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Abstract We give an overview of the recent asymptotic results on the geometry of
excursion sets of stationary random fields. Namely, we cover a number of limit the-
orems of central type for the volume of excursions of stationary (quasi–, positively
or negatively) associated random fields with stochastically continuous realizations
for a fixed excursion level. This class includes in particular Gaussian, Poisson shot
noise, certain infinitely divisible,α–stable and max–stable random fields satisfying
some extra dependence conditions. Functional limit theorems (with the excursion
level being an argument of the limiting Gaussian process) are reviewed as well. For
stationary isotropicC1–smooth Gaussian random fields similar results are available
also for the surface area of the excursion set. Statistical tests of Gaussianity of a
random field which are of importance to real data analysis as well as results for an
increasing excursion level round up the paper.

1 Introduction

Geometric characteristics such as Minkowski functionals (or intrinsic volumes, cur-
vature measures, etc.) of excursions of random fields are widely used for data analy-
sis purposes in medicine (brain fMRI analysis, see e.g. [5], [55], [60], [62]), physics
and cosmology (microwave background radiation analysis, see e.g. [41] and refer-
ences therein), and materials science (quantification of porous media, see e.g. [42],
[61]), to name just a few. Minkowski functionals include the volume, the surface
area and the Euler–Poincaré characteristic (reflecting porosity) of a set with a suffi-
ciently regular boundary.

Among the possible abundance of random field models, Gaussian random fields
are best studied due to their analytic tractability. A number of results starting with
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explicit calculation of the moments of Minkowski functionals is available for them
since the mid seventies of the last century. We briefly review these results in Sec-
tion 4. However, our attention is focused on the asymptotic arguments for (mainly
non–Gaussian) stationary random fields. There has been a recent breakthrough in
this domain starting with the paper [15] where a central limit theorem (CLT) for
the volume of excursions of a large class of quasi–associated random fields was
proved. We also cover a number of hard–to–find results from recent preprints and
PhD theses.

The paper is organized as follows. After introducing some basic facts on excur-
sions and dependence structure of stationary random fields in Section 2, we briefly
review the limit theorems for excursions of stationary Gaussian processes (d = 1)
in the next section. However, our focus is on the recent results in the multidimen-
sional cased > 1 which is considered in Sections 5 and 6. Thus, Section 5 gives
(uni- and multivariate as well as functional) central limit theorems for the volume
of excursion sets of stationary (in general, non–Gaussian) random fields over fixed,
variable or increasing excursion levels. In Section 6, a similar scope of results is
covered for the surface area of the boundary of excursion sets of stationary (but pos-
sibly anisotropic) Gaussian random fields in different functional spaces. The paper
concludes with a number of open problems.

2 Preliminaries

Fix a probability space(Ω ,F ,P). LetX = {X(t,ω), t ∈Rd, ω ∈Ω} be a stationary
(in the strict sense) real valued measurable (in(t,ω) ∈Rd×Ω ) random field. Later
on we suppressω in the notation. For integrableX we assumeX to be centered (i.e.,
EX(o) = 0 whereo∈ Rd is the origin point). If the second moment ofX(o) exists
then we denote byC(t) = E (X(o)X(t)), t ∈ Rd the covariance function ofX.

Let ‖ · ‖2 be the Euclidean norm inRd anddist2 the Euclidean distance: for two
setsA,B⊂ Rd we putdist2(A,B) = inf{‖x− y‖2 : x∈ A,y∈ B}. Denote by‖ · ‖∞
the supremum norm inRd and bydist∞ the corresponding distance function.

Let
d−→ mean convergence in distribution. Denote byAc the complement and

by int(A) the interior of a setA in the corresponding ambient space which will be
clear from the context. Let card(A) be the cardinality of a finite setA. Denote by
Br(x) the closed Euclidean ball with center inx∈ Rd and radiusr > 0. LetH k(·)
be thek–dimensional Hausdorff measure inRd, 06 k 6 d. In the sequel, we use the
notationκ j = H j(B1(o)), j = 0, . . . ,d.

To state limit theorems, one has to specify the way of expansion of windows
Wn ⊂ T, where the random fieldX = {X(t), t ∈ T} is observed, to the whole index
spaceT = Rd or Zd. A sequence of compact Borel sets(Wn)n∈N is called aVan
Hove sequence(VH) if Wn ↑ Rd with

lim
n→∞

Vd (Wn) = ∞ and lim
n→∞

Vd (∂Wn⊕Br(o))
Vd (Wn)

= 0, r > 0.
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A sequence of finite subsetsUn ⊂ Zd, n∈ N is calledregular growingif

card(Un)→ ∞ and card(δUn)/card(Un)→ 0 as n→ ∞

whereδUn = { j ∈ Zd \Un : dist∞( j,Un) = 1} is the discrete boundary ofUn in Zd.

2.1 Excursion sets and their intrinsic volumes

Theexcursion setof X at levelu∈ R in the compact observation windowW ⊂ Rd

is given byAu(X,W) = {t ∈W : X(t) > u}. The sojourn setunder the levelu is
Su(X,W) = {t ∈W : X(t) 6 u}, respectively.

Due to measurability ofX, Au(X,W) andSu(X,W) are random Borel sets. IfX
is a.s. upper (lower) semicontinuous thenAu(X,W) (Su(X,W), respectively) is a
random closed set (cf. [45, Section 5.2.1]).

