ulm university universitat

uulm

Stable Distributions

Lecture Notes

Prof. Dr. Evgeny Spodarev

ULMm
2016



Contents

1 Introduction

2 Properties of stable laws
2.1 Equivalent definitions of stability

2.2 Strictly stable laws . . . . . . ..
2.3 Properties of stable laws . . . . .
2.4 Limit theorems . . . . ... ...

2.5 Further properties of stable laws
3 Simulation of stable variables
4 Additional exercises

Literature

16
17
23
28

34
38

43



Forewords

These lecture notes are based on the bachelor course “Stable distributions” which originally
tool place at Ulm University during the summer term 2016.

In modern applications, there is a need to model phenomena that can be measured by very
high numerical values which occur rarely. In probability theory, one talks about distributions
with heavy tails. One class of such distributions are stable laws which (apart from the Gaussian
one) do not have a finite variance. So, the aim of this course was to give an introduction into
the theory of stable distributions, its basic facts and properties.

The choice of material of the course is selective and was mainly dictated by its introductory
nature and limited lecture times. The main topics of these lecture notes are
1) Stability with respect to convolution
2) Characteristic functions and densities
3) Non-Gaussian limit theorem for i.i.d. random summands
4) Representations and tail properties, symmetry and skewness
5) Simulation.

For each topic, several exercises are included for deeper understanding of the subject. Since
the target audience are bachelor students of mathematics, no prerequisites other than basic
probability course are assumed.

You can find more information about this course at: https://www.uni-ulm.de/mawi/
mawi-stochastik/lehre/ss16/stable-distributions/

The author hopes you find these notes helpful. If you notice an error or would like to discuss
a topic further, please do not hesitate to contact the author at evgeny.spodarev@uni-ulm.de.

The author is also grateful to Dr. Vitalii Makogin for typesetting this lectures in KTRX,
making illustrations, and the selection of exercises.

02.11.2016 Prof. Dr. Evgeny Spodarev
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1 Introduction

Let (2, F,P) be an abstract probability space. The property of stability of random variables
with respect to (w.r.t.) convolution is known for you from the basic course of probability. Let
X1 ~ N(pu1,0%) and X3 ~ N(uz,03) be independent random variables. Then Xj + X ~

N(p1 + p2,0% + 03). One can restate this property as follows. Let X Lx, L X ~ N(0,1)
and X, X1, X are independent. Then Va,b € R aX; 4+ bXs ~ N(0,a? 4 b?), and so

aX) +bXs £ Va2 + B2 X. (1.0.1)
>0

Additionally, for any random variables Xi,...,X, iid., X; 4 X,¥i = 1,...,n, it holds
X g v/nX. Property (1.0.1) rewrites in terms of cumulative distribution functions of
X1, X5, X as @ (2)x D (%) =@ (2),x € R, where ®(z) = \/% . e~t/2dt, x € R, and * is the
convolution operation.
It turns out that the normal law is not unique satisfying (1.0.1). Hence, it motivates the
following definition.

Definition 1.0.1
A random variable X is stable if Va,b € R; 3¢, d € R, ¢ > 0 s.t.

aX; +bXo L eX +d, (1.0.2)
where X1, Xo are independent copies of X. X as above is called strictly stable if d = 0.

Remark 1.0.1
Let Fx be the cumulative distribution function (c.d.f.) of X, ie., Fx(y) = P(X <vy),y € R.
Then the property (1.0.2) rewrites as Fx () x Fix (¥) = Fx (y_d> ,y € R, if a,b,c # 0. The

C
case ¢ = 0 corresponds to X = const a.s., which is a degenerate case. Obviously, a constant

random variable is always stable. The property (1.0.1) shows that X ~ N(0,1) is strictly
stable.

Exercise 1.0.1
Show that X ~ N(u,0?) is stable for any p € R, 02 > 0. Find the parameters ¢ and d in (1.0.2)
for it. Prove that X ~ N(u,0?) is strictly stable if and only if (iff) u = 0.

The notion of (strictly) stability has first introduced by Paul Lévy in his book Calcul des
probabilités (1925). However, stable distributions (different from the normal ones), were known
long before. Thus, French mathematicians Poisson and Cauchy some 150 years before Lévy
found the distribution with density

A
he) = e
depending on parameter A > 0. Now this distribution bears the name of Cauchy, and it is

known to be strictly stable. Its characteristic function py(t) = [z €@ fi(z)dz,t € R has the
form @y (t) = e M.

,x € R, (1.0.3)
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In 1919 the Danish astronomer J. Holtsmark found a law of random fluctuation of gravita-
tional field of some stars in space, which had characteristic function ¢(t) = e_>‘”t”3/2,t € R3,
which led to the family of characteristic functions

o(t) = e M te R A > 0. (1.0.4)

For av = 3/2, it appeared to be strictly stable and now bears the name of Holtsmark. It needed
some time till it has proven by P.Lévy in 1927 that ¢(¢) as in (1.0.4) is a valid characteristic
function of some (strictly stable) distribution only for a € (0,2]. The theory of stable random
variables took its modern form after 1938 when the books by P.Lévy and A. Khinchin where
published.

Let us give further examples of stable laws and of their applications.

Example 1.0.1 (Constants):
Any constant c is evidently a stable random variable.

Example 1.0.2 (Cauchy distribution in nuclear physics):

Let a point source of radiation R be located at (0,0,1) and radiate its elementary particles
onto a screen S = {(z,y,0),z,y € R}. The screen S is covered by a thin layer of metal so
that it yields light flashes as the emitted particles reach it. Let (u,v,0) be the coordinates

Figure 1.1:

of one of these (random) flashes. Due to the symmetry of this picture (the whole process of
radiation is rotationally symmetric around axis RA cf. Fig. 1.1) it is sufficient to find the

distribution of one coordinate of (u,v), say, u 2 . Project the whole picture onto the plane
(z,z). Let Fy(z) = P(u < x) be the c.d.f. of U. The angle a to the ray RU varies in (0,7)

if it arrives at S. It is logic to assume that o ~ U[0, 7. Since tg (o — §) = § = wu, it follows

a =7m/2+arctanx. Then for any x > 0 {U <z} = {tg(a —7/2) <z} = {a < 7/2+arctanz}.
So,

2 t 1 1
Fy(x) =P(a < 7/2+ arctanx) = 7r/—i—a7rrczmx =3 + - arctan x

_/—00771+y2 :/—oof1<y)dy’

with fi(-) asin (1.0.3), A = 1. So, U ~ Cauchy(0,1). For instance, it describes the distribution
of energy of unstable states on nuclear reactions (Lorenz law).
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Example 1.0.3 (Theory of random matrices):

Let A,Y,, = B, be a random system of n linear equations, where A,, = (X i(jm)é. be a random
Z7‘7:

(2
its solution is Y, = A, !B, (for det(A,) = 0, put ¥, = 0 a.s.). As n — oo, the solution Y, is
numerically very hard to compute. Then the following approximation (as n — oo) is helpful.
Assume that for each n € N A, and B, are mutually independent IEXZ-(j") = EBi(n) =0,
VarXi(;l) = VarBi(n) =1Vi,j =1,...,n If sup,, ; (|X I+ |B(n)| ) < oo then for any

1<i,j<m,i#jlim, IP’(Yi(n)) = % + %arctan z,z > 0, where Y,, = (Y-(n))i:lmn. Hence,

(n X n)—matrices, and B,, = (B-(n)y_1 be a random n — dim vector in R™. If det(A,) # 0,

2

here again, Y;(n) ~ Cauchy(0,1),7 = 1...n, compare Exercise 1.0.1

Exercise 1.0.2
Show that if X € Cauchy(0,1) then X = 2, where Y1,Ys are i.i.d. N(0,1)—distributed
random variables.

Exercise 1.0.3
1) Prove that Cauchy distribution is stable. If it is centered, i.e., X ~ Cauchy(0, \), then it is
strictly stable.

. d 1
2) Show that if X ~ Cauchy(0, ) then X = ¢

In fact, it can be shown that for X ~ Cauchy(0,1), X1,..., X, i.i.d. and X; 4 X, > X 4
nX, i.e., the constant ¢ in (1.0.2) is equal to 2 here. The property > i ; X; 2 X rewrites
X, =1 v X 4 X, i.e., the arithmetic mean of X; is distributed exactly as one of Xj.

n

Example 1.0.4 (Lévy distribution in branching processes):

Consider the following branching process in discrete time. A population of particles evolves
in time as follows: at each time step, each particle (independently from others) dies with
probability p > 0, doubles (i.e., is divided into two new similar particles) with probability
p > 0, or simply stays untouched (with complimentary probability 1 —2p). Let G(s) = p+ (1 —
2p)s + ps?, |s| < 1 be the generating function describing this evolution in one step. Let vo(k)
be the number of particles in generation k& — 1, which died in k-th step. Let v = >"72, vo(k) be
the total number of died particles during the whole evolution of the process. Assuming that
there is only one particle at time k& = 0, put 1(0) = 0, and denote ¢, = P(v =n),n € Ny. Let

Z ans™ |s| < 1 (1.0.5)

be the generating probability function of v.

Exercise 1.0.4
Show that ¢(s) = G(p(s)) +p(s —1),|s| < 1.

