a; ‘+i,le

for large||t||> (wheret = (t1,...,t3) ") and a bounded continuous function
g:RY — R, such that limy, ..g(t) = 0 and

/Rdmdt@.

Denote by[IX(t) the gradient oiX(t). Assume that th¢2d + 2)-dimensional ran-
dom vector(X (0), X(t), 0X(0),0X(t)) " is non—degenerate for ale RY\ {o}. Let
A% = —9°C(0)/at2.

Introduce the sequence of random proce$3gs, n € N by

<g(t) (14)

i) = 220 (Voo (9. [0.0%)) ~ EVes (A%, 0% ) (15)

whereu € R. They will be interpreted as random elements(R, v). Let— denote
the weak convergence of random elements(R, v). Let

k(1) = £ (X(1)) exp{—X?(1)/2} [OX()]l2. t € RS,

Theorem 11([44]). Under the above assumptions on X and C, it holdsYY as
n— oo where Y is a centered Gaussian random element i Lv) with covariance
operator

Var(Y, ) 2.y = L[ ov(k(0), k() dt, e L2(®R,v).

— | c
27 Jrd
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Ford > 3, processe¥, have a continuous modificatiory if conditions onX
starting from (14) are replaced by the following ones:

1. Covariance functio as well as all its first and second order derivatives belong
to LY(R)

2. There exist € (0,1) andB > 0 such that for alh € [, 7] ande, = (h,0,0...,0)" €
RY the determinant of the covariance matrix of the vector

"
(X0 x(@). 52, 25

is not less tharh|?.
Let — denote the weak convergence of random elemern@sit). Denote bypy
(Px(0),x (1)) the density ofX(t) ( (X(0),X(t)) "), t € RY, respectively. Set

He(u,v) = E(J[OX(0)[|2|OX(t)[|2 [X(0) = u, X(t) =V), uveR, teR%
In definition (15), assumé = 1.

Theorem 12([56]). Under the above assumptions on X and C, it hdigs- Y as
n— oo for d > 3where Y is a centered Gaussian random process with covariance
function

cov (Y(W).Y(¥)) = [ (Fe(t,v)Pio) it (tV) = (EIEX(0)2)” Pxio) (6P (¥))

foru,veR.

The casal = 2 is still open.

7 Open problems

It is a challenging problem to prove the whole spectrum of limit theorems for
Vj (Au(X,Wh)) of lower ordersj = 0,...,d — 2 for isotropicC2-smooth stationary
Gaussian random fields. Functional limit theorems and the case of increasing level
u — oo are therein of special interest. Further perspective of research is the general-
isation of these (still hypothetic) results to non—Gaussian random fields.

Another open problem is to prove limit theorems for a large class of functionals
of non—Gaussian stationary random fields that includes the volume of excursion
sets. It is quite straightforward to do this for

[ ax)a
Wh
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for a measurable functiog: R — R such thatE g?(X(0)) < «. For more general
classes of functionals of the fieKl and the observation windoW, it is still terra
incognita
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