A popular way to describe the geometry of excursion sets is via theirintrinsic
volumes Vj , j = 0, . . . ,d. They can be introduced for various families of sets such
as convex and polyconvex sets [54, Chapter 4], sets of positive reach and their finite
unions [22], unions of basic complexes [4, Chapter 6]. One possibility to define
Vj(K), j = 0, . . . ,d for a setK belonging to the corresponding family is given by the
Steiner formula(see e.g. [53, Section 13.3]) as the coefficients in the polynomial
expansion of the volume of the tubular neighbourhoodKr = {x∈Rd : dist2(x,K) 6
r} of K with respect to the radiusr > 0 of this neighbourhood:

H d (Kr) =
d

∑
j=0

κd− jVj(K)rd− j

for admissibler > 0 (for convexK, these are all positiver). The geometric interpre-
tation of intrinsic volumesVj(K), j = 1, . . . ,d−2 can be given in terms of integrals
of elementary symmetric polynomials of principal curvatures for convex setsK with
C2–smooth boundary, cf. [53, Sections 13.5-6]. Without going into details here, let
us discuss the meaning of some ofVj (Au(X,W)), j = 0, . . . ,d in several dimensions.

For d = 1, V1 (Au(X,W)) is the length of excursion intervals andV0 (Au(X,W))
is the number of upcrossings of levelu by the random processX within W.

For dimensionsd > 2, Vd (Au(X,W)) is always the volume (i.e., the Lebesgue
measure) ofAu(X,W) and Vd−1 (Au(X,W)) is half the surface area, i.e, 1/2 ·
H d−1 (∂Au(X,W)). TheEuler characteristic V0 (Au(X,W)) is a topological mea-
sure of “porosity” of excursion setAu(X,W). For “basic” setsA (e.g., non–empty
convex sets or sets of positive reach) we setV0(A) = 1. ThenV0 is defined for unions
of basic sets by additivity. One can show that ford = 2 it holds

V0(A) = card{connented components ofA}−card{holes ofA}.

The existence ofVj (Au(X,W)), j = d,d−1, is clear sinceAu(X,W) is a Borel
set whose Lebesgue and Hausdorff measures are well defined. Intrinsic volumesVj
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of lower ordersj = 0, . . . ,d−2 are well defined e.g. for excursion sets of sufficiently
smooth (at leastC2) deterministic functions (cf. [4, Theorem 6.2.2] ) and Gaussian
random fields (cf. [4, Theorem 11.3.3]) satisfying some additional conditions.

2.2 Dependence concepts for random fields

To prove limit theorems for a random fieldX, some conditions have to be imposed
on the structure of the dependence ofX. Mixing conditions that are usually required
(cf. e.g. [20], [13]) are however rather difficult to check for a particular random
field under consideration. For this practical reason, we follow the books [16], [58,
Chapter 10] and introduceassociationas well as related dependence concepts.

A random fieldX =
{

X(t), t ∈ Rd
}

is called associated (A) if

cov ( f (XI ) ,g(XI )) > 0

for any finite subsetI ⊂ Rd, and for any bounded coordinatewise non–decreasing
functions f : Rcard(I) → R, g : Rcard(I) → R whereXI = {X(t), t ∈ I}.

A random fieldX =
{

X(t), t ∈ Rd
}

is called positively (PA) or negatively (NA)
associatedif

cov ( f (XI ) ,g(XJ)) > 0 (6 0, resp.)

for all finite disjoint subsetsI ,J ⊂ Rd, and for any bounded coordinatewise non–
decreasing functionsf : Rcard(I) → R, g : Rcard(J) → R. It is clear that ifX ∈ A
thenX ∈ PA.

Subclasses ofA (PA, NA)– fields are certain infinitely divisible (e.g., max-
stable andα-stable) random fields. In particular, a Gaussian random field with non–
negative covariance function is associated.

A random fieldX =
{

X(t), t ∈ Rd
}

with finite second moments is calledquasi-
associated(QA) if

|cov ( f (XI ) ,g(XJ))| ≤∑
i∈I

∑
j∈J

Lipi ( f )Lip j (g) |cov (X (i) ,X ( j))|

for all finite disjoint subsetsI ,J⊂Rd, and for any Lipschitz functionsf : Rcard(I) →
R, g : Rcard(J) → R whereLipi ( f ) is the Lipschitz constant of functionf for coor-
dinatei. It is known that if square integrableX ∈ A(PA,NA) thenX ∈QA, cf. [16,
Theorem 5.3].

A real-valued random fieldX = {X (t) , t ∈ Rd} is called(BL,θ)-dependentif
there exists a non–increasing sequenceθ = {θr}r∈R+

0
, θr ↓ 0 asr → ∞ such that

for any finite disjoint setsI , J ⊂ Rd with dist∞ (I ,J) = r ∈ R+
0 , and any bounded

Lipschitz functionsf : Rcard(I) → R, g : Rcard(J) → R, one has

|cov ( f (XI ) ,g(XJ))| ≤∑
i∈I

∑
j∈J

Lipi ( f )Lip j (g) |cov (X (i) ,X ( j))|θr .
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It is often possible to chooseθ as theCox–Grimmett coefficient

θr = sup
y∈Rd

∫
Rd\B∞

r (y)
|cov (X (y) ,X (t))|dt

whereB∞
r (y) = {x∈ Rd : ‖x− y‖∞ 6 r}. It can be easily seen that ifX ∈ QA and

its covariance function is absolutely integrable onRd thenX is (BL,θ)–dependent.

