Wiener sausage and sensor networks

Evgeny Spodarev

Joint research with R. Černy, D. Meschenmoser, S. Funken, J. Rataj and V. Schmidt

Overview

- Sensor networks
- Wiener sausage
 - Mean volume and surface area
 - Almost sure approximation and convergence of curvature measures
- Boolean model of Wiener sausages
 - Capacity functional and volume fraction
 - Contact distribution function and covariance function
 - Specific surface area
- Outlook

Motivation: sensor networks

• Finding an object in a medium using a totally random strategy (G. Kesidis et al. (2003), S. Shakkottai (2004)): a set of sensors with reach r > 0 move randomly in the medium. Target detection area of a sensor = Wiener sausage S_r

Paths of two sensors with reach r = 20 and their target detection areas

Motivation: sensor networks

- Sensor network: Sensors are located "at random" in space moving according to the Brownian motion.
- Target detection area of such network: the Boolean model of Wiener sausages
- Target detection probability: $p = 1 e^{-\lambda \mathbb{E}|S_r|}$, where λ is the intensity of the Poisson process of initial positions of sensors and $\mathbb{E}|S_r|$ is the mean volume of the Wiener sausage
- Other specific intrinsic volumes? \implies find other mean intrinsic volumes of S_r
- E.g., the mean surface area $\mathbb{E} \mathcal{H}^{d-1}(\partial S_r)$

Polyconvex sets and sets of positive reach

- ▶ Polyconvex sets: $K = \bigcup_{i=1}^{n} K_i$, where K_i are convex bodies.
- Sets of positive reach: For a closed subset $A \subseteq \mathbb{R}^d$, define

reach $A = \sup\{r \ge 0 : \forall x \in \mathbb{R}^d, \Delta_A(x) < r \implies \operatorname{card} \Sigma_A(x) = 1\}$

where $\Delta_A(x)$ is the distance from $x \in \mathbb{R}^d$ to A and

$$\Sigma_A(x) = \{a \in A : |x - a| = \Delta_A(x)\}$$

is the set of all metric projections of x on A. A is said to be of positive reach if reach A > 0.

$$A_r = A \oplus B_r(o) = \{x \in \mathbb{R}^d : \Delta_A(x) \leqslant r\}$$

Intrinsic volumes

Steiner's formula (H. Federer (1959)): If A is a set of positive reach then

$$|A_r| = \sum_{i=0}^d \omega_i r^i V_{d-i}(A), \quad 0 \le r < \operatorname{reach} A,$$

where

- $V_d(\cdot) = |\cdot|$ is the Lebesgue measure in \mathbb{R}^d (volume),
- \bullet ω_i is the volume of the unit *i*-ball
- V_i is the *i*-th intrinsic volume of A, i = 0, ..., d. In particular, V_0 is the Euler-Poincaré characteristic and V_{d-1} is one half of the surface area.

Curvature measures

• Local version of Steiner's formula: For any Borel subset $F \subset \mathbb{R}^d$

$$|(A_r \setminus A) \cap \xi_A^{-1}(F)| = \sum_{i=1}^d \omega_i r^i C_{d-i}(A; F), \quad 0 \le r < \operatorname{reach} A,$$

where

- $\xi_A(x)$ is the nearest point of A to x
- In the signed Radon measure $C_i(A; \cdot)$ concentrated on ∂A is
 the *i*th curvature measure of A, $0 \le i \le d 1$
- If ∂A is compact then $C_i(A; \mathbb{R}^d) = V_i(A)$, $i = 0, \dots, d-1$.

Brownian motion

■ Wiener process $\{W(t) : t \ge 0\}$: a random process with continuous paths defined on $(\Omega, \mathfrak{F}, P)$ such that

$${\color{black} {oldsymbol{arphi}}} W(0) = x \in \mathbb{R}$$
 a.s.,

 \checkmark W has independent increments,

■
$$W(t) - W(s) \sim N(0, \sigma^2(t-s)), 0 \le s < t.$$

Brownian motion in \mathbb{R}^d initiated at $x = (x_1, \ldots, x_d)$:

$$X(t) = (W_1(t), \dots, W_d(t)), \quad t \ge 0,$$

where W_1, \ldots, W_d are independent Wiener processes starting at $x_1, \ldots, x_d \in \mathbb{R}$.

Wiener sausage

Let $S(T) = \{X(t) : t \in [0, T]\}$ be the path of X up to time T > 0.

