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» Open problems
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Introduction

In stochastic geometry:

Limit theorems for
» Random geometric graphs (Penrose, Yukich, ...)

» Random polytopes (Barany, Buchta, Hug, Reitzner,
Schneider, ...)

» Random closed sets (RACS), geometrical random fields
and measures (Heinrich, Molchanoy, S., Vitale, Weil, ...)
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Introduction

Preliminaries

K

R

S

B:(a)
Ry

Ki @ Ko
Ki 6 Ko

family of non—empty compact convex sets
(Convex bodies) in RY

—{UK Kie K, i=1,...,n, ¥n} convex ring
=1

_{K KNWeR, VW e K} extended
convex ring
ball with center in a and radius r
volume of By(0)inR/,j=0,...,d
= U (K7 + x) Minkowski addition

XeKo

= (1 (K1 + x) Minkowski subtraction
XeKo

Lebesgue measure (volume)
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Introduction

Limit theorem for random polytopes
(Barany (1982); Reitzner (2003, 2005); Vu (2005))

For K € K with 0K € C83, let K, = conv(Xy, ..., X,), where
Xi ~ U(K) are iid random points in K. Then, as n — oo, it
holds

- By = K|~ ci(d, K)n= 10+,
> Var |Ky| ~ cp(K)n—(@+3)/(d+1),

> (|Kn| — E |Knl)//Var [Ka] % N(0,1).
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Introduction

LT for RACS w. r. to Minkowski addition (Weil (1982))
> Hausdorff metric: For two nonempty compacts A, B C RY
dy(A,B)y=min{r >0: AC B® B/(0),BC A® B/(0)}.
> Norm of a set: ||A|| = sup{|x| : x € A}
Support function: for A € K, sa(u) = sup{u-v:v e A}, ue 89"

P> Expectation of RACS (Aumann (1965)): E = = convex set with
support function E s=(-)

v

For a sequence of iid RACS =; L= withE |IZ]] < oo, it holds
Vnady((Z1@...@=5)/nEZ) 4, sup X(u), n— oo,
uesd-1

where X is the centered Gaussian process on S9—1 with
cov. f. C(u, v) = E[s=(u)s=(v)] — Es=(u)Es=(v), u,v € S91.
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Limit theorems for various characteristics of RACS

For the volume fraction, specific boundary surface,
number of connected components, etc.:

Baddeley (1980)

Mase (1982)

Heinrich (1993)

Heinrich, Molchanov (1999)
Béhm, Heinrich, Schmidt (2004)
> ...

vV v.v. v Y

For all specific intrinsic volumes:
» Pantle, Schmidt, S. (2006, 2009)
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Intrinsic volumes

Steiner’s formula in RY

» There exist functionals V; : K — [0,00),j=0,...,d,
(Minkowski functionals, quermassintegrals or intrinsic
volumes) such that for any r > 0 and K € K it holds

d
K& B (0)] =) r¥ kg Vi(K).
j=0
» Functionals Vj, ..., V4 are additive, motion invariant,

monotone with respect to inclusion, and continuous with
respect to dy.
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Intrinsic volumes

Theorem (Hadwiger (1957))

Let F : K — R be any additive, motion invariant and continuous
functional. Then, F can be represented in the form

d
F=Y gV
j=0
for some constants ag, . ..,aq4 € R.
Thus, the intrinsic volumes V,, ..., V, form a basis in the

corresponding linear space.
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Intrinsic volumes

Additive extension to the convex ring R

Foreach j=0,...,d, there exists a unique additive extension
of V;: K — [0, 00) to R given by the inclusion—exclusion
formula:

n

Vi(KiU.. .UKn) = > (=171 > V(K n...NK)), Ki,.... K€K

i=1 J1<.<ji
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Intrinsic volumes

Geometrical interpretation:  For any K € R with K # (),

Vua(K) = |K]| (volume)
2Vy_1(K) = H9"1(0K) (surface area)
Vo(K) = x(K) (Euler number)

InR?: x(K) = #{clumps} — #{holes}

Cad_ .
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Random closed sets

Let (Q2, F,P) be an arbitrary probability space
¢ = family of all compact sets in R?