3 Excursions of stationary Gaussian processes

Excursions of stochastic processes is a popular research topic in probability theory
since many years, see e.g. [10] and references in [27]. The vast literature on this
subject for different classes of processes such as Lévy, diffusion, stable, Gaussian
ones, etc. can be hardly covered by one review. For this reason, we concentrate on
the excursions of (mainly stationary) Gaussian processes here.

Let X = {X(t), t > 0} be a centered real valued Gaussian process. IfX is a poly-
nomial of degreen with iid N(0,1)-distributed coefficients then the mean number
of real roots of the equationX(t) = 0 was first obtained by M. Kac [28]. It initiated
a substantial amount of papers on the roots of random algebraic polynomials, see
[12] for a review. ForC1–smooth stationary Gaussian processesX, expectation of
the number of upcrossings of a levelu by X in time interval[0,1] has been studied in
[50, 51], [14], etc. Higher order factorial moments are considered in [17], see also
references therein, and [7, 8]. For reviews (also including results on non–Gaussian
stationary processes) see [33, Sections 7.2-7.3] and [6, Chapter 3]. In [1] and [2],
the notion of the number of upcrossings of levelu for random processes has been
generalized to the Euler-Poincaré characteristic of excursion sets of random fields.

The first proof of a central limit theorem for the number of zeros of a stationary
Gaussian process within an increasing time interval was given in [40]. Cuzick [18]
refined the assumptions given in [40] and proved a central limit theorem for the num-
ber of zerosNX(T) = 2V0(A0(X; [0,T])) of a centered separable stationary Gaussian
processX = {X(t), t > 0} in the time interval[0,T] as well as analogous results for
integrals

∫ T
0 g
(
X(t)

)
dt asT →∞. He used approximations bym–dependent random

processes with spectral representation as a method borrowed from [40]. In more de-
tail, letC(t) be twice differentiable withC(0) = 1,C′′(0) =−λ2 and variogramγ of
X′ be given byγ(h) = C′′(h)−C′′(0) = 1/2E(X′(h)−X′(0)), h > 0.

Theorem 1([18]). If C, C′′ are square integrable onR+,
∫

ε

0 γ(t)/t dt < ∞ for some
ε > 0 and

VarNX(T)/T → σ2 > 0 as T→+∞ (1)

then
T−1/2 (NX(T)−ENX(T)) d−→ N(0,σ2) as T→+∞

where
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σ
2 = π

−1

λ
1/2
2 +

∞∫
0

(
E (|X′(0)X′(t)||X(0) = X(t) = 0)√

1−C2(t)
− (E |X′(0)|)2

)
dt

 .

Condition (1) is difficult to check and is substituted in [18, Lemma 5] by a more
tractable sufficient condition involvingC andλ2. Piterbarg [48] managed to prove
the above theorem by substituting condition (1) with

∞∫
0

t
(
|C(t)|+ |C′(t)|+ |C′′(t)|

)
dt < ∞.

He approximates the point process of upcrossings ofX of level u by a strongly
mixing point process.

Theorem 2([18]). Let X be a stationary Gaussian process with covariance func-
tion C being integrable onR+. For any measurable function g: R → R such that
Eg2(X(0)) < ∞ and g(x)−g(0) is not odd it holds

T−1/2
(∫ T

0
g
(
X(t)

)
dt−TEg

(
X(0)

)) d−→ N(0,σ2) as T→+∞ (2)

whereσ2 > 0.

It is clear that the choiceg(x) = 1{x∈ R : x > u} for anyu∈ R leads to the central
limit theorem for the lengthV1(Au(X; [0,T])) of excursion intervals ofX in [0,T].

Elizarov [21] first proved a functional central limit theorem for the sojourn
times of the stationary Gaussian process under the levelu, in our terms, for
V1(Su(X; [0,T])) if excursion levelu is allowed to vary withinR. Additionally, an
analogous result for local times

lim
ε→+0

1
2ε

(V1(Su+ε(X; [0,T]))−V1(Su−ε(X; [0,T])))

was given. Both results were proved in the functional spaceC[0,1] after the substi-
tution u 7→ f (x), x∈ [0,1] where f ∈C[0,1] is a monotonously increasing function
with f (0) =−∞, f (1) = ∞.

Belyaev and Nosko [9] proved limit theorems forV1(Au(X; [0,T])), T → ∞ as
u→ ∞ for stationary ergodic processesX satisfying a number of additional (quite
technical) assumptions. In particular, these assumptions are satisfied ifX is an er-
godic Gaussian stationary process with twice continuously differentiable covariance
function such that ∣∣C′′(t)−C′′(0)

∣∣6 a/| log|t||1+ε , t ↓ 0

for some constantsa,ε > 0.
Slud [57] gave a multiple Wiener- Itô representation for the number of crossings

of aC1–functionψ by X. In [31], methods of [40] and [18] are generalized to the
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case of functionals ofX, X′ andX′′. CLTs for the number of crossings of a smooth
curveψ by a Gaussian processX as well as for the number of specular points of
X (if X is a Gaussian process in time and space) are given in [32]. For a review
of results on moments and limit theorems for different characteristics of stationary
Gaussian processes see [30]. In [27], CLTs for the multivariate non–linear weighted
functionals (similar to those in (2)) of Gaussian stationary processes with multiple
singularities in their spectra, having a covariance function belonging to a certain
parametric family, are proved.