From this evolution, it follows ¢(s) = p+(1—2p)@(s)+pp?(s)+p(s—1), or p?(s)—2p(s)—s =
0= p(s) —1==%v1—s,|s| < 1. Since |p(s)] <1Vs:|s| <1, then o(s)=1—+1—s>11is
not a solution = ¢(s) =1 —+/1 — s, |s| < 1. Expanding it in the Taylor series, we get

Z 1/2 s |s| < 1, (1.0.6)
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, and so on: (™ (0) = Fé}l&}éi),n €

which follows from ¢(0) = 0,¢'(0) = A— =1, " (0) =
N.

Exercise 1.0.5
Prove it inductively.

l\')\CO

Recall the Stirling’s formula for Gamma function: Vo > 0 T'(z) = /25 (£)” e#®), where
0 < pt < 13- Comparing the form (1.0.5) and (1.0.6), we get

T (n—1/2\"" Y2 _
Pn—1/2)  \Jadp (B28)" et

n = 2\/77F(n—|— 1) o 2f\/£n (%)neﬂ(n)

n—1
(”— 1/ 2) (n-1/2)-um) , 1 (1 - 1) L u/24u(n-1/2)-u(n)
NG n3/2 2/ ) win

n L 1)1 1 ! 1
~ oo (5 o+ (= log (1= 5o ) o1 )
n3/2 1 1 n3/2
~ - 1) —= 1)) ~——=,n— oc.
NG eXp<2+(" )( 2n)+0( )) SN
.. —3/2
Summarizing, g, ~ "27, n — oQ.

Now assume that the whole process starts with n particles at the initial moment of time
n = 0. Then, the total number of died particles is a sum > i, v; of i.i.d. r.vls y; < ) We

will be able to show # Yo Vi 4 x ,m — 00, where X is a standard Lévy distributed random
variable with density

fx(z) = \/127@_3/2 exp <—21:E> ,x > 0. (1.0.7)

Exercise 1.0.6
Let X be as above. Then

1. X 2Y-2 where Y ~ N(0, 1).
2. fX( ) ~ ﬁ$_3/2 r — +00.
3. EX = VarX = .

4. The standard Lévy distribution is strictly stable with ¢ = 4 in (1.0.2), i.e., for independent
X1 2X%2LX: X +X, 24X
The graph of fx(-) looks like it has its mode at x = 1/3, and f(0) = 0 by continuity, since

lim, 40 f(z) = 0. Relation (1.0.2) from Exercise 1.0.6(4) can be interpreted as % 4 2X,

the arithmetic mean of X3 4 Xs 2 X is distributed as 2X. Compare with the same property
of Cauchy distribution.
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Figure 1.2: Graph of fx




2 Properties of stable laws

2.1 Equivalent definitions of stability

Now we would like to give an number of further definitions of stability which appear to be
equivalent. At the same time, they give important properties of stable laws.

Definition 2.1.1
A random variable X is stable if there exists a family of i.id. r.v’s {X;}2; and number
sequences {an }nen, {bn }nen, bn > 0Vn € N s.t.

1 n
b—ZXi—angX,n—M)o. (2.1.1)

=1

Remark 2.1.1

Notice that this definition does not require the r.v. X; to have a finite variance or even a finite
mean. But if 02 = VarX; € (0, +00) then X ~ N(0,1) according to the central limit theorem
with b, = v/no,a, = % = /nk, where p = EX;.

Definition 2.1.2
A non-constant random variable X is stable if its characteristic function has the form px (s) =
e"®) s € R, where n(s) = A(isy — |s|* + isw(s,a, B)), s € R with

s 1Bt (50) . a1,

_ (2.1.2)
_/Bflog’$’7 Ctzl,

w(s,a, f) = {

a € (0,2],8 € [-1,1],y € R,A > 0. Here « is called stability index, § is the coefficient of
skewness, A is the scale parameter, and g = Ay is the shift parameter.

We denote the class of all stable distributions with given above parameters («, 3, A,7) by
Sa(A, B,7). Sometimes, the shift parameter p is used instead of v : Sy (A, 5, ). X € So(\, 5,7)
means that X is a stable r.v. with parameters (a, 3, A, 7).

Unfortunately, the parametrisation of n(s) in Definition 2.1.2 is not a continuous function
of parameters («, 3, A,7). It can be easily seen that w(s,a, ) — oo as a — 1 for any § # 0,
instead of tending to —37% log |s|. To remedy this, we can introduce an additive shift +\3tg (5a)
to get n(s) = A(isyar — |s|¢ + iswar (s, o, B)), s € R, where

(Is]*"t = Dptg (5a), a#1,

2.1.3
BT logls], a1 D)

= {7+ﬂtg(§a), a1

a=1"

WM(S7Q7/B) = {

7

(M stands for “modified”)

Exercise 2.1.1
Check that this modified parametrisation is a continuous function of all parameters.
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Another possibility to parametrise 7(s) is given as follows:
n(s) = Ap(isyp — |s|* + iswp(s,a, B)), s € R, where

exp (—i5 8K (a)sign(s)), a#1,

K(a) =a—1+sign(l — a),
5 +iBplog|s|sign(s), a=1, (@) g )

wp(s,a, fp) = {
™ ™
and for « #1: A = Apcos (2631((@)) Y = ’yB/cos (2631((04)) ,
5=t (5a) e (3 0aK ()
fora=1: A= g)\B,7: %’YB,ﬁ:ﬁB-

(B stays for “bounded’representation). In this form n(s) is again not continuous at o = 1,
but for &« — 1, # 1 the whole function 7(s) does not go to 400 as in (2.1.2), but has a
limiting finite form which corresponds to a characteristic function of a stable law with n(s) =
A (is (yp £ sin (§5B)) — |s|cos (58p)) . Here, the “+7sign is chosen for o — 140, and “—”
foraa -+ 1—-0.

Exercise 2.1.2
Show this convergence for « — 1 £+ 0.

Let us give two more definitions of stability.

Definition 2.1.3
A random variable X is stable if for the sequence of i.i.d. r.v's {X;}ien, Xi 4 X,Vi € N, for
any n > 2 dc, > 0 and d, € R s.t.

n
S X Lo X +dy. (2.1.4)
=1

Definition 2.1.4
It turns out that this definition can be weakened Thus, it is sufficient for stability of X to
require (2.1.4) to hold only for n = 2,3. We call it Definition 2.1.4.

Now let us formulate here equivalent statement.

Theorem 2.1.1
Definitions 1.0.1,2.1.1-2.1.4 are all equivalent for a non-degenerate random variable X (i.e.,
X = const).

The proof of this result will require a number of auxiliary statements which now here to be
formulated. The first of them is a limit theorem describing domains of attraction of infinitely
divisible laws.

Theorem 2.1.2 (Khinchin):
Let {an, j=1...k,,n € N} be the sequence of series of independent random variables with
the property

lim max P(|X,,|>¢)=0,Ve >0 (2.1.5)

n—00 j=1.. ky

and with c.d.f. F;. Let S, = Zj’il Xn; —an,n € N. Then a random variable X with c.d.f. Fx
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Figure 2.1: Graph of H

is a weak limit of S,, (S, 4 x ,n — 00) iff the characteristic function ¢ x of X has the form

vx(s) =exp (isa —bs® + — 1 —issin ZL‘) dH(a:)) ,s €R, (2.1.6)

(eisx
{z#0}
where a € R;0 > 0, H : R\ {0} — R is non-decreasing on R, and R_, H(s) — 0, as |z| — +o0,
and fo_ ;<1 r2dH (s) < oo.

This theorem will be given without proof.
Remark 2.1.2 1. The condition (2.1.5) is called the asymptotic smallness condition of

X,

2. Representation (2.1.6) is called the canonic representation of Lévy-Kninchin.

3. Laws of X with ch.f. ¢px as in (2.1.6) are called infinitely divisible. For more properties
of those, see lectures “Stochastics I1”.

4. The function H is called a spectral density of X.

Exercise 2.1.3
Show that CLT is a special case of Theorem (2.1.2): find X,,; and ay,.

Another important result was obtained by B.V. Gnedenko.
Theorem 2.1.3 (Gnedenko):
Consider A4, (y) = Zﬁfgl E(Xn,1(|Xn,| <y)),n €N, where y € R is a number s.t. y and —y are

continuity points of H in (2.1.6). Introduce of = Z?gl Var (X, I(| Xn,| <y)),e > 0. Let Fx
be a c.d.f. with ch.f. px asin (2.1.6). Take

an = Auy) —a~ [

1
udH (u) +/ —dH (u),n € N.
lul<y

[u|>y U

Then, S, 4 X,n — oo (or F, = F,n — oo weakly) iff
1) For each point x of continuity of H it holds
kn

lim ; <Fnj () — %(1 4 signx)) ~ H(x).
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2) lim._o limsup,,_, ., 05 = lim._,0 liminf,,_, 05 = 2b.
Without proof.

Remark 2.1.3 1. In order S,, = é 1 X — ap, from Definition 2.1.1 to fulfill condition
(2.1.5), it is sufficient to require b, — oo,n — oo. Indeed, in this case X, = X;/by,
and, since X are i.i.d., lim o max;j—1. x, P(|Xn;| > €) = limy, 00 P(|X1] > €by) = 0 if

b, — o0.