& = family of all closed sets in RY

o(F) = o—algebra in §, generated by the sets
Fc={FeF:FNnC#(0}forany Ce¢

An (F,o(§))—measurable mapping = : Q — § is called a
random closed set (RACS). Its distribution is uniquely
determined by the capacity functional 7=(C) = P(= 1 C # (),
Cec

vV v.v Y
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Random closed sets

Stationarity and isotropy

4

A RACS = is called stationary if ===+ x, Yx € R9, and

isotropic if = 4 g=,vg e SO(d)

Theorem (Matheron (1975))

» The RACS = is stationary (isotropic) <
T=(C+ x) = T=(C) Vx € R? and T=(gC) = T=(C)
vV g € SO(d), respectively

» Each stationary RACS = # () is a.s. unbounded

» For any stationary convex RACS =, it holds = ¢ {(), R9}
a.s.
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Examples

Stationary point processes in R?

Poisson process cluster process hard—core process
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Examples

Stationary germ—grain models in R?

z

Realizations of germ—grain models: Boolean model with spherical and polygonal
grains, respectively; cluster process of segments



Seite 16 Limit Theorems in Stochastic Geometry | Evgeny Spodarev 19 June 2009

Examples

Germ—grain models

8

The germ—grain model = = |J (Z; + X;) is called a Boolean

-
—_

model if

» the point process of germs { X1, X, ...} is a stationary
Poisson process in RY (with intensity \)

» the grains =1, =, ... are i.i.d. and independent of
{X1,X2, .. .}; = g =

» E|lZpd K| < oo, VKEeK.

Capacity functional:  T=z(C) =1 — e AEI(==0)2Cl " vC e ¢
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Specific intrinsic volumes

» Model assumptions
» Let = be stationary, = € S a.s.
» E2NEDT) < o0, where N(f) = 0 and

N(K) =min{m e N: K = |) K, K € K} for K € R\ {0}
i=1

- EVi(=Zn W,
> Specific intrinsic volumes: Let Vy(Z) = lim %
— OO n
forj=0,...,d, where {W,} = sequence of monotonously
increasing sampling windows W, = nW with W € K and
[W| >0

In particular, V4(=) = P(oc =) = E|[=n W|/|W|
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Estimation of (V(2),... V4(2))'

Problem: Estimate V(Z) = (Vo(Z), ... V4(Z))" on the basis of
a single sample from =N W
Solution: Foreach i =0, ..., d, consider a random field
Y; = {Yj(x), x € R} such that
» Y] is stationary of second order, i.e. E Yj(x) = p; and
Cov(Y;(x), Yi(x + h)) = Covy,(h) V x,heR?

da __
» 1 =EYj(0) = > a;V;(Z), where the matrix A = (a,-j);r"jzo
j=0 ’

is regular

Then, it holds V(=) — A~ "y, where o = (po, - . ., ptg) "
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Estimation of (V(2),... V4(2))'

» Foranyi=0,...,dand x € U C W, suppose that Y;(x)
can be computed from =n W

» Let w(-) be a probability measure with supportin U ¢ W

Examples: w(-) =| - nU|/|U|and w(-) = i Wiy, () with
X1,..., X €U, wy,...,wyn>0and wy +..l.(fi-1Wm:1
Then,
» 1= (fo, ..., ) with 71 = fW w(dx) is an unbiased
estimator for 1 = (o, . - -, itq) ' and

» V(=) = A ']i is unbiased for V(=)
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Estimation of (V(2),... V4(2))'

» Method of least squares: Consider n > d random fields Y;
with the properties mentioned above
» "Solve” the overdetermined system of linear equations
» The solution is the LS—estimator for (Vo(Z),... V4(Z))"

» Minimization of variance
» Reduction of Var(ji;) by an appropriate choice of w
» For a discrete averaging measure w: optimal weights
wy, ..., Wnq by kriging of the mean (Wackernagel (1998))
» sampling points X1, ..., Xxn € W by optimal experimental
design for random fields (Nather (1985), Muller (2001))
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Consistency

> Let E4NEN01Y) < o0 and [, |Covy,(h)| dh < oo
Vi=0,...,d

Then,
> V(= W,) = A (W) with W, = nW and

]
W) = ( W/ Yo(x) w / Yol dx))

is an Lo—consistent estimator for V(2), i.e.,

E|V(Z,Wa) - V(Z)? -0, n-—oo
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Asymptotic normality