4 Moments ofVj (Au(X,W)) for Gaussian random fields

We briefly review the state of the art forEVj (Au(X,W)) of Gaussian random fields
X. For recent extended surveys see the books [4] and [6]. For stationary (isotropic)
Gaussian fieldsX, stratifiedC2–smooth compact manifoldsW⊂Rd and anyu∈R,
formulae forEVj (Au(X,W)), j = 0, . . . ,d are given in [4, Theorems 13.2.1 and
13.4.1].

Apart from obtaining exact (or asymptotic asu→∞) formulae forEVj (Au(X,W)),
j = 0, . . . ,d, the possibility of an estimate∣∣∣∣P(sup

t∈W
X(t) > u

)
−EV0 (Au(X,W))

∣∣∣∣6 g(u) (3)

(the so–calledEuler-Poincaŕe heuristic) with g(u) = o(1) asu→∞ is of special in-
terest. It has been proved in [4, Theorem 14.3.3] withg(u) = c0exp{−u2(1+α)/2}
for some positive constantsc0 andα if X is a (non)stationary Gaussian random field
with constant variance on a stratified manifoldW asu→∞. Lower and upper bounds
for the density of supremum of stationary Gaussian random fieldsX (which imply
relation (3)) for anyu∈R are given in [6, Theorem 8.4]. Similar bounds are proven
in [6, Theorem 8.10] for non–stationary Gaussian random fieldsX with a unique
point of maximum of variance in int(W) asu→ ∞.

In [59], asymptotic behavior ofEVj
(
Au(X, [a,b]d)

)
, j = 0,d− 1,d of non–

stationary sufficiently smooth Gaussian random fields is studied as the excursion
level u→ ∞. The variance of these fields is assumed to attain a global maximum at
a vertex of[a,b]d. It is shown that the heuristic (3) still holds true.

A interesting rather general formula for the mean surface area of Gaussian excur-
sions is proven in [24]. LetW be a compact subset ofRd with a non-empty interior
and a finite Hausdorff measure of the boundary. LetX = {X(t), t ∈W} be a Gaus-
sian random field with meanµ(t) = EX(t) and varianceσ2(t) = VarX(t). For an ar-
bitrary (but fixed) excursion levelu∈R introduce the zero set∇−1

X (0) of the gradient
of the normalized field(X−u)/σ by ∇−1

X (0) = {t ∈W : ∇((X(t)−u)/σ(t)) = 0}.

Theorem 3([24]). Assume that X∈C1(W) a.s.,EVd−1
(
∇−1

X (0)
)
< ∞ andσ(t) > 0

for all t ∈W. Then
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EVd−1 (∂Au(X,W)) =
1

2
√

2π

∫
W

exp

[
− (µ(t)−u)2

2σ2(t)

]
E

∥∥∥∥∇((X(t)−u)/σ(t))
∥∥∥∥

2
dt.

Asymptotic formulae forEVj (Au(X,W)), j = 0, . . . ,d asu→ ∞ of three sub-
classes of stable random fields (subgaussian, harmonizable, concatenated–harmonizable
ones) are given in [3].

5 Volume of excursion sets of stationary random fields

The first limit theorems of central type for the volume of excursion sets (over a
fixed levelu) of stationary isotropic Gaussian random fields were proved in [26,
Chapter 2]. There, the case of short and long range dependence (Theorem 2.2.4 and
Example 2.2.1, Theorem 2.4.6) was considered. The CLT followed from a general
Berry-Esśeen-type bound for the distribution function of properly normed integral
functionals ∫

Br (o)
G
(
X(t)

)
dt (4)

asr → ∞ whereG : R→ R is a function such thatEG2(X(o)) < ∞ satisfying some
additional assumptions, cf. also [36]. To get the volumeVd (Au (X,Br(o))) out of (4),
setG(x) = 1(x > u). The isotropy ofX was essential as one used expansions with
respect to the basis of Chebyshev-Hermite polynomials in the proofs. The cases of

G(x) = 1(|x|> u), max{0,x}, |x|

as well as ofG depending on a parameter and of weighted integrals in (4) are con-
sidered as well.

In a remark [26, p. 81], it was noticed that similar CLTs can be expected for
non-Gaussian mixing random fields. The aim of this Section is to review the recent
advances in proving such CLTs for various classes of stationary random fields that
include also the (not necessarily isotropic) Gaussian case.

For instance, random fields with singularities of their spectral densities are con-
sidered in [37]. In Section 3.2 of that book, non–central limit theorems for the vol-
ume of excursions of stationary isotropic Gamma correlated andχ2-random fields
over a radial surface (i.e., the levelu is not constant anymore, but a function of
‖t‖2, wheret ∈ Rd is the integration variable in (4)) are proved. (Non)central limit
theorems for functionals (4) of stationary isotropic vector–valued Gaussian random
fields are given in the recent preprint [34]. There, the case of long and short range
dependence is considered as well as applications toF– andt–distributed random
fields.