2. Property (2.1.5) holds whenever F,, — Fx weakly, where Fx is non-degenerate, i.e.,
X # const a.s. Indeed, let (2.1.5) does not hold, i.e., lim_,o max;—y. , P(|Xn,;| >¢) #0
for some € > 0. Then 3 a subsequence ny — oo as n — oo s.t. b,, = o(1). Since,

S, % X,n — o0, s.t. vg, () A vx(s),k — oo, where

@Snk (S) — Eezs Zj§1 Xj/bnk —1S8Gn, — e—lsank (@Xl (bs)> , S c R’

N

50, [, ()] = o, (5>) ’"’“ (1+0(1)), k — o0o. Then for each small s € Bs(0) |ox, (s)] =

lox (sbn,)|Y™ (1 + 0(1)) — 1,k — oo, which can be only if |px, (s)| = 1,Vs € R, and
hence |px(s)| = 1, which means X = const a.s. This contradicts with our assumption
X = const.

Definition 2.1.5 1) A function L : (0,4+00) — (0, 400) is called slowly varying at infinity
if for any z > 0
M —1,t = 400
L(t) ’ '
2) A function U : (0,400) — (0,400) is called regularly varying at infinity if U(z) =
xPL(x),Vx > 0, for some p € R and some slowly varying (at infinity) function L.

Example 2.1.1 1. L(z) = |log(z)|’,z > 0 is slowly varying for each p € R.
2. If limy 400 L(z) = p then L is slowly varying.
3. U(x) = (1 +2%)P,x > 0 is regularly varying for each p € R with p = 2p.

Lemma 2.1.1
A monotone function U : (0,+00) — (0,+00) is regularly varying at oo iff UU(ff)) = Y(z),t —
+o00 on a dense subset A of (0,+00), and 1 (z) € (0,+00) on an interval I € Ry.

Proof Let Xy, Xo € ANI. For t — 400 we get

U(trizz)  Ul(twize) U(tr)

Ul UG O(p)  CEe)

P(x122)

Hence, ¥ (x122) = ¥(x1)1(x2). Since U is monotone, so is . By monotonicity, define ¢ any-
where by continuity from the right. Then ¢(x122) = 1(x1)1(x2) holds for any x1,ze € I. Set
x = e¥,¥(e¥) = p(y). The above equation transforms to ¢(y1 + y2) = ©(y1)p(y2). One can
easily show that if has a unique (up to a constant p) solution bounded on any finite interval,
and it is p(y)e?Y < () = ’. O

The proof of Theorem 2.1.1 will make use of the following important statement which is
interesting on its own right.
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Theorem 2.1.4
Let X be a stable r.v. in the sense of Definition 2.1.1 with characteristic function ¢x as in
(2.1.6). Then its spectral function H has the form

— —« 0
Ha)= " 7 77 Gherea e (0,2),c1,00 > 0.
62(_‘r)_av x <0,

Proof Consider the non-trivial case of a non-degenerate distribution of X (otherwise ¢; = cg =
0). Denote by X the set of all continuity points of the spectral function H.

Exercise 2.1.4
Prove that Xy is at most countable.

Since X is stable in the sense of Definition 2.1.1, 3 an i.i.d. sequence of r.v’s {X,};eny and
number sequences {ay }nen, {bntnen, bn > 0Vn € N sit. S, = i X —an 4, X,n — oo.
Using Theorem 2.1.3, condition 1), it means that Vo € Xy n(F(b,x) — 3(1 + signz)) —
H(x),n — oo, where F(y) =P(X; <y),y € R.

Consider the case x > 0. If H(x) # 0 on Ry, so 3z € X,z > 0 with ¢ := —H(x¢) > 0,
compare Fig. 2.1 For each t > 0, find an n = n(t) € N s.t. n(t) = min{k : byro <t < bpr120}-
Since, F'(z) =1— F(x) | on R4, we get

F(bpt102) < F(tx)
F(byzo) ~— F(t)

F(byxox)
F(bn410)

< . V> 0. (2.1.7)

Since, n(t) — oo, t — 0o, —(F(by(x)) — 1) = H(x),z — oo, we get for xor € Xg

F(bpt1707) _ —nF(byi1707) . H(xox) _ H(zor)
F(byxo) —nF(bpzo) H(xo) q

The same holds for the right-hand side of (2.1.7). Hence, for any =,y > 0 s.t. 2oz, 2oy, Tory €

F(tzy)
F(t)

X we have — L(zy), — +00. Otherwise,

F(tey)  F(tzy) F(ty)
F)  Fly) By W

by the same reasoning. As a result, we get the separation L(zy) = L(x)L(y) which holds for all
x,y > 0. (may be except for a countable number of exceptions since X is at most countable.)

By definition of L(x) := —@, L : Ry — Ry is non-decreasing, L(1) = 1, L(co) = 0. It
can be shown (cf. the proof of Lemma 2.1.1) that the solution of the equation

is L(z) =1/xz“ a > 0. Hence, for z > 0 H(z) = —qL(x/x0) = H(xo)z™ /2y " = 2§ H (x0)z™" =
—c1z™ %, 1 2 0. Since [y 1,1« 22dH (z) < 0o (cf. Theorem 2.1.2), it holds Jo<jz)<1 27 ldy <
0 <= 2—a>0 < a <2 Hence, 0 < a<2, c >0 can be arbitrary.

The case = < 0 is treated analogously and leads to the representation H(x) = ca(—x)7%, ¢y >
0,0<d<2.
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Show that a = §. Since Ff(zf))
varying by Lemma 2.1.1. Hence, exists a slowly varying function h; : (0, +00) — (0, +00) s.t.

F(z) = x7%hy(z),z > 0. By property 1) of Theorem 2.1.3, nF(b,x) = nb,“x~%h1(byz) —

H(z) = ciz™,n — oo. Since, hljl(éjgngc)) — 1,n — o0, it holds

~ 7%t — oo for > 0, it means that F(s) is regularly

hl (bnm)

c1 < nb, “hy(bpx) = nb, “h1(by) 7 (o)

~ nb, *h1(by),n — oo. (2.1.8)

Analogously, we get F(x) = (—2) %ha(—x),x < 0, where hy : (0,+00) — (0,+00) is slowly
varying, and nb;hy(b,) ~ co. Assuming cj,co > 0 (otherwise the statement get trivial since
either v or 0 can be chosen arbitrary), we get b,;a”% — & > 0,n — oo, where hy/hs is

slowly varying at 400, which is possible only if a = 6. O

Corollary 2.1.1

Under the conditions of Theorem 2.1.4, assume that ¢; +c¢2 > 0. Then the normalizing sequence
b, in Definition 2.1.1 behaves as b, ~ n'/®h(n), where h : (0, 400) — (0, +00) is slowly varying
at +oo.

Proof Assume, for simplicity, ¢; > 0. Then, formula (2.1.8) yields n ~ clbghfl(bn),a € (0,2).
Hence, b, ~ nl/o‘c;l/o‘(hl(bn))l/CY = n'/?h(n), where h(n) = (¢ h1(bn))Y* is slowly varying
at 400 due to the properties of hj. ]

Proof of Theorem 2.1.1. 1) Show the equivalence of Definitions 2.1.1 and 2.1.2.

Let X be a non-constant r.v. with characteristic function ¢x as in (2.1.6). Assume that
X is stable in the sence of Definition 2.1.1. By Theorem 2.1.4, its spectral function H has
—c1/|x|* x>0,

eflal®,  w<0

the form H(z) = { ,a € (0,2),¢1,c2 > 0. Put it into the formula (2.1.6):

log o x () = isa — bs® + c1Qa(8) + c2Qa(s), s € R, where
Qa(s) = —/ (643(; —1+issin a;) dz™" = Re (Ya(i,t))|t=—iss
0

and Yo(2,t) =t [;° (e7** — e ) 27z for z,t € C: Rez,Ret > 0, € (0,2). Integrating by
parts, we get

Yalz,t) = t /+Oo(ze_m —te ")z! " dx
(e 9 —_— 1 — 0
t +o0 too _
= ([ e e e — e [T e ey ) ) = |3;§:zy/
(e [Tyt [ evpeaiay)
11—« 0 o
tI'(2 —
= ia) (za—l — ta—l) , for any a # 1,Re z,Ret > 0.
-«

For fixed z,t € C : Rez,Ret > 0 the function ¢,(z,t) : (0,2) — C as a function of « is
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continuous on (0, 2). Hence,

P1(z,t) = hm VYo (2,t) = lim trZ—a)

a—1 1—«

(za—l _ ta—l)

t
— 171iani0 - a(e(afl)logz - e(afl)logt) — ’1 — = LU‘

= lim — (1 —zlogz—1+xlogt+ o(x)) =t(logt — log z) = tlog(t/z).

z—0 T

Then for o # 1 we get

_ —isI'(2—a) i(7/2)(a—1) a1

Qa(s) = ﬁ (Re (e ) — (—ZS) )
_ —isI'(2 — ) i(7/2)(a—1) (a—1)i(—m/2)signs| _ja—1
= Y (Ree )~ e s1*7")

= —isI'(1 - a) (cos (;r(a — 1)) — i(signs) sin (g(a - 1)) ’S’al)

= —issin <7T2a> I'(l — a) —sin <7T2a> i(signs)|s|*IT(1 — ) +i%|s|*T'(1 — «) cos (?)
= —I'(1 — ) cos(ma/2)|s|* —is(1 — |s|* D (1 — a) sin(ra/2).