 \blacksquare Wiener sausage S_r of radius r > 0:

$$S_r = S(T) \oplus B_r(o) = \{ x \in \mathbb{R}^d : \Delta_{S(T)}(x) \leqslant r \}.$$

A realization of S_r

Intrinsic volumes of the Wiener sausage

Intrinsic volumes $V_0(S_r), \ldots, V_d(S_r)$ are well-defined a.s. for d ≤ 3, r > 0;

$$V_d(S_r) = V_S(r)$$

$$2V_{d-1}(S_r) = \mathcal{H}^{d-1}(\partial S_r)$$

•
$$V_i(S_r) = (-1)^{d-i-1} V_i\left(\overline{\mathbb{R}^d \setminus S_r}\right), i = 0, \dots, d-2$$
, where ∂S_r is

a Lipschitz manifold with reach $(\mathbb{R}^d \setminus S_r) > 0$ a.s.

• Compute $\mathbb{E} V_i(S_r)$, i = 0, ..., d. It is proved that $\mathbb{E} V_i(S_r) < \infty$, i = d, d - 1 for all $d \ge 2$ and $\mathbb{E} V_0(S_r) < \infty$ for d = 2 (RSS 09, RSM 09).

Mean volume of the Wiener sausage

Explicit formulae

- d = 2: A. Kolmogoroff and M. Leontowitsch (1933)
- *d* = 3: F. Spitzer (1964)
- $d \ge 4$: A. Berezhkovskii *et al.* (1989)
- Asymptotics of the volume
 - R. Getoor (1965)
 - M. Donsker und S. Varadhan (1975)
 - J.-F. Le Gall (1988): CLT for shrinking Wiener sausage
 $(T → \infty \text{ or } r → 0)$
 - M. van den Berg and E. Bolthausen (1994)

Other mean curvature measures

- Mean surface area: RSS (2009)
- Support measures and mean curvature functions: G. Last (2006)
- Other mean intrinsic volumes $\mathbb{E} V_i(S_r)$, i = 0, ..., d 2: an open problem. Approximations can be obtained numerically (RSM (2009))

Mean volume of the Wiener sausage

A. Berezhkovskii, Yu. Makhnovskii, R. Suris (1989) : for $d \ge 2$

$$\begin{split} \mathbf{E} \left| S_r \right| &= \omega_d r^d + \frac{d(d-2)}{2} \omega_d \, \sigma^2 r^{d-2} T \\ &+ \frac{4d \, \omega_d \, r^d}{\pi^2} \int_0^\infty \frac{1 - e^{-\frac{\sigma^2 y^2 T}{2r^2}}}{y^3 \left(J_\nu^2(y) + Y_\nu^2(y)\right)} \, dy \,, \end{split}$$

where $J_{\nu}(y)$ and $Y_{\nu}(y)$ are Bessel functions of the first and second kind of order $\nu = (d-2)/2$ and $\omega_d = \pi^{d/2}/\Gamma(1+d/2)$ is the volume of the unit *d*-ball.

Mean volume of the Wiener sausage

Bessel functions $J_{\nu}(y)$ and $Y_{\nu}(y)$ are linearly independent solutions of the Bessel diff. equation $y^2 f''(y) + y f'(y) + (y^2 - \nu^2) f(y) = 0$, and

$$J_{\nu}(y) = \sum_{k=0}^{\infty} \frac{(-1)^k (y/2)^{2k+\nu}}{k! \Gamma(\nu+k+1)},$$

$$Y_{\nu}(y) = \frac{J_{\nu}(y)\cos(\nu\pi) - J_{-\nu}(y)}{\sin(\nu\pi)}$$

In three dimensions, the above formula for the mean volume of S_r simplifies to

$$\mathbb{E}|S_r| = \frac{4}{3}\pi r^3 + 4\sigma r^2 \sqrt{2\pi T} + 2\pi \sigma^2 rT.$$

Mean surface area of the Wiener sausage

Theorem 1. Let S_r be the Wiener sausage in \mathbb{R}^d , $d \ge 2$. Then, it holds

$$\mathbb{E}\mathcal{H}^{d-1}(\partial S_r) = d\omega_d r^{d-1} + \frac{4d^2 \omega_d r^{d-1}}{\pi^2} \int_0^\infty \frac{1 - e^{-\frac{\sigma^2 y^2 T}{2r^2}}}{y^3 (J_\nu^2(y) + Y_\nu^2(y))} \, dy + d\omega_d \sigma^2 r^{d-3} T \left(\frac{(d-2)^2}{2} - \frac{4}{\pi^2} \int_0^\infty \frac{e^{-\frac{\sigma^2 y^2 T}{2r^2}}}{y (J_\nu^2(y) + Y_\nu^2(y))} \, dy \right)$$

for almost all radii r > 0. For d = 2, 3, this formula holds for all r > 0. In the case d = 3, it simplifies to

$$\mathbb{E}\mathcal{H}^2(\partial S_r) = 4\pi r^2 + 8r\sigma\sqrt{2\pi T} + 2\pi\sigma^2 T.$$