If = is a stationary germ—grain modell with iid grains

=; 4 =p € K that are independent of germs {Xj, Xz, ...} and
some additional assumptions on the Y; are fulfilled, then

VWl (V(Z, Wy) - V() L N(0,A "5 (A)T)

as n — oo where
d

.y = ( Js Covy,y,(h) dh) o N
> Covy,y (h) =EYi(x)Yj(x + h) — pjp; is the cross
covariance function of Y; and Y;
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Asymptotic normality

Additional assumptions:
> Yj(x) = fi((= — x) N K;), where the f; are conditionally
bounded valuationson R; K; € K
» E2PNGENK) < o0, where
N(Z N KG) = #{i: (My+X) N K # 0
%) =|-NUp|/|Un|, UsC W,
and eit

» X ={X1,Xz,...} is rapidly 5—mixing

» =p uniformly bounded; p=2+4,5 >0
or
» X = {Xj,Xz,...} has finite range of correlation

> |Covy,y,(h)| < gj(Z0, h) € Ly monotonously w.r.t. =o;
p=2
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Consistent estimation of covariances
» Let U, C W, be averaging sets such that |U,|?/|W,| — 0
and minpey, |[Wh 0 (W, — h)|/|Wp| — 1 forn — oo
» Then, the Lo—consistency lim, .. E|%, — %2 = 0 holds,
where £, = (Gnj)7_ With
Onij = ﬁ / Covn,-/(h) |Wh 0 (W, — h)|dh,
Un

Y;(x)Yi(x — h) dx

o _ Wen(Wath)
Covpj(h) = W1 (W5 )

J Yi(x)dx [ Yj(x)dx
W, W,
| Wh?




Seite 25 Limit Theorems in Stochastic Geometry | Evgeny Spodarev 19 June 2009

Example of random fields Y;

Local Euler number
» Letry,...,rq—4 >0withr; #r;, i # jand |W S B.(0)| > 0
> Yi(x)=W(E=NB,(x)) fori=0,...,d

» Edge—corrected estimator (minus sampling):
U= WeoB(o)

3

- / Vo(= N By, (x)) w(dx) = Z (21 B, (xi) W

WeB;, (o) -

» Discrete averaging measure w, where
X1,...,Xm € W& B, (0) and, for example, wy = 1/m,
k=1,....m
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Scan statistics for point processes

Scan statistic

Let = {X;} be an independently marked point process in RY
with iid marks {M;} observed within a cube W. For a (cubic)
subwindow W, C W, define S(Wo) = 3, x.cw, Mi-

Scan statistic: T = supyy, ey S(Wo)
» Usual scan statistic of fixed size r > 0:

W={W; =x+r[0,1]9 x cRY: Wy Cc W}.
» Multiscale scan statistic: W = {all cubes Wy c W}

Limit theorems: T = T, L? as W= W, = n|0, 1]d, n— oo
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Scan statistics for point processes

» Scan statistics in R' and R?: Glaz, Balakrishnan (1999),
Glaz, Naus, Wallenstein (2001)

» LT for the usual scan statistic in R?: & = stationary
compound Poisson process (Chan (2007))

» LT for the multiscale scan statistic in R': Cohen (1968),
Iglehart (1972), Karlin, Dembo (1992), Doney, Maller
(2005)

» LT for the multiscale scan statistic in RY: independently
scattered Lévy measures (Kabluchko, S. (2008))
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Scan statistic for Lévy noise

» Lévy noise: Let & = {{(t),t > 0} be a Lévy process with
£(0)=0,E&(1) = p, 0 = Varé(1) > 0.
Lévy noise Z = {Z(B), B € B(RY)} is an independently
scattered stationary random measure on R9 driven by ¢,
i.e. Z(B) < £(|B)) for Borel sets B € B(RY).