Fora=1

Qa(s) = —is Re (log(t/))|,=—;s = —is log[t/ill,~_;; = —islog(—is)

= —is(log |s| + i(—m/2)signs) = —|s|g —islog|s|.

Then

ox ()] = exp{—bs® — d|s|*}, (2.1.9)
where d = (¢ + 62)1“(12_—(;1) sin (5(1 — ), # 1. For o = 1 get limit as o — 1 as a value of d:
(c1 + ¢2)7/2. Show that bd = 0.

If, for instance, d > 0, then show that b = 0. By Definition 2.1.1, 3 sequences {a, },{b,} C R:
bp — 00 as n — oo and a characteristic function @x, (s) s.t. e ™% (s/bp) — px(s),n —
00,5 € R. Hence, |px,(s/bn)|" — |ox(s)|,n — oo where b, = n'/*h(n) by Corollary 2.1.1.
Since, h is slowly varying, l; — k=Y n — oo for any k € N. Then

nk
S . bTL 1 —1/0( k
ox)l 6 fox ()| = (spit )| o fox (s

i.e., by (2.1.9), exp{—bs? — d|s|*} = exp{—bs?k'~?/* — d|s|*}, which is only possible if b = 0.
Now set

nk

Vk € N,

(c1 —c2)/A, ifep+c2 >0,

™
Il

d, ifeci+co>0,
b, if ¢; + co =0 (Gaussian case) ,
(2.1.10)
0, if ¢; + co = 0 (Gaussian case) ,
(ca —c))I'(1 — a),sin(ra/2) if a # 1,

0, ifa=1.

M*—‘

(a+a), Wherea:{
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Then ¢x satisfies representation in Definition 2.1.2 with the above parameters X, 3,7, a.
Vice versa, if px satisfies Definition 2.1.2, then it can be represented as in (2.1.6) with
spectral function H as in Theorem 2.1.4, see the formula (2.1.10), where ¢, ¢2 can be restored

from A, 5,7 uniquely. By theorem 2.1.2, the limit theorem S, 4 x ,n — 0o takes place.

Exercise 2.1.5
Show that { X,,; } can be chosen here as in Definition 2.1.1 (since b, = n'/®h(n) is clear, b, — oo,
one has only to fix ay,, c¢f. Remark 2.1.3)

2) Show the equivalence of Definitions 2.1.1 and 1.0.1.

Let X be stable in the sense of Definition 1.0.1. By induction, if follows from the relation
aX1 + bXo £ ¢X + d of Definition 1.0.1 (with @ = b = 1) that for any n > 2 3 constants
b, > 0, a, s.t. for independent copies X;,i =1...nof X : X1 +--- 4+ X, 4 b, X + ay, or
é X — Z—: 2 x. So, for n — oo, the limiting distribution of the left-hand side coincides
with that of X, and Definition 2.1.1 holds.

Vice versa, we show that from Definition 2.1.2 (which is equivalent to Definition 2.1.1) it
follows Definition 1.0.1. Definition 1.0.1 can be rewritten in terms of characteristic function as

px(as)px (bs) = px(cs)e’™, (2.1.11)

where a > 0 and b > 0 are arbitrary constants, and ¢ > 0,d € R are chosen as in Definition
1.0.1, px(s) = Ee*}. By Definition 2.1.2, ox(s) = exp{\(isy — |s|® + isw(s, o, 3))},s € R
with w(s,a,B) as in (2.1.2). Tt is quite easy to see that (2.1.2) follows with ¢ = (a® + b®)'/?,
J— My(a+b—c), a1,

| \82(alog(a/c) + blog(b/c)), a=1.

3) Show the equivalence of Definition 2.1.3 and Definition 1.0.1. Definition 2.1.3 follows from
Definition 1.0.1 as it was shown in 2). Vise versa, from Definition 2.1.3 it follows Definition
2.1.1 ( see 2) ), which is equivalent to Definition 1.0.1.

4) Show the equivalence of Definitions 2.1.3 and 2.1.4. In one direction (Definition 2.1.3
= Definition 2.1.4) it is evident, in the other direction, assume that X; + Xo 4 co X + ds,
X1+ Xo+ X3 4 c3X + dg for some co,c3 > 0,do,d3 € R. In order to show Definition 2.1.3, it
is sufficient to check that

nn(s) = n(cps) + isdy, (2.1.12)

for any n > 4, some ¢, > 0 and d,, € R, where 7(s) = logpx(s),s € R. Since (by assumption)

cs'

2777, m
(2.1.12) holds for n = 2,3, it holds (by induction) for any n = {3’” with ¢, = {62 ’

do(1 cei g omml
= { 2l +eot ot ), m € N. Hence, the distribution of X is infinitely divisible,

" d3(1+03+---+6§n—1).
and then |p(s)| # 0,Vs € R.
From the said above, it holds

27380 (s) = n(chcks) + iaj;s (2.1.13)

for some cg,c3 > 0,a, € R,j,k € Z . The set {273% j,k € Z} is dense in R, since 2/3% =
exp{jlog2 + klog3}, and the set {j + wk,j,k € Z},w ¢ Q is dense in R. Hence, for any n 3

ds
c3 "

'Let t = s/co then it follows from (2.1.12) that 3n(t) = n(c; 't) — is%. Similarly we get 2n(t) = n(c; 't) —is
So, formula (2.1.13) also holds for negative j,k € Z.
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sequence {7, YmeN, 'm — 1 as m — oo, and 1, = 2/m3Fm. Let c,(m) = c;mc’:,fm,m € N. Show
that {cp(m)}men is bounded. It follows from (2.1.13) that r,,Re ((s)) = Re (n(cp(m)s)).

Assume that ¢, (m) is unbounded, then 3 subsequence {c,(m’)} such that |¢,(m’)| — oo, m’ —
00. Set s = scp(m') in the last equation. Since r,y — n,m’ — oo, we get Ren(s’) =
reren(ﬁ;n,)) — 0,m' — oo. Hence, |n(s)| = 1, which can not be due to the assumption
that X = const.

Then {c,(m)}men is bounded, and 3 a subsequence {c,(m’)}ren such that |e,(m')] —
cn,m’ — co. Then a; = L(n(cp(m')) — rpn(s)) = L(n(cn — nn(s)) := dy. Hence, ¥n € N
and s € R it holds nn(s) = n(c,s) + isn(d, ), which is the statement of equation (2.1.12), so we
are done. O

Remark 2.1.4
It follows from the proof of Theorem 2.1.1 1) that the parameter § = 2;55, if e +c2 > 0in
non-Gaussian case. Consider the extremal values of § = £1. It is easy to see that for § =1

cog =0, for B = —1 ¢; = 0. This corresponds to the following situation in Definition 2.1.1:

a) Consider {X,,},en to be i.i.d. and positive a.s., i.e., X3 > 0 a.s. By Theorem 2.1.3,1) it
follows that H(z) = 0,2 <0 = =0 = [ =1.

b) Consider { X, }nen to be i.i.d. and negative a.s. As above, we conclude H(z) =0,z > 0,
andcp =0 = [g=-1.

Although this relation can not be inverted (from § £ 1 if does not follows that X > (<)0 a.s.),
it explains the situation of total skewness of a non-Gaussian X as a limit of sums of positive
or negative i.i.d. random variables S, = i Yo Xi — ap.

Remark 2.1.5
One can show that ¢, = n'/® in Definition 2.1.3, formula (2.1.4), for a € (0,2].

Proof We prove it only for strictly stable laws. First, for « = 2 (Gaussian case X, X; ~
N(0,1)) it holds Y7, X; ~ N(0,n) £ /nX = ¢, = n/® with a = 2.
Now let « € (0,2). Let X be strictly stable, s.t. > | X; 4 ¢, X. Take n = 2, then

Sp = (X1 + Xa) + (X3 + Xa) + -+ (Xpo1 + X)) L ea(X] + Xg 4+ X ) £ L chx,
—_———

X!

| X} X!

2 n/2

Co logn/log 2
from which it follows ¢, = cor = c§ = ¢ ® n/log , S0

1
logc, = <£)§7;> log co = log <n10g62/1°g2> . =nl/o2 (2.1.14)

where ap = log 2/ log ca, for n = 2% k € N. Generalizing the above approach to n = m* turns,
we get

_ logm

en = ntom a

= ,n=mF keN. (2.1.15)
log ¢,

To prove that ¢, = n'/® it suffices to show that if cp = /P then f = ag. Now by (2.1.15)
Cprj = riler and Co = ,ok/o‘ﬂ. But for each k there exists a j such that 77/ < pk < rJ*t1 Then

(€)% < e = phlor < ploe(c,g)0r/o. (2.1.16)
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Note that S,,+, is the sum of the independent variables S,, and S,,+n, — Sy, distributed,

respectively, as ¢, X and ¢, X. Thus for symmetric stable distributions ¢, 4, X 4 cmX1+cnXo.
Next put n = m—+n and notice that due to the symmetry of the variables X, X, Xo we have for
t>02P(X >t) >P(Xy > tcy/c,). It follows that for n > n the ratios ¢, /¢, remain bounded.
So, it follows from (2.1.16) that

c r
r= (e ()

Cpi
and hence o, > . Interchanging the roles of r and p we find similarly that o, < o, and hence

ar = ap = o for any r,p € N.
We get the conclusion that ¢, = nt/® n e N. It can be further shown that ag = a. ]

Definition 2.1.6

A random variable X (or its distribution Px) is said to be symmetric if X 4 _X. Xis symmetric
about p € R if X — p is symmetric. If X is a—stable and symmetric, we write X ~ Sa.S. This
definition is justified by the property X ~ S, (A, 8,7), X —symmetric < v = 8 = 0, which will
be proven later.