Mean surface area of the Wiener sausage

Asymptotic behaviour (RSS 09)

$$\mathbb{E}\mathcal{H}^{d-1}(\partial S_r) \sim \begin{cases} \pi \sigma^2 T r^{-1} \log^{-2} r & \text{if } d = 2, \\ 2\pi \sigma^2 T & \text{if } d = 3, \quad \text{as } r \to 0. \\ d\omega_d \sigma^2 T \frac{(d-2)^2}{2} r^{d-3} & \text{if } d \ge 4 \end{cases}$$

Idea of the proof of Theorem 1

Theorem 2. For $d \leq 3$ and any r > 0, it holds

$$E \mathcal{H}^{d-1}(\partial S_r) = \frac{\mathrm{d} E V_S(r)}{\mathrm{d} r},$$

where $V_S(r) = |S_r|$. For dimensions $d \ge 4$, this relation holds for almost all r > 0.

follows from the dominated convergence theorem and Lemma 1. It holds

$$\mathcal{H}^{d-1}(\partial S_r) \stackrel{a.s.}{=} V'_S(r)$$

for all r > 0 if d = 2, 3 and almost all r > 0 if $d \ge 4$.

Idea of the proof of Theorem 1

The point $x \in \mathbb{R}^d$ is called critical for A if

$$x \in \operatorname{conv}\{a \in A : |x - a| = d(A, x)\}.$$

The radius r > 0 is critical for A if \exists a critical point x for A with d(A, x) = r. Let C(A) be the set of critical dilation radii r for A.

Idea of the proof of Theorem 1

Lemma 1 follows from

Theorem 3. Let $A \subset \mathbb{R}^d$ be any compact set. If $r \in (0, \infty) \setminus C(A)$ then $V'_A(r)$ exists and equals $\mathcal{H}^{d-1}(\partial A_r)$. Here $A_r = \{x \in \mathbb{R}^d : d(A, x) \leq r\}$ is the parallel neighborhood of A of radius r > 0 and C(A) is the set of critical dilation radii for A.

and

Theorem 4. Let $d \leq 3$. Then for any r > 0, $r \notin C(S(T))$ a. s. For $d \geq 4$, $r \notin C(S(T))$ a.s. for almost all radii r > 0. Here S(T) is the path of the Brownian motion up to time instant T > 0.

Other mean intrinsic volumes

- Compute $\mathbb{E} V_i(S_r)$, $i = 0, \ldots, d-2$
- Idea: Approximate the Wiener sausage S_r a.s. by random polyconvex sets S_r^n with $\mathbb{E} V_i(S_r^n) \to \mathbb{E} V_i(S_r)$ as $n \to \infty$, $i = 0, \dots, d$
- Method: Use any a.s. piecewise linear approximation S^n of the Brownian path S w.r.t. the Hausdorff metric to approximate the Wiener sausage $S_r = S \oplus B_r(o)$ by $S_r^n = S^n \oplus B_r(o)$, e.g. the Haar-Schauder approximation
- Goal: Obtain $\mathbb{E} V_i(S_r)$ by computing $\mathbb{E} V_i(S_r^n)$ and using $\mathbb{E} V_i(S_r^n) \to \mathbb{E} V_i(S_r)$, $n \to \infty$, $i = 0, \dots, d-2$

Hausdorff metric: For two nonempty compacts $A, B \subset \mathbb{R}^d$

$$d_H(A,B) = \min \left\{ a > 0 : A \subseteq B \oplus B_a(o), B \subseteq A \oplus B_a(o) \right\}.$$

r

Convergence of curvature measures

Theorem 5.

If $d_H(S^n, S) \to 0$ as $n \to \infty$ almost surely, then it holds

- (i) $V_{S^n}(r) \to V_S(r)$ as $n \to \infty$ almost surely for any r > 0;
- (ii) $\mathcal{H}^{d-1}(\partial S_r^n) \to \mathcal{H}^{d-1}(\partial S_r)$ as $n \to \infty$ almost surely for any r > 0 if $d \leq 3$ and for almost all r > 0 if $d \geq 4$;
- (iii) $C_i(S_r^n; \cdot) \to C_i(S_r;)$ weakly as $n \to \infty$ almost surely for any r > 0 and $i = 0, \dots, d-1$ if $d \leq 3$.