The asymptotic behavior of tail probabilities

P

(∫
W

eX(t) dt > x

)
, x→ ∞
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for a homogeneous smooth Gaussian random fieldX on a compactW ⊂ Rd is con-
sidered in [38], see [39] for further extensions.

5.1 Limit theorems for a fixed excursion level

The main result (which we call amethatheorem) can be formulated as follows.

Theorem 4(Methatheorem).Let X be a strictly stationary random field satisfying
some additional conditionsand u∈R fixed. Then, for any sequence of VH-growing
sets Wn ⊂ Rd, one has

Vd (Au (X,Wn))−P(X(o)≥ u) ·Vd (Wn)√
Vd (Wn)

d−→N
(
0,σ2(u)

)
(5)

as n→ ∞. Here

σ
2(u) =

∫
Rd

cov (1{X (o)≥ u},1{X (t)≥ u}) dt. (6)

Depending on the class of random fields, these additional conditions will vary. First
we consider the family of square–integrable random fields.

5.1.1 Quasi-associated random fields

Theorem 5([15]). Let X= {X (t) , t ∈Rd} ∈QA be a stationary square-integrable
random field with a continuous covariance function C such that|C(t)|= O

(
‖t‖−α

2

)
for someα > 3d as‖t‖2→∞. Let X(o) have a bounded density. Thenσ2(u)∈ (0,∞)
and Theorem 4 holds true.

Let us give an idea of the proof. Introduce the random fieldZ = {Z( j), j ∈ Zd}
by

Z( j) =
∫

j+[0,1]d
1
{

X(t) > u
}

dt−Ψ(u), j ∈ Zd. (7)

HereΨ(u) = P
(
X(o) > u

)
is the tail distribution function ofX(o). It is clear that the

sum ofZ( j) over indicesj ∈Wn∩Zd approximates the numerator in (5). One has
to show thatZ can be approximated by a sequence of(BL,θ)-dependent stationary
centered square-integrable random fieldsZγ , γ ↓ 0, on Zd. The proof finishes by
applying the following CLT toZγ for eachγ > 0.

Theorem 6([16], Theorem 3.1.12).Let Z= {Z( j), j ∈Zd} be a(BL,θ)-dependent
strictly stationary centered square-integrable random field. Then, for any sequence
of regularly growing sets Un ⊂ Zd, one has

S(Un)/
√

card(Un)
d−→N

(
0,σ2)
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as n→ ∞, with
σ

2 = ∑
j∈Zd

cov (Z(o) ,Z( j)) .

We give two examples of random fields satisfying Theorem 5.

Example 1([15]). Let X = {X(t), t ∈ Rd} be a stationaryshot noise random field
given byX(t) = ∑i∈N ξiϕ(t−xi) whereΠλ = {xi} is a homogeneous Poisson point
process inRd with intensityλ ∈ (0,∞), {ξi} is a family of i.i.d. non–negative ran-
dom variables withEξ 2

i < ∞ and characteristic functionϕξ . Assume thatΠλ and
{ξi} are independent. Moreover, letϕ : Rd →R+ be a bounded and uniformly con-
tinuous Borel function withϕ(t) ≤ g0(‖t‖2) = O

(
‖t‖−α

2

)
as‖t‖2 → ∞ for a func-

tion g0 : R+ → R+, α > 3d, and∫
Rd

∣∣∣∣exp

{
λ

∫
Rd

(
ϕξ (sϕ(t))−1

)
dt

}∣∣∣∣ ds< ∞.

Then Theorem 5 holds true.

Example 2([15]). Consider a stationary Gaussian random fieldX = {X (t) , t ∈Rd}
with a continuous covariance functionC(·) such that|C(t)| = O

(
‖t‖−α

2

)
for some

α > d as‖t‖2 → ∞. Let X (o)∼N
(
a,τ2

)
. Then, Theorem 5 holds true with

σ
2(u) =

1
2π

∫
Rd

∫
ρ(t)

0

1√
1−s2

e
− (u−a)2

τ2(1+s) dsdt,

whereρ(t) = corr(X(o),X(t)). In particular, foru = a one has

σ
2(a) =

1
2π

∫
Rd

arcsin(ρ(t)) dt.

5.1.2 PA- or NA-random fields

What happens if the fieldX does not have the finite second moment? In this case,
another set of conditions for our methatheorem to hold was proven in [29, Theorem
3.59].

Theorem 7.Let X = {X(t), t ∈ Rd} ∈ PA(NA) be stochastically continuous satis-
fying the following properties:

1. the asymptotic varianceσ2(u) ∈ (0,∞) (cf. its definition in(6)),
2. P(X(o) = u) = 0 for the chosen level u∈ R.

Then Theorem 4 holds.

The idea of the proof is first to show that the random fieldZ = {Z( j), j ∈ Zd}
defined in (7) isPA (NA). Second, use [16, Theorem 1.5.17] to prove thatZ is
(BL,θ)–dependent. Then apply Theorem 6 toZ.
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A number of important classes of random fields satisfy Theorem 7. For instance,
stationary infinitely divisible random fieldsX = {X(t), t ∈Rd} with spectral repre-
sentation

X(t) =
∫

E
ft(x)Λ(dx), t ∈ Rd,

whereΛ is a centered independently scattered infinitely divisible random measure
on spaceE and ft : E → R+ areΛ -integrable kernels, are associated and hencePA
by [16, Chapter 1, Theorem 3.27]. The finite susceptibility conditionσ2(u)∈ (0,∞)
can be verified by [29, Lemma 3.71]. Further examples of random fields satisfying
Theorem 7 arestablerandom fields which we consider in more detail following [29,
Section 3.5.3].