2.2 Strictly stable laws

As it is clear from the definition of strict stability (Definition 1.0.1) X is stable iff for any
a,be Ry e > 0s.t. px(as)px(bs) = px(cs),s € R, where px(s) = Ee*X s € R.

Theorem 2.2.1
Let X = const a.s. It is strictly stable if its characteristic function admits one of the following
representations: Vs € R

1.

log px(s) = {)\(_‘S‘a +isw(s,a,B)) a#1, (e, {’Y =0, a#+l,

A(isy — |s]) a=1, =0 a=1
with w(s,a, f) as in (2.1.2).

2. (form C) logpx(s) = —Ac|s|”exp(—Fhasigns), where o € (0,2], A\c > 0, § < b, =
min{1, -2;}.

Proof 1. In the proof of Theorem 2.1.1, 2) it is shown that

g Ay(a+b—c), a+1
B 6=0 a=1.

A32(alog(a/c) + blog(b/e)), a=1

=0 1
:0®{7 , a#

2. Take the parametrisation (B) of px with parameters v, 8 as in 1, and left o unchanged,

0263@7)‘0:)\37 Oéﬁél,
1/2
0= %arctg (%VB) ,AC = AB (%2 +7%) / , a=1.
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2.3 Properties of stable laws

Here we consider further basic properties of a—stable distributions.

Theorem 2.3.1
Let X;,i = 1,2 be So (i, Bi,vi)-distributed independent random variables, X ~ S, (A, 3,7).
Then

1) X has a density (i.e, has absolutely continuous distribution), which is bounded with all
its derivatives.

2) X1+ Xo ~ Sa(A B,7) with

i+ Bade v+ Ao

A= A1+ Ao, = ,
EE A Ve A+ Ao
3) X +a~ Sa(N B,y +a/N), where a € R is a constant.
4) For a real constant a # 0 it holds
Sa (lal*X, sign(a)B,~a|'~“sign(a)) , a1,
aX ~ ) ) 9
$1 (Jal sign(a)5,sign(a) (7 — 2(oga))s) ), a=1.

5) For a € (0,2), X ~ Sa(\,3,0) & —X ~ S, (A, —5,0).
6) X is symmetric iff 5 =~ = 0. It is symmetric about Ay iff 5 = 0.
7) Let a # 1. X is strictly stable iff v = 0.

Proof 1) Let px, ¢x, be the characteristic function of X, X;,7 = 1, 2. It follows from Definition
2.1.2 that |px(s)| = e M*I", s € R. Take the inversion formula for the characteristic function.
If |px| is integrable on R (which is here the case) then the density fx of X exists and fx(s) =
5 [p e ®ox(s)ds, x € R. Additionally, the n—th derivative of fy is

2 n+1

< n — _ N = 7/
’7‘): (:E)‘ 5 /|s| lox(s)| ds= AT 2 <o, zeRneN
exp(—A|s|®)

2) Prove it for the case a # 1, the case o = 1 is treated similarly. Consider the characteristic
function of X7 + X5, and take its logarithms:

log SOXH-Xz( ) = log(ngl( )SOX2( )) =logpx, (5) + log px, (5)

Z (zs% |s|* + s|s|*™ 125th(ﬂ'a/2))

= —|3’ (A1 4 A2) +is(A71 + Aaye) +is|s|* T (A Br + AzB2)tg(mar/2)
A1+ A2ye A1 AP+ >\2ﬁ2>
A AT A2 APL T A2P2
= Ot (21 DY
= A(isy — [s]* +isw(s, o, B)),

— || +is]s
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with
A+ Ay

B+ A
A=+ dg,y = = Dbt el

AL+ Ao N A+ Ao
So, X1+ Xo ~ Sa(\, B,7) by Definition 2.1.2.

3) log oxia(s) = isa + Nisy — Als|® + Nisw(s, a, B) = A(is(y + a/A) — |s]* + isw(s, A, 5)),
hence X 4+ a ~ Sy (X, 8,7+ a/)).

4) Consider the case A # 1.

log pax(s) = log px(as) = A(iasy — |as|* +iasw(as, @, 5))

a ala|*1

= Mal® <i37|a’a — |s|* +is al \s\alﬁtg(ﬂa/2)>

= Nal|* (isvla|'~“sign(a) — [s|* + issign(a)B]s|"tg(ma/2))

hence aX ~ S, (\a|®,sign(a)B,v|a|!~%sign(a)).
For @ = 1, we have

2
log vux(s) =logpx(as) =\ (ias*y — las| —iasf—log as\)
T

= \al (isya s

lal o]

2 a2
52 log o] — Jo — is:5~ log s
™ la]” 7

2 2
— Nal (isign(a)s (v ~ 5 1oglal ) Is| - isign(a)s5 log]s)))

hence a X ~ S; (/\|a],sign(a)ﬁ,sign(a) ('y — B2 log |a\>> .

5) follows from 4) with a = —1.

6) X is symmetric by definition iff X 4 —X, ie., ox(s) = p_x(s) = px(—s),Vs € R, which
is only possible if px(s) € R, s € R. Indeed, Ee*X = Ecos(sX) + iEsin(sX) = Ecos(—sX) +
iEsin(—sX) = Ecos(sX) — iEsin(sX) iff 2iEsin(sX) = 0,V¥s € R. Using Definition 2.1.2,
px(s) is real only if y = 0 and w(s,a, 5) =0, i.e.,, 5=0.

X is symmetric around Ay by definition iff X — A~y 4 —(X — Ay) = =X + \y. By property
3) and 4), X — Ay ~ Sa(\, 3,7 — ), =X + 7 ~ Sa(X, =B, =y +17). So, X — Ay £ —X + Ay iff

=0.

’ 7) Is already proven in Theorem 2.2.1. O

Remark 2.3.1
1) The analytic form of the density of a stable law S, (A, 3,7) is explicitly known only in the
cases a = 2 (Gaussian law), « = 1 (Cauchy law), a = 1/2 (Lévy law).

2) Due to Property 3) of Theorem 2.3.1, the parameter v (or sometimes \y) is called shift
parameter.

3) Due to Property 4) of Theorem 2.3.1, the parameter A (or sometimes A!/?) is called shape
or scale parameter. Notice that this name is natural for « # 1 or @« = 1,8 = 0. In case
a =1,8 # 0, scaling of X by a results in a non-zero shift of the law of X by %Blog la|, hence
the use of this name in this particular case can namely be recommended.

4) Due to properties 5)-6) of Theorem 2.3.1, parameter (3 is called skewness parameter. If
B> 0(8 < 0) then S, (A, 3,7) is said to be skewed to the right (left). S, (A, £1,7) is said to be
totally skewed to the right (for § = 1) or left (for 5 = —1).
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5) It follows from Theorem 2.2.1 and Theorem 2.3.1, 3) that if X ~ S, (A, 3,7), @ # 1, then
X — My ~ S4(\, B,0) is strictly stable.

6) It follows from Theorem 2.2.1 and Definition 2.1.2 that no non-strictly 1-stable random
variable can be made strictly stable by shifting. Indeed, if S;(A,3,7) is not strictly stable
then 5 # 0, which can not be eliminated due to log |s| in w(s, A, #). Analogously, every strictly
1-stable random variable can be made symmetric by shifting.

Corollary 2.3.1
Let X;,i=1,...,n be iid. Sy(A, 3,v)—distributed random variables, « € (0,2]. Then

Xogx A [PX Xt a
1 " nXi + 2\Bnlogn, ifa=1.

This means, ¢, and d, of Definition 2.1.3 has values

My(n—n*), ifa#1,

e =n"a€(0,2], dy=1]
ZABnlogn, if o = 1.

Proof It follows by induction from the proof of Theorem 2.1.1 2). There, it is shown aX; +

A b— 1
bXy L eXy +d, with ¢ = (a® + b))V, d = 7(2” ) 7L e
AB=(alog(a/c) + blog(b/c)), a=1.
My(2 + 21/ 1
n=2a=b=1=cy =2V dy = 7(2 + ) atl, The induction step is trivial. [
A3Z2log(2)), a=1.

Corollary 2.3.2
It follows from theorem 2.3.1, 2) and 3) that if Xy, Xo ~ S, (A, 3,7) are independent then
X1 — X9~ 54(2X,0,0) and —X; ~ So (A, =5, —7).

Proposition 2.3.1. Let { X, }en be a sequence of random variables defined in the same prob-
ability space (Q,F,P), Xy, ~ Sa, (MM M MY 5 € N, where a,, € (0,2),\M > 0,8M ¢

n
—1,1], € R. Assume that o — «, — , — as n — o0 for some o €
11,7 € R 4 h M= MM — M [
y4), >0, e |—L 1,7 e R. en X — ~ Sq , )Y as n — oco. Here the
0,2),A\M > 0,8M € [=1,1],™ € R. Then X, % X ~ So(A\M,gM M Here th

superscript “M” means the modified parametrisation, cf. formula (2.1.3) after Definition 2.1.2.