Convergence of curvature measures

Corollary 1. It holds

- (i) $\mathbb{E} V_{S^n}(r) \to \mathbb{E} V_S(r)$ as $n \to \infty$ for any r > 0;
- (ii) $\mathbb{E} \mathcal{H}^{d-1}(\partial S_r^n) \to \mathbb{E} \mathcal{H}^{d-1}(\partial S_r)$ as $n \to \infty$ for any r > 0 if $d \leq 3$ and for almost all r > 0 if $d \geq 4$.

Conjecture: $\mathbb{E} V_i(S_r^n) \to \mathbb{E} V_i(S_r)$ as $n \to \infty$ for $i = 0, \dots, d-2$ if $d \leq 3$.

Open problem: Find a uniform integrable upper bound for $V_i(S_r^n)$, $V_i(S_r)$, $n \in \mathbb{N}$, i = 0, ..., d - 2

Example

- For simplicity, consider T = 1.
- Set time instants $t_i = i/k_n$, $i = 1, ..., k_n$ for $k_n \to \infty$, $n \to \infty$.
- Vertices: $X^n(t_i) = X(t_i)$, $i = 1, \ldots, k_n$
- The path $S^n = \{X^n(t) : 0 \le t \le 1\}$ is a piecewise linear curve with $2^n + 1$ nodes lying on $S = \{X(t) : 0 \le t \le 1\}$.
- Set $S_r^n = S^n \oplus B_r(o)$, $n \in \mathbb{N}$.

Theorem 6. It holds $d_H(S^n, S) \leq \max_{t \in [0,1]} |X^n(t) - X(t)| \to 0$ as $n \to \infty$ a.s.

Special case: Haar-Schauder approximation

For the standard Brownian motion W ($\sigma^2 = T = 1$) holds

$$W(t) = \sum_{k=1}^{\infty} Y_k L_k(t), \qquad t \in [0, 1],$$

where

■ $L_k(t) = \int_0^t H_k(s) \, ds$ are the Schauder functions and H_k are the Haar functions, $k \in \mathbb{N}$. This series converges (a.s.) absolutely and uniformly on [0, 1].

■ Haar functions: $H_1(s) = 1, s \in [0, 1]$,

$$H_{2^{m}+k}(s) = \begin{cases} 2^{\frac{m}{2}}, & s \in \left[\frac{k-1}{2^{m}}, \frac{2k-1}{2^{m+1}}\right], \\ -2^{\frac{m}{2}}, & s \in \left[\frac{2k-1}{2^{m+1}}, \frac{k}{2^{m}}\right], \\ 0, & \text{otherwise} \end{cases} \qquad k = 1, 2, \dots, 2^{m}, \\ m = 0, 1, 2, \dots \end{cases}$$

• Approximate the Brownian motion X(t) by $X^n(t) = (W_1^n(t), \dots, W_d^n(t)), \quad t \in [0, 1]$, where

$$W_i^n(t) = \sum_{k=1}^{2^n} Y_{ik} L_k(t), \quad t \in [0, 1],$$

and Y_{ik} are i.i.d. N(0, 1) random variables.

• The path $S^n = \{X^n(t) : 0 \le t \le 1\}$ is a piecewise linear curve with $2^n + 1$ nodes lying on $S = \{X(t) : 0 \le t \le 1\}$.

Approximation formula for $\mathbb{E} V_0(S_r)$ **in 2D**

 $\mathbb{E}V_0(S_r) \approx 1 + \frac{0.0423017 \left(1 - \Phi\left(\frac{r - 224.899}{50.2096}\right)\right)}{\log\left(3.88182 \cdot 10^{-6} r^{1.88978} + 1.0\right) r^{0.153452}},$

where Φ is the c.d.f of N(0,1) – distribution.

Boolean model of Wiener sausages

 $\Xi = \bigcup_{i \in \mathbb{N}} (x_i + (S_r)_i)$ where $\{x_i\}$ is a stationary Poisson point process of germs with intensity $\lambda > 0$ and grains $(S_r)_i$ are iid copies of S_r .