Max–stable random fields

Let X =
{

X(t), t ∈ Rd
}

be a stationary max-stable random field with spectral rep-
resentation

X(t) = max
i∈N

ξi ft(yi), t ∈ Rd,

where ft : E→R+ is a measurable function defined on the measurable space(E,µ)
for all t ∈ Rd with ∫

E
ft(y)µ(dy) = 1, t ∈ Rd,

and{(ξi ,yi)}i∈N is the Poisson point process on(0,∞)×E with intensity measure
ξ−2dξ × µ(dy). It is known that all max–stable distributions are associated and
hencePA by [49, Proposition 5.5.29]. The fieldX is stochastically continuous if
‖ fs− ft‖L1 → 0 ass→ t (cf. [23, Lemma 2]). Conditionσ2(u) ∈ (0,∞) is satisfied
if ∫

Rd

∫
E

min{ f0(y), ft(y)}µ(dy)dt < ∞.

α–stable random fields

Let X =
{

X(t), t ∈ Rd
}

be a stationaryα-stable random field (α ∈ (0,2), for sim-
plicity α 6= 1) with spectral representation

X(t) =
∫

E
ft(x)Λ(dx), t ∈ Rd,

whereΛ is a centered independently scatteredα–stable random measure on space
E with control measurem and skewness intensityβ : E → [−1,1], ft : E → R+
is a measurable function on(E,m) for all t ∈ Rd. By [52, Proposition 3.5.1],X is
stochastically continuous if

∫
E | fs(x)− ft(x)|α m(dx) → 0 ass→ t for any t ∈ Rd.

Conditionσ2(u) ∈ (0,∞) is satisfied if



12 Evgeny Spodarev∫
Rd

(∫
E

min{| f0(x)|α , | ft(x)|α}m(dx)
)1/(1+α)

dt < ∞.

5.2 A multivariate central limit theorem

If a finite number of excursion levelsuk ∈ R, k = 1, . . . , r is considered simultane-
ously, a multivariate analogue of Theorem 4 can be proven. Introduce the notation

Su(Wn)= (Vd (Au1(X,Wn)) , . . . ,Vd (Aur (X,Wn)))
> , Ψ(u)= (Ψ(u1), . . . ,Ψ(ur))

> .

Theorem 8([15], [29]). Let X be the above random field satisfying Theorem 4.
Then, for any sequence of VH-growing sets Wn ⊂ Rd, one has

Vd (Wn)
−1/2 (Su(Wn)−Ψ(u)Vd (Wn))

d→N (0,Σ(u))

as n→ ∞. Here,Σ(u) = (σlm(u))r
l ,m=1 with

σlm(u) =
∫

Rd
cov (1{X (0)≥ ul},1{X (t)≥ um}) dt.

If X is Gaussian as in Example 2, we have

σlm(u) =

1
2π

∫
Rd

∫
ρ(t)

0

1√
1−s2

exp

{
− (ul −a)2−2r(ul −a)(um−a)+(um−a)2

2τ2(1−s2)

}
dsdt.

However, the explicit computation of the elements of matrixΣ for the majority of
fieldsX (except for Gaussianity) seems to be a very complex task. In order to over-
come this difficulty in statistical applications of the methatheorem to testing, the
matrix Σ can be (weakly) consistently estimated from one observation of a station-
ary random fieldX, see [47], [58, Section 9.8.3] and references therein.

Statistical version of the CLT and tests

Let X be a random field satisfying Theorem 4,uk ∈R, k = 1, . . . , r and(Wn)n∈N be a
sequence ofVH-growing sets. Let̂Cn = (ĉnlm)r

l ,m=1 be a weakly consistent estimator
for the nondegenerate asymptotic covariance matrixΣ(u), i.e., for anyl ,m= 1, . . . , r

ĉnlm
P→ σlm(u) asn→ ∞.

Then
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Ĉ−1/2
n Vd (Wn)

−1/2 (Su(Wn)−Ψ(u)Vd (Wn))
d→N (0, I). (8)

Based on the latter relation, an asymptotic test for the following hypotheses can be
constructed:

H0 : X is a random field satisfying Theorem 4 with tail distribution functionΨ(·)

vs.H1 : negation of H0. As a test statistic, we use

Tn = Vd (Wn)
−1 (Su(Wn)−Ψ(u)Vd (Wn))

> Ĉ−1
n (Su(Wn)−Ψ(u)Vd (Wn))

which is asymptoticallyχ2
r –distributed by continuous mapping theorem and relation

(8): Tn
d−→ χ2

r asn→∞. Hence, reject the null-hypothesis at a confidence level 1−ν

if Tn > χ2
r,1−ν

whereχ2
r,1−ν

is the(1−ν)–quantile ofχ2
r –law.