» Multiscale scan statistic:

Th= sup Z2(W,), neN
WoEWn

for W, = {all cubes within W, = [0, n]9}.
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LT for the scan statistic of Lévy noise
Theorem (Kabluchko, S. (2008))
> If > 0 then (T, — pn9)/(on®2) -4 Y ~ N(0,1)

> If ;i = 0 then T,/(on%/2) -2 sUPw, vy, Z(Wo), where
Z = {Z(B), B € B(RY)} is the standard Gaussian white
noise on [0, 1]°.
» If 1 < 0, the distribution of £(1) is non—lattice,
©(s) = log E e%(") exists for s € [0, sy) with the maximal
So € (0,00] and3s* € (0, s9): p(s*) = 0 then
§*T,—dlogn—(d—1)loglogn— c- % Y,

where Y is standard Gumbel distributed r. v. and ¢ is a
constant.
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Open problems

Limit theorems for the Wiener sausage

Let S(T) = {X(t) : t € [0, T]} be the path of the Brownian
motion X c RY with variance o2 up to time T > 0.
» Wiener sausage Sy of radius r > 0: S, = S(T) @ B,(0)

r=10 r=40

A realization of Sy
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Intrinsic volumes of the Wiener sausage

» Intrinsic volumes Vo(Sy), ..., Vu(Sr) are well-defined a.s.
ford <3,r>0;
- Vu(S) =18/
> 2Vg1(Sy) = HT1(9S))
> V(S = (=171, (RIVS,),i=0,....d ~ 2, where
08, is a Lipschitz manifold with reach(R?\ S;) > 0 a.s.
» Compute E Vi(S;), i =0,...,d.

It is proved that E Vi(S;) < oo, i = d,d — 1 forall d > 2 and
E Vo(Sr) < oo for d = 2 (Rataj, Schmidt, Meschenmoser,

S. (2005, 2009).
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Mean volume of the Wiener sausage

» Explicit formulae
» d = 2: Kolmogorov, Leontovich (1933)
» d = 3: Spitzer (1964)
» d > 4: BerezhkovsKii et al. (1989)
» Asymptotics of the volume
Getoor (1965)
Donsker, Varadhan (1975)
Le Gall (1988): CLT for shrinking Wiener sausage (T — oo
orr—0)
van den Berg, Bolthausen (1994)

vy

v

vy
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Other mean intrinsic volumes

» Mean surface area: Rataj, Schmidt, S. (2005)

» Support measures and mean curvature functions: Last
(2005)

» Mean intrinsic volumes E V;(S;) of lower order
i=0,...,d—2:an open problem.
Approximations can be obtained numerically (Rataj,
Meschenmoser, S. (2009))
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Mean surface area of the Wiener sausage

Theorem (Rataj, Schmidt, S. (2005))
For d > 2, it holds

02}/2 T

B do1 . 4 rgrd—1 T 1_e 22
2EVy 1(Sr) =drgro™' + =% f yv3(J( +Y3(y)) 4
2

2
odar((d2? 4 F oo
+0rgo?r@ ST (1828 4 [ et d

T CIIRZ0%) e

for almost all radiir > 0, v = (d — 2)/2. For d = 2,3, this
formula holds for all r > 0. In the case d = 3, it simplifies to

EVo(Sy) = 4nr? + 8roV2r T + 216°T .
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Mean surface area of the Wiener sausage
» Asymptotic behaviour (Rataj, Schmidt, S. (2009))
o2 TrVlog=2r ifd =2,

2EVy_1(Sy) ~{ 2ma?T ifd=3, asr—0.
diigo?T625 143 g > 4

» LT for the volume (Le Gall (1988)): for d = 2, it holds
(log r2(|S| + 7/ log r)) -L ¢ — 2y, r— 0,

where 02 = T = 1 and v is the (renormalized) Brownian
local time of self—intersections. For ¢ > 3: CLT.

» Open problem: LT for the surface area 2Vy_1(S;) and other
intrinsic volumes V;(S;) of the shrinking Wiener sausage!
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Open problems
Limit theorems for excursion sets of stationary random fields

Let X = {X(t),t € RY} be a stationary C>~smooth random
field, A(X,u) = {t € RY : X(t) > u}, u € R its excursion sets.
» £ V;(A(X, u)) for Gaussian and related random fields:

Adler, Taylor (2007)
» LT for Vi(A(X, u)):
» Volume V4(A(X, u)):
» classical results for random processes and Gaussian
random fields
» (BL, 0)-dependent random fields: Bulinski, S.,

Timmermann; Meschenmoser, Shashkin (2009)
» Other random fields: Open problem

» Other intrinsic volumes: Open problem
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