Three realizations with volume fractions 0.25, 0.5 and 0.75 (T = 10, r = 1)

Capacity functional

Definition and formula

$$T_{\Xi}(C) = P(\Xi \cap C \neq \emptyset) = 1 - e^{-\lambda \mathbb{E}|S_r \oplus \check{C}|}$$

for all compact C, where

$$\mathbb{E}\left|S_r \oplus \check{C}\right| = \int_{\mathbb{R}^d} P(x \in S_r \oplus \check{C}) dx = \int_{\mathbb{R}^d} P\left(\tau_{C \oplus B_r(o)}^x \leq T\right) dx.$$

 $\tau_A^x = \inf\{s \ge 0 : X^x(s) \in A\}$ is the first hitting time of a Borel set A for the Brownian motion starting at $x \in \mathbb{R}^d$.

• Notation:
$$u(t, x) = P\left(\tau_{C \oplus B_r(o)}^x \le t\right), x \in \mathbb{R}^d, t \ge 0$$

Capacity functional

Kolmogoroff and Leontowitsch (1933), Doob (1955), Hunt (1956) u(t, x) is the unique bounded solution to the following heat conduction problem:

$$\begin{aligned} \frac{\partial u}{\partial t} &= \frac{\sigma^2}{2} \bigtriangleup u, \quad t > 0, \ x \in \mathbb{R}^d \setminus (C \oplus B_r(o)), \\ u(0,x) &= 0, \qquad x \in \mathbb{R}^d \setminus (C \oplus B_r(o)), \\ u(t,x) &= 1, \qquad t \ge 0, \text{ for all regular } x \in \partial(C \oplus B_r(o)), \end{aligned}$$

i.e. points x such that $P\left(\tau_{C\oplus B_r(o)}^x = 0\right) = 1$. In general, this problem has to be solved numerically.

Volume fraction

• Explicit solution: $C = \{o\}$. For

$$p_{\Xi} = P(o \in \Xi) = \mathbb{E} |\Xi \cap [0, 1]^d| = T_{\Xi}(\{o\})$$

we get

$$p_{\Xi} = 1 - e^{-\lambda \left(\omega_d r^d + \frac{d(d-2)}{2}\omega_d \,\sigma^2 r^{d-2}T + \frac{4d\,\omega_d\,r^d}{\pi^2} \int\limits_0^\infty \frac{1 - e^{-\frac{\sigma^2 y^2 T}{2r^2}}}{y^3 \left(J_{\nu}^2(y) + Y_{\nu}^2(y)\right)} \,dy\right)}$$

▶ Numerical solution: $C = \{o, h \cdot u\}$, where $u \in S^{d-1}$ and $h \ge 0$.

$$C_{\Xi}(h) = P(o, h \cdot u \in \Xi) = 2p_{\Xi} - T_{\Xi}(\{o, h \cdot u\})$$

Finite element method: mesh (left) and computed solution u (right) for

 $d = 2, \sigma^2 = 1, r = 1, h = 2.2$ and t = 100.

Approximation formula (CFS 08). Let r = 1, $\sigma^2 = 1$.

$$C_{\Xi}(h) \approx 2p_{\Xi} - 1 + (1 - p_{\Xi})^{\kappa(h,t)},$$

$$\kappa(h,t) = \begin{cases} \frac{2}{\pi} \left(\pi - \arccos(\frac{h}{2r}) + \frac{h}{2r} \sqrt{1 - \frac{h}{2r}} \right), & h \le 2r, \ t = 0, \ d = 2, \\ \frac{1}{2} \left(\frac{h}{2r} \right)^3 - 2 \left(\frac{h}{2r} \right)^2 + \frac{5}{2} \frac{h}{2r} + 1, & h \le 2r, \ t = 0, \ d = 3, \\ \left(\frac{h}{\nu(t)} \right)^3 - 3 \left(\frac{h}{\nu(t)} \right)^2 + 3 \frac{h}{\nu(t)} + 1, & h \le \nu(t), \ t > 0, \ d = 2, 3, \\ 2, \ \text{otherwise}, \end{cases}$$

$$\nu(t) = \begin{cases} 3.124 t^{0.3925} + 2.794, d = 2, \\ 3.744 t^{0.2182} + 1.454, d = 3. \end{cases}$$

 $\kappa(h,t)$ in 2D (left) resp. 3D (right) for $r = 1, 0 \le h \le 20$ and $0 \le t \le 100$

Relative approximation errors in 2D (left) resp. 3D (right) for $p_{\Xi} = 0.75$, r = 1, $0 \le h \le 20$ and $0 \le t \le 100$.