Proof X, % X as n — oo is equivalent to ¢x, (s) = px(s),n — oco,s € R, or, logyx, (s) =

MM (GsyM — |s|% +iswar(s, an, BM)) = M (isyM —|s]|® +iswas (s, a, M) which is straight-
n oo

forward by the continuity of the modified parametrisation w.r.t. its parameters. O

Our aim now is to prove the following result.
Proposition 2.3.2. Let X € S4(\,1,0),A > 0,a € (0,1). Then X >0 a.s.

This property justifies again the use of 8 as skewness parameter and brings a random variable
X € S4(A,1,0) the name of stable subordinator. The above proposition will easily follows from
the next theorem.

Theorem 2.3.2
1) For a € (0,1), consider X5 = Zgjl Us i to be compound Poisson distributed, where Ny is
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a Poisson(6~“)—distributed random variable, 6 > 0, and {Us }ken are i.i.d. positive random
0% [z%, x>,

0, x <.

Then X5 % X,6 — 0, where X ~ Sa(A, 1,0) with A = T'(1 — a) cos(ra/2).

A

2) Let X ~ Sq(A,1,0),a € (0,1). Then its Laplace transform [x(s) := Ee™*¥X is equal to

variables, independent of N5, with P(Usy > x) = {

Ix(s) = e P72 5>, (2.3.1)
Proof 1) Since the generating function of N ~ Poisson(a) is equal to gy(z) = EzV =
SRVAP(N = k) = 32, zke*“% =e "3 %, (a,f!)k = e %% = 4> » € C, we have
dn;(2) = 2“7 2 € C, and hence

ox;(s) = Ee"Xe = (E (eZSX5|N5)> =E (E (e’s 2o Usik |N5)>

Ng 70(
—F (H ECZSU(SJ) — QN(; (SOU(SJ(S)) — 66 (‘PU(;J(S)_I)’
k=1

where @y, | (s) = [57 e7dP(Usy < x) = a [§7 €576%x~* da. So (since a [§° 27 tdw = —07)

©x;(s) = exp {a/ (e'® — l)x_a_ldx} — exp {a/ (e"% — 1):6_0‘_1dx},
1) 0

6—+0

which is of the form (2.1.6) with H(z) = —ciz*I(x > 0) as in Theorem 2.1.4 (c2 = 0).
Consider ¢x(s) :=exp {a [;°(e"" — 1)z~ dx},s > 0,a € (0,1). Show that

% elsT L(1—a) _jun/o
/0 ] dx = —saTe iam/2, (2.3.2)
If it is true then log px(s) = —|s|*T'(1 — a)(cos(ma/2) — isign(s) sin(mwa/2)) since for s < 0
we make the substitution s — —s, i — —i. Then, logpx(s) = —|s|*T'(1 — a) cos(ra/2)(1 —

isign(s)tg(ma/2)), s € R, which means that, according to Definition 2.1.2, X ~ S, (A, 1,0). Now
prove relation (2.3.2). It holds

0o ,IST oo pisr—0x 0o )
/ R TR A P / (e~ _ 1)d(z™)
0 0

gotl 0—+0Jo gotl 0—5+0 o
_ 1, _pors 1|®  —0+is [oo e frtisz
= lim [ —=(e7 0T _1)—| 4+ / dx
6—+0 a %, o 0 e

0—is 0 eisxxlfozflefex
= lim ———I'(1 — el—a/ d
A " gag (1= @) o  TD(l-a ©
. O—is 1 . (6 —is)llta
e T R T O
0 — is)°T(1 — r(1— e\
= — lim ( is)T( @) =— ( @) lim (\/We’£>
0—+0 o o 0—+0
r'(1— -
— _ ( Oé) % 12a7
«
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3) Similarly to said above,

x;(s) = Ee*% = exp {a/ (e'® — 1)xa1d$} — {a/ (e'5% — 1)xa1d$}
g 0

6—40

(sub. y = sx) = exp {sa/ afe® — 1)y_°‘_1dy} = exp {—sa/ m_ae_wda:}
0 0
=exp{—s“T(1 —a)},s > 0.

O]

Proof of Proposition 2.3.2 Since X5 > 0, X; 5 — o X as in Theorem 2.3.2,1) it holds X > 0.
—+

This means that the support of the density f of X ~ S, (A, 1,0) is contained in R. Moreover,
one can show that suppf := {z € R: f(x) > 0} = Ry by showing that Va,b > 0:a% +b* =1
it holds asuppf + bsuppf = suppf. It follows from this relation that suppf = R since it can
not be R.

O

Exercise 2.3.1
Show this!

Remark 2.3.2
Actually, formula (2.3.1) is valid for all & # 1, € (0,2] : for X ~ S, (A, 1,0),

A o
i (s) = XD | ~ zoxrara) S }, a+#+1,a€(0,2], 530,
exp —)\%slogs}, a=1, N
<0, a€(0,1),
where F(l—a):W)‘a/z) for a # 1. Here, —m =¢>0, ae(1,2),
A, a=2.

Proposition 2.3.3. The support of So(A, 3,0) is R, if 8 € (—1,1),a € (0,2).

Proof Let X ~ S,(A,1,0),a € (0,2),8 € (—1,1) with density f. It follows from properties
2)-4) of Theorem 2.3.1 that 3 i.i.d. random variables Y7,Y2 ~ S, (A, 1,0) and constants a,b >

Y1 — bYa, 1, . ..
@t 2 o # Since, Y7 > 0 and —Y5 < 0 a.s. by Proposition
aY1 —bYo+c, a=1.

2.3.2, and their support is the whole Ry (R_, resp.), it holds suppf = R.

0,c € R s.t. Xi{

O]

Remark 2.3.3
One can prove that the support of S, (A, +1,0) is R as well, if a € [1,2).

Now consider the tail behavior of stable random variables. In the Gaussian case (a = 2), it
is exponential:

Proposition 2.3.4. Let X ~ N(0,1). Then, P(X < —z) =P(X > z) ~ <p(:c)7$ — 00, where

T
_ 1 _—2?)2

o(x) = Worad is the standard normal density.
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Proof Due to the symmetry of X, P(X < —z) = P(X > x),Vz > 0. Prove the more accurate
inequality

<1 _ 1) o(z) <P(X > 1) < QPSS),W > 0. (2.3.3)

x 3

The asymptotic P(X > x) ~ elz) , - — +oo follows immediately from it.

First prove the left relation in (2.3.3). Since e #/2 < /2 (1 + t%) ,Vt > 0, it holds

forx > 0:P(X > z) = %ﬂ ;’Oe_ﬁﬂdt < \/#27];;0 et/ (1—1— t%) dt = \/%76_12/2%, where

. . . . . e L1 7m2/2 1 _
the last equality can be easily verified by differentiation w.r.t. z : T3¢ (1 + a:2) =

L (—%6_332/2 — e‘r2/2x—12> = (@)/. Analogously, e~ t°/2 (1 — t%) < e_t2/2,Vt > 0, hence

V2T
11 1 [ _tz/Q( 3> 1 /oo 2
- = = — 1— =5 )dt < — dt =P(X 2.3.4
($ $3>gp(:c) \/271'/:1: ¢ t2 T V21 Js ‘ X>2),  (234)

where again the left equality in (2.3.4) is proved by differentiation w.r.t. x. O

Remark 2.3.4
If X € N(u,0?), then P(X > z) ~ -Z-¢ (ﬂ) , & — 400 accordingly.

T—p o

However, for A € (0,2), the behaviour of right and left hand side tail probabilities is polyno-

mial in % :
Proposition 2.3.5. Let X ~ S, (\, 3,7),a € (0,2). Then
1 1-—
z°P(X > z) — caﬂ)\, P(X < —x) — CaTﬁ/\, as T — +00,
where

Co = </OO Si”da;>l _ {F(l—a)l_a(m/m a#l
0 " %, a=1.
Remark 2.3.5
1) The above proposition states, for 5 = +1, that for
X ~ Sa(A,—1,0), it holds P(X > z)z®* — 0,2 — 400,
X ~ Sa(A1,0), it holds P(X < —z)z®* — 0,2 — 400,
zero faster than z~“. But what is the correct asymptotic in this case? For a € (0,1) we know
that X is totally skewed to the left (right) and hence P(X > x) = 0,Vx > 0 for 5 = —1 and
P(X < —z)=0,Yz >0 for § = 1.
For a > 1, this asymptotic is far from being trivial. Thus, it can be shown (see [6][Theorem
2.5.3)) that

which means that the tails go to

~ -1 x _2(0‘():1) _ _ x (a(il)

]P)(X = l‘) T—+00 2ra(a—1) (aaa) exp ( (a 1) (aaa) ) , > 17 ﬁ — 1
~ L _(@/Dxx—1 _ (n/2)Az—1 _ ’

P(X > x) o Vam OXP ( 5 e ) , a=1,

where aq = (M cos(m(2 — ) /2))1/e.

For f =1 and P(X < —z) the same asymptotic applies, since P(X < —x) = P(—X > z),
and —X ~ Sa(\, —1,0) with X ~ Sa(\, 1,0).