5.3 Functional limit theorems

A natural generalization of multivariate CLTs is a functional CLT where the excur-
sion levelu∈ R is treated as a variable, which also appears as a (“time”) index in
the limiting Gaussian process. In order to state the main results, introduce theSko-
rokhod space D(R) of càdl̀ag functions onR endowed with the usual Skorokhod
topology, cf. [11, Section 12]. Denote by⇒ the weak convergence inD(R).

Define the stochastic processesYn = {Yn(u), u∈ R} by

Yn(u) =
1

nd/2

(
Vd
(
Au(X, [0,n]d)

)
−nd

Ψ(u)
)

, u∈ R. (9)

Introduce the condition

(?) For any subsetT = {t1, . . . , tk}⊂Rd and its partitionT = T1∪T2 there exist some
constantsc(T),γ > 0 such that

cov

(
∏

ti∈T1

φa,b
(
X(ti)

)
, ∏
t j∈T2

φa,b
(
X(t j)

))
6 c(T)(1+dist∞(T1,T2))

−(3d+γ) ,

whereφa,b(x) = 1(a < x 6 b)−P(a < X(o) 6 b) for any real numbersa < b.

The following functional CLT is proven in [43, Theorem 1 and Lemma 1].

Theorem 9.Let X = {X(t), t ∈ Rd} be a real valued stationary random field with
a.s. continuous sample paths and a bounded density of the distribution of X(o).
Let condition(?) and Theorem 4 be satisfied. Then Yn ⇒ Y as n→ ∞ where Y=
{Y(u), u∈ R} is a centered Gaussian stochastic process with covariance function

CY(u,v) =
∫

Rd
cov (1{X (0)≥ u},1{X (t)≥ v}) dt, u,v∈ R.
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In particular, condition(?) is satisfied ifX ∈ A is square integrable with covariance
functionC that admits a bound

|C(t)|6 ζ (1+‖t‖∞)−λ

for all t ∈ Rd and someζ > 0, λ > 9d. The proofs are quite technical involving a
Móricz bound for the moment of a supremum of (absolute values of) partial sums
of random fields onZd, cf. [46, Theorem 2].

For max–stable random fields introduced in Section 5.1.2 condition(?) is satis-
fied if for anyT = {t1, . . . , tk} ⊂ Rd and its partitionT = T1∪T2 there exist some
constantsc(T),γ > 0 such that∫

E
min

{
max
ti∈T1

fti (y),max
t j∈T2

ft j (y)
}

µ(dy) 6 c(T)(1+dist∞(T1,T2))
−(3d+γ) . (10)

For α–stable moving averages, i.e.,α–stable random fields from Section 5.1.2
with ft(·) = f (t−·) for anyt ∈ Rd, condition (10) should be replaced by

(∫
Rd

min

{
max
ti∈T1

f (ti −y),max
t j∈T2

f (t j −y)
}α

m(dy)
)1/(1+α)

6 c(T)(1+dist∞(T1,T2))
−(3d+γ) .

These results are proven (under slightly more general assumptions) in [29, Section
3.5.5] together with analogous conditions for infinitely divisible random fields (that
are too lengthy to give them in a review paper) as well as examples of random fields
satisfying them.

Theorem 9 together with the continuous mapping theorem can be used to test
hypotheses of Section 5.2 with test statistic

Tn =
supu∈RYn(u)√

EY2
n (0)

if a large deviation result for the limiting Gaussian processY is available, cf. [43,
Corollary 1].

5.4 Limit theorem for an increasing excursion level

If the levelu→∞ one may also expect that a CLT for the volume of the correspond-
ing excursion set holds, provided that a particular rate of convergence ofr to infinity
is chosen in accordance with the expansion rate of the observation window.

First results of this type were proven in [26, Theorems 2.7.1, 2.7.2, 2.8.1] for
stationary isotropic Gaussian random fields with short or long range dependence. A
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generalization to the case of stationaryPA-random fields is given in a recent preprint
[19]:

Theorem 10.Let X = {X(t), t ∈ Rd} ∈ PA be a stationary random field with a
continuous covariance function C such that|C(t)| = O

(
‖t‖−α

2

)
for someα > 3d

as‖t‖2 → ∞. Let X(o) have a bounded density pX(o). Assume that the variance of
Vd
(
Aun

(
X, [0,n]d

))
being equal to

σ
2
n =

∫
[0,n]d

∫
[−x,n−x]d

cov (1{X (o)≥ un},1{X (t)≥ un}) dt dx

satisfies
σ

2
n → ∞, n→ ∞. (11)

Introduceγ(x) = supy>x pX(o)(y), x ∈ R. Choose a sequence of excursion levels
un → ∞ such that

ndγ2/3(un)

σ
2(α+3)/3
n

→ 0, n→ ∞. (12)

Then it holds

Vd
(
Aun

(
X, [0,n]d

))
−ndP(X(o)≥ un)

σn

d−→N (0,1) (13)

as n→ ∞.

Conditions (11), (12) are checked in [19] explicitly for stationary (non-isotropic)
Gaussian as well as shot noise random fields leading to quite tractable simple ex-
pressions. For instance, it suffices to chooseun = O(

√
logn), n→∞ in the Gaussian

case.
Student and Fisher–Snedecor random fields are considered in the recent preprint

[34, Section 7]. CLTs for spherical measures of excess∫
∂Br (o)

1{X(t) > u(r)}H d−1(dt)

of a stationary Gaussian isotropic random fieldX over the moving levelu(r)→ ∞,
r → ∞ are proved in [37, Section 3.3]. For yet another type of geometric measures
of excess over a moving level see [35].