 $C_{\Xi}(h)$ with r = 1, $\sigma^2 = 1$ and T = 1, T = 50.

Spherical contact distribution function

$$H_{B_1(o)}(\rho) = P(\Xi \cap B_{\rho}(o) \neq \emptyset \mid o \notin \Xi) = \frac{T_{\Xi}(B_{\rho}(o)) - T_{\Xi}(\{o\})}{1 - T_{\Xi}(\{o\})}$$

It holds

$$H_{B_1(o)}(\rho) = 1 - e^{-\lambda M(d,\sigma^2,r,\rho,T)},$$

where

$$\begin{split} M(d,\sigma^2,r,\rho,T) &= \omega_d \left((r+\rho)^d - r^d \right) + \frac{d(d-2)}{2} \omega_d \, \sigma^2 \big((r+\rho)^{d-2} - r^{d-2} \big) T \\ &+ \frac{4d\,\omega_d}{\pi^2} \left((r+\rho)^d \int\limits_0^\infty \frac{1 - e^{-\frac{\sigma^2 y^2 T}{2(r+\rho)^2}}}{y^3 \left(J_\nu^2(y) + Y_\nu^2(y)\right)} \, dy - r^d \int\limits_0^\infty \frac{1 - e^{-\frac{\sigma^2 y^2 T}{2r^2}}}{y^3 \left(J_\nu^2(y) + Y_\nu^2(y)\right)} \, dy \right) \end{split}$$

Specific surface area

Specific surface area of Ξ Constant $S_{\Xi} \in (0, \infty)$ defined by

$$S_{\Xi}(B) = \mathbb{E} \mathcal{H}^{d-1}(\partial \Xi \cap B) = S_{\Xi} \cdot |B|$$

for all Borel sets $B \subset \mathbb{R}^d$, d = 2, 3.

• For
$$d = 2, 3$$
 it holds

$$S_{\Xi} = \lambda \mathbb{E} \mathcal{H}^{d-1}(\partial S_r) e^{-\lambda \mathbb{E} |S_r|}, \qquad r > 0.$$

• Example: d = 3

$$S_{\Xi} = 2\pi\lambda \left(2r^2 + 4r\sigma\sqrt{2T/\pi} + \sigma^2T\right)e^{-2\pi\lambda r \left(2/3r^2 + 2\sigma r\sqrt{2T/\pi} + \sigma^2T\right)}$$

Outlook

- ▶ Formula for $E\mathcal{H}^{d-1}(\partial S_r)$ for all r > 0 ($d \ge 4$)
- Formulae for $\mathbb{E} V_j(S_r)$, $j \leq d-2$ and specific intrinsic volumes $\overline{V}_j(\Xi)$, $j \leq d-2$ of the Boolean model of Wiener sausages
- Limit theorems for the surface area $\mathcal{H}^{d-1}(\partial S_r)$ and other intrinsic volumes $V_j(S_r)$ of the shrinking Wiener sausage LT for the volume (J.-F. Le Gall (1988)): for d = 2, it holds

$$(\log r)^2 (|S_r| + \pi/\log r)) \xrightarrow{w} c - \pi^2 \gamma, \quad r \to 0,$$

where $\sigma^2 = T = 1$ and γ is the (renormalized) Brownian local time of self-intersections. For $d \ge 3$: CLT.

- A. M. Berezhkovskii, Yu. A. Makhnovskii, R. A. Suris. Wiener sausage volume moments. J. Stat. Phys., 57(1-2):333–346, 1989.
- R. Černy, S. Funken, E. Spodarev. On the Boolean model of Wiener sausages. Method. Comput. Appl. Prob., 10 (1):23–37, 2008.
- A. Kolmogoroff, M. Leontowitsch. Zur Berechnung der mittleren Brownschen Fläche. Physik. Z. Sowjetunion, 4:1–13, 1933.
- G. Last. On mean curvature functions of Brownian paths. Stoch. Proc. Appl. 116 (2006), 1876-1891.
- J. Rataj, V. Schmidt, E. Spodarev. On the expected surface area of the Wiener sausage. Math. Nachr. 282 (4):591–603, 2009.
- J. Rataj, E. Spodarev, D. Meschenmoser. Approximations of the Wiener sausage and its curvature measures. Ann. Appl. Prob. 19(5):1840–1859, 200
- F. Spitzer. Electrostatic capacity, heat flow, and Brownian motion. Z. Wahrscheinlichkeitstheorie verw. Geb., 3:110–121, 1964.

References