2) In the specific case of SaS X, ie., f§ = 0, X ~ S4(),0,0), Proposition 2.3.5 yields
P(X < —2) =P(X >z) ~ 2L 7 - too.

re
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Proposition 2.3.5 will be proved later after we have proven important results, needed for it.
Let us state now some corollaries.

Corollary 2.3.3
For any X ~ S, (X, 3,7),0 < a < 2 it holds E|X P < oo iff p € (0, ). In particular, E|X|* =
+00.

Proof It follows immediately from the tail asymptotic of Proposition 2.3.5 and the formula
EIXP = [(°P(|X|P > z)d. O

Proposition 2.3.6. Let X ~ S, (), 3,0) for0 < a <2, and f =0 if « = 1. Then (E|X|P)1/P =
Cas(P)ANV, where Yp € (0,) and cqp5(p) is a constant s.t.

Cap(p) = 2?7'T(1 - p/a) (1 + B2 (‘”T))p/(m) cos (Zarctg(ﬁtg(aw/Q))) :

~p foPuPsin? udu 2

Proof We shell show only that (E|X|[P)Y/? = ¢, 5(p)A\Y*, where cq 5(p) = (E|Xo[P)Y/? with
Xo ~ 54(1,3,0). The exact calculation of ¢, g(p) will be left without proof. The first statement
follows from Theorem 2.3.1,4), namely, since X £ \V/eX,. Then (E|X|P)/P = NV (B| Xo[P) /P =
Ca B (p) O

2.4 Limit theorems

Let us reformulate Definition 2.1.1 as follows.

Definition 2.4.1

We say that the distribution fuction F belongs to the domain of attraction of distribution
function G if for a sequence of iid. r.wv)s {X,}nen, Xn ~ F 3 sequences of constants
{an}nen, {bn}nen : an € Ry b, > 0,Vn € N s.t.

1 n
b—ZXi—aninG,n—Hx;.
™i=1

Let us state and prove the following result.

Theorem 2.4.1
1) G has a domain of attraction iff G is a distribution function of a stable law.
2) F belongs to the domain of attraction of N(u,0?),0 > 0 iff

p(x) = [ y*F(dy),z >0

—T

is slowly varying at oo. This holds, in particular, if F' has a finite second moment (then
Jlimy 400 pu(z) = EX?).
3) F belongs to the domain of attraction of a-stable law, a € (0,2), iff

p(z) ~ 2> L(z), (2.4.1)
where L : Ry — Ry is slowly varying at 400 and it holds the tail balance condition

P(X > x) _ 1—F(z) Loy P(X < —x) _ F(—x) Loy
FIXT>2) ™ 1= F@) + o) e BXT> ) TRy PO obe!
2.4.2
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for some p,g>0:p+qg=1with X ~ F.
4) Condition (2.4.1) equivalent to (2.4.3)

P(X|>a)=1-F(z)+ F(-z) ~ a “L(z). (2.4.3)

Remark 2.4.1
a) In Definition 2.4.1, one can choose b, = inf{x : P(|X;| > z) < n7'}, a, = nE(X I(|X1] <
bn)).
b) It is quite clear that statements 2) and 3) are special cases of the following one:

1) F belongs to the domain of attraction of an a-stable law, « € (0, 2], iff (2.4.1) and (2.4.2)
hold.

¢) It can be shown that {b,} in Theorem 2.4.1 must satisfy the condition lim, nlLiba) _

[Z

ACq, With ¢, as in Proposition 2.3.5. Then {a,} can be chosen as

0, a € (0,1),
an = nb2 [z sin(z/b,)dF (x), a=1,
nb? [p xdF(z), a(l,2).

Proof of Proposition 2.3.5 We just give the sketch of the proof. It is quite clear that
S.(\, B,7) belongs to the domain of attraction of Su(\,3,0) with b, = n'/®, c¢f. Theorems
2.1.3,2.1.4, Corollary 2.1.1 and Remark 2.1.5. Then the tail balance condition (2.4.2) holds
with p = #,q = % By Remark 2.4.1 ¢), putting b, = n!/® into it yields that L(z) in
(2.4.3) has the property lim; 4o L(x) = coA. It follows from (2.4.2) and (2.4.3) of Theorem
2.4.1 that

P(X > x) ~ xpP(| X| > x) ~ p,z — +00.

1
%™ lim L(z) = pcaA = caiﬁ/\,

z—+00 2
2P(X < —x) ~ geoX = ca#)\, x — +00 is shown analogously. O

Proof of Theorem 2.4.1 F' belongs to the domain of attraction of a distribution function G
if, by Definition 2.4.1, 3 i.i.d. r.v)s { X, bnen, Xn ~ F, {antnen{bn}tneny C R : b, > 0,Vn, s.t.

Xi—anbpt d
S, = i S Xi—an =0, 1T"”” — X ~ G,n — oo. Denote ¢, = an%,n € N. In terms

of characteristic functions, ¢g, (s) 2 x(s) Vs € R, where
n—oo

= Xk — by - , Xkcnbn>
=E — | = E -
vs, (s) exp (zs ,;:1 2 ) I | exp (zs b

" k=1
_‘ n
X, —iid (e ZSCH@‘D)fl('S’/l)nD :

Put ¢, (s) = ¢x,(s/byn), Fr(x) = F(byz). Then the statement of Theorem 2.4.1 is equivalent to

(7™ on())" = ex(s), (2.4.4)

n—0o0

where X is stable.
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Lemma 2.4.1
Under assumptions of Theorem 2.4.1, relation (2.4.4) is equivalent to

n(en(s) — 1 —icys) = n(s),n — oo (2.4.5)

where 7(s) is a continuous function of the form 7(s) = isa—bs? + [0y (€% —1—issinx)dH (z)
(cf. (2.1.6)) with H(-) from Theorem 2.1.2 and px(s) = "), s € R.

Proof 1) Show this equivalence in the symmetric case, i.e., if X3 4_x 1- Then it is clear that
we may assume ¢, = 0,Vn € N. Show that

on(s) = e o (2.4.6)
n(en(s) = 1) = n(s), (2.4.7)

and 7 is continuous. First, if a characteristic function ¢(s) % 0Vs : |s| < sg, then 3! representa-
tion ¢(s) = r(s)e?®), where (-) is continuous and 6(0) = 0. Hence, log (s) = logr(s) + i0(s)
is well-defined, continuous, and log ¢(0) = log r(0) + i6(0) = log 1 + i0 = 0.

Let us show (2.4.7) = (2.4.6). It follows from (2.4.7) that ¢, (s) o | and by continuity
theorem for characteristic functions, this convergence is uniform in any finite interval s €
(=50, 80). Then, log ¢, (s) is well-defined for large n (since ¢, (s) # 0 there). Since

logz=2—1+0((z—1)? for |z — 1] < 1, (2.4.8)

it follows log ¢1(s) = nlog n(s) = n(a(s) = 1+ 0((9n()?) ~_ nlpa(s) —=1) = n(s) by
(2.4.7). Then, @'(s) = ") Vs € R and (2.4.6) holds.
n—oo

Let us show (2.4.6) = (2.4.7). Since n(0) = 0, then e7(s) # 0 Vs € (—sp,so) for some
sg > 0. Since the convergence of characteristic functions is uniform by continuity theorem,
©n(s) # 0 for all n large enough and for s € (—so, sg). Taking logarithms in (2.4.6), we get
nlog vn(s) T n(s). Using Taylor expansion (2.4.8), we get n(¢n(s)—1) = n(s), and (2.4.7)
holds.

2) Show this equivalence in the general case ¢, # 0. More specifically, show that it holds if
©on(S) T 1Vs € R, and nB? = 0, where 8, = [ sin (%) F(dx). Then

n(Bn — cn) LT O (2.4.9)
and (2.4.5) writes equivalently as
n(en(s) =1 —1i6ys) T n(s). (2.4.10)

Without loss of generality set a = 0.

Notice that the proof of 1) does not essentially depend on the symmetry of X, i.e., equiv-
alence (2.4.6) < (2.4.7) holds for any characteristic functions {¢n} s.t. ¢n(s) — 1 -1

n—oo
Vs € R. Applying this equivalence to {¢y,(s)e™ %}, cn leads to n(py,(s)e™ % —1) = n(s) =
n—oo
—bs? —I—f{x#o}(eisx —1—issinx)dH (x). Sin§e we assumed thgt ©on(s) LT Lt follows ¢, 0
while b, — oco. Consider Im (n(p,(s) — €'"%)) . Im (e'“n*n(s)) for s = 1. Since (1) € R
n—,oo

and ¢, — 0, we get n (Imp,(1) —sinc,) o n(1) sin ¢, since ¢, ~ ¢, as ¢, — 0, where
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Imy,(1) = Im (fR eis/b"dF(a:))Lzl = [gsin(z/by)dF(z) = By, = n(Bn — cn) . 0. Hence,

relation n(py,(s)e~%ns — 1) = n(s) one can write as n(py(s)e""ns — 1) = n(s). But
n—oo n—oo

n(pn(s)e™Pm — 1) = n(pn(s) — 1 —iBus)e™ P 4+ n((1 +ifys)e P — 1),

—0,n—00

since n((14iB,s)e”#n% —1) = n((1 +iBps)(1 —ifns +o(by)) — 1) = n(1+ B2s% +o(b,) — 1) =
nb2s? + o(nby) = 0 by our assumption. We conclude that (2.4.4) = (2.4.5) holds.