6 Surface area of excursion sets of stationary Gaussian random
fields

Limit theorems forVd−1 (Au(X,Wn)) have been first proven for one fixed levelu and
a stationary isotropic Gaussian random fieldX in [31] in dimensiond = 2. There,
the expansion ofVd−1 (Au(X,Wn)) in Hermite polynomials is used. In higher dimen-
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sions, a multivariate analogue of this result can be proven along the same guidelines,
see [56, Proof of Theorem 1] for a shorter proof. A CLT for the integral of a contin-
uous function along a level curve∂Au(X,W) for an a.s.C1–smooth centered mixing
stationary random fieldX = {X(t), t ∈ R2} in a rectangleW is proved in [25].

6.1 Functional limit theorems

Let us focus on functional LTs forVd−1 (∂Au(X,Wn)) proven in [44] for the phase
spaceL2(R,ν) (whereν is a standard Gaussian measure inR) and in [56] for the
phase spaceC(R).

Let X = {X(t), t ∈ Rd}, d > 1, be a centered stationary and isotropic Gaussian
random field with a.s.C1–smooth paths and covariance functionC ∈C2(Rd) satis-
fying C(o) = 1 as well as

|C(t)|+ 1
1−C(t)

d

∑
i=1

∣∣∣∣∂C(t)
∂ ti

∣∣∣∣+ d

∑
i, j=1

∣∣∣∣∂ 2C(t)
∂ ti∂ t j

∣∣∣∣< g(t) (14)

for large‖t‖2 (wheret = (t1, . . . , td)>) and a bounded continuous function
g : Rd → R+ such that lim‖t‖2→∞ g(t) = 0 and∫

Rd

√
g(t)dt < ∞.

Denote by∇X(t) the gradient ofX(t). Assume that the(2d + 2)-dimensional ran-
dom vector(X(o),X(t),∇X(o),∇X(t))> is non–degenerate for allt ∈Rd \{o}. Let
λ 2 =−∂ 2C(o)/∂ t2

1.
Introduce the sequence of random processes{Yn}, n∈ N by

Yn(u) =
2λ d/2−1

nd/2

(
Vd−1

(
∂Au(X, [0,n]d)

)
−EVd−1

(
∂Au(X, [0,n]d)

))
(15)

whereu∈R. They will be interpreted as random elements inL2(R,ν). Let⇀ denote
the weak convergence of random elements inL2(R,ν). Let

κ(t) = f
(
X(t)

)
exp{−X2(t)/2}‖∇X(t)‖2, t ∈ Rd.

Theorem 11([44]). Under the above assumptions on X and C, it holds Yn ⇀ Y as
n→∞ where Y is a centered Gaussian random element in L2(R,ν) with covariance
operator

Var〈Y, f 〉L2(R,ν) =
1

2π

∫
Rd

cov (κ(o),κ(t)) dt, f ∈ L2(R,ν).
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For d > 3, processesYn have a continuous modificatioñYn if conditions onX
starting from (14) are replaced by the following ones:

1. Covariance functionC as well as all its first and second order derivatives belong
to L1(R)

2. There existτ ∈ (0,1) andβ > 0 such that for allh∈ [−τ,τ] andeh =(h,0,0. . . ,0)> ∈
Rd the determinant of the covariance matrix of the vector(

X(o),X(eh),
∂X(o)

∂ t1
,

∂X(eh)
∂ t1

)>
is not less than|h|β .

Let ⇁ denote the weak convergence of random elements inC(R). Denote bypX(t)

(pX(o),X(t)) the density ofX(t) ( (X(o),X(t))>), t ∈ Rd, respectively. Set

Ht(u,v) = E(‖∇X(o)‖2‖∇X(t)‖2 |X(o) = u, X(t) = v) , u,v∈ R, t ∈ Rd.

In definition (15), assumeλ = 1.

Theorem 12([56]). Under the above assumptions on X and C, it holdsỸn ⇁ Y as
n→ ∞ for d > 3 where Y is a centered Gaussian random process with covariance
function

cov (Y(u),Y(v))=
∫

Rd

(
Ht(u,v)pX(o),X(t)(u,v)− (E‖∇X(o)‖2)

2 pX(o)(u)pX(t)(v)
)

dt

for u,v∈ R.

The cased = 2 is still open.

7 Open problems

It is a challenging problem to prove the whole spectrum of limit theorems for
Vj (Au(X,Wn)) of lower ordersj = 0, . . . ,d−2 for isotropicC2-smooth stationary
Gaussian random fields. Functional limit theorems and the case of increasing level
u→ ∞ are therein of special interest. Further perspective of research is the general-
isation of these (still hypothetic) results to non–Gaussian random fields.

Another open problem is to prove limit theorems for a large class of functionals
of non–Gaussian stationary random fields that includes the volume of excursion
sets. It is quite straightforward to do this for∫

Wn

g(X(t))dt
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for a measurable functiong : R → R such thatEg2(X(o)) < ∞. For more general
classes of functionals of the fieldX and the observation windowWn it is still terra
incognita.
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