Conversely, if (2.4.9) and (2.4.8) hold then reading the above reasoning in reverse order we
go back to (2.4.4).
Now we have to show that ¢,(s) — 1, n82 — 0. The first statement is trivial since
n—oo n—oo

©n(s) = o(s/bn) = ©(0) = 1, as b, — oc. Let us show n82 = n ([ sin(x/b,)F(dz))? =0
By Corollary 2.1.1 b, ~ n'/®h(n),n — oo, where h(-) is slowly varying at +oo. It follows
from (2.4.3) that E[X1[? < oo Vp € (0,a). Then |8,| < 2 [;°| 2| dF(z) = O(18.]77) =
O(n~P/*h=P(n)) and nB2 = O(n'~2P/®) =0 if 8 is chosen s.t. p > a/2. O

Now prove the following.

Lemma 2.4.2
Conditions of Theorem 2.4.1 are necessary and sufficient for relation (2.4.5) to hold with some
special sequences of constants {b,}, {c,}.

If this lemma is proven, then the proof of Theorem 2.4.1 is complete, since by Lemma 2.4.1
relation (2.4.5) and (2.4.4) are equivalent, and thus F' belongs to the domain of attraction of
some a—stable law.

Proof of Lemma 2.4.2. Let relation (2.4.5) holds with some b, > 0 and a,. This means,
equivalently, that S, é X ~ G. Since the case X ~ N(0,1) is covered by the CLT, let
n—oo

us exclude it as well as the trivial case X = const. By Theorem 2.1.2-2.1.3 with k, = n
Xy = Xj/bny an = An(y) = a = [y udH (1) + [y, wdH(u), X1 ~ F,

An(0) = & (1105180 < ) = JECGIIX < b))y [* 2aF(e),

n n J—yby,
n(F(xb,) —1) — H(z), =>0,
+y being continuity points of H, it follows that 00 and
nF(xby,) e H(z), x <0,

ebn ebn 2
ey [ #are - ([ 2ara) )< e

1) Show that b,, — oo+ o0, bz“ = 1, if X # const a.s. By Remark 2.1.3 2), it holds property
n n o

(2.1.5), i.e., lim, o0 P(]X1| < ¢) = 1 then the central limit theorem can be applied to {X,}
with

Z?:l Xz — nEX1 i
\/ﬁ\/Vaer n—00

N(0,1)
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and it is not difficult to show (see Exercise 2.3.2 below) that b, = consty/n — oo in this
case. If 4 ¢ > 0: P(|X1] < ¢) = 1 then b, # O(1),n — oo since that would contradict
limy, oo P(| X31| > bpe) = 0 = FH{ng},npg — o0 as k — oo : by, — +o0o. W.lo.g. identify
sequences {n} and {nj}. Alternatively, one can agree that {S,} is stochastically bounded

(which is the case if S, n_%oo X) iff b, = +o0.
Exercise 2.4.1
Let { F}, }nen be a sequence of c.d.f. s.t. Fy,(an-+05,) A U(-),n — 00, Fp(yn-+n) 4 V(-),n—

oo for some sequences {a,}, {Bn}, { M}, {0n} s.t. anyn > 0, where U and V are c.d.f’s, which
are not concentrated at one point. Then

5n_ﬁn

(679 n—oo (07% n—oo

b

and V(z) = U(az +b), Yz € R.

. d . d
Now show that bz—“ — 1,n — oo. Since S, — X # const, it holds S, 41 — X, —)b("“ =
m n—o00 n— 00 n+1

d P d d
Spi1—S, — 0= % — 0,n — oo. Thus, %Sn —apy1 — X and biSn —a, — X,
n—oo n+1 n+1 n—o00 n n—00
which means by Exercise 2.4.1, that o1, g,
’ bn  n—oo

2) Prove the following.

Proposition 2.4.1. Let 3, — o0, % — 1. Let U be a monotone function s.t.
n—oo n—oo

Tim_a,U(Bu2)¥(x) (2.4.12)
exists on a dense subset of Ry, where 1(z) € (0,400) on some interval I, then U is reqularly
varying at +oo, Y(x) = cxP,p € R.

Proof W.lo.g. set ¢(1) = 1, and assume that U is non-decreasing and (2.4.12) holds for x = 1
(otherwise, a scaling in = can be applied). Set n = min{k € Ny : Br+1 > t}. Then it holds
ﬂn <t< ﬁn-i—h and

AU (Br) N U(Brx) < U(tx)

) ~ JnZ\Pnd)
¥ )n—>°° Ant1U(Bpt1) nooU(fny1) = U(F)
U(ﬂn-{-lx) )\n+1U(6n+1$) w(l‘)
< ZAnlm) o Indl e APl =(x
STUG) 2 AUG) S ) -
for all x, for which (2.4.12) holds. The application of Lemma 2.1.1 finishes the proof. O

n(F(xzb,) — 1) — H(xz), x>0
nF(—zb,) — H(—x), x>0
by = 1 - F(z) = P(X; > x2),F(—x) = P(X; < —z) are regularly varying at +oo, and
H(x) = ciaP, H(—x) = couP?,

3) Apply Proposition 2.4.1 to { asn — oo with a, = n, 8, =

P(X1 > z) ~ 2P Li(z), P(X; < —z)~2PLa(x),x — 400, (2.4.13)

where L1, Lo are slowly varying at +oo.
2
Since (2.4.11) holds, lim;, 00 77 <u(£bn) — (ffgzn xdF(x)) ) is a bounded function of ¢ in the

2
neighborhood of zero, hence by Proposition 2.4.1 with on, = 75, By = by, p(zx) — (ffr de(y))
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is regularly varying at +oo. By Theorem 2.1.4, p; = po = —a, ¢1 < 0,co > 0, and evidently,
P(|X1| >x) =1— F(z) + F(—x) ~ ™ (Li(x) + La(z)), so (2.4.3) holds.
T—r—+400

L(z)

Exercise 2.4.2

Show that then u(x) et x2~*L3(x) is equivalent to (2.4.3). Show that tail balance condition
T o

(2.4.2) follows from (2.4.13) with p; = p2 = —a.
So we have proven that (2.4.5) = (2.4.2),(2.4.3) (or, equivalently, (2.4.1),(2.4.2)). Now let
us prove the inverse statement.
4) Let (2.4.1) hold. Since L; is slowly varying, one can find a sequence {b, }, b, — oco,n — 0o
s.t. paL(bn) ., ¢ > 0~ some constant. (Compare Remark 2.4.1, ¢).) Then ypu(bpz) ~
n n—oo n

n—oo
%(bna:)%aL(bnx) = %L(bnaz)x_a o cx~% x > 0 and hence

(2.4.14)

[0}

n(F(xby) — 1) e cre,
nF(—xby,) L can

Exercise 2.4.3
1) Show the last relation. Then 1) of Theorem 2.1.3 holds.

2) Prove that 2) of Theorem 2.1.3 holds as well, as a consequence of 35 (b, ) o cx™® and
(2.4.14).
Then, by Theorem 2.1.3 S, _% X, and (2.4.5) holds. Lemma 2.4.2 is proven. O
n—oo

The proof of Theorem 2.4.1 is thus complete. Part a) and the second half of part c¢) of
Remark 2.4.1 will remain unproven. O

2.5 Further properties of stable laws
Proposition 2.5.1. Let X ~ S, (A, 5,7v) with a € (1,2]. Then EX = \v.

In addition to a proof a using the law of large numbers, (see Exercise 4.1.14) let us give an
alternative proof here.

Proof By Corollary 2.3.3, E|X| < oo if a € (1,2). For @« = 2 X is Gaussian and hence E|X| <
oo is trivial. By Remark 2.3.1 5), X — ary is strictly stable, i.e., X1 —p+ Xo — 4 co(X —p)
by Definition 2.1.3, where X3 4 Xo 4 x , all independent r.v’s. Taking expectations on both
sides yields 2E(X — u) = coE(X — p). Since ¢, = n*/® by Remark 2.1.5, co = 2//%, and hence
E(X —p)=0=EX =p. O

Now we go on to show series representation of stable random variables. Some preparatory
definitions are in order.

Definition 2.5.1
Let X and Y be two random variables defined possibly on different probability space. One says
that X is a representation of Y if X 1y
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Definition 2.5.2

Let {T;}ien be the sequence of i.i.d. Exp()A)-distributed random variables with A > 0. Set
Tn = > T; Vn € N, 79 = 0, and N(t) = max{n € Ny : 7, < t},t > 0. The random process
N = {N(t),t > 0} is called Poisson with intensity A. Time instants 7; are called arrival times,
T; are interarrival times.

Exercise 2.5.1
Prove the following properties of a Poisson process N :

1. N(t) ~ Poisson(At),t > 0, and, in particular, EN(t) = VarN(t) = At.

2. Let N; = {N;(t),t > 0} be two independent Poisson processes with intensities A\;,7i = 1, 2.
Then {Ni(t) + Na(t),t > 0} is a Poisson process with intensity A\; + A2 (which is called
the superposition Nj + Ny of N; and Nj.)

3. T, ~I'(n,\),n € N, where I'(n, \) is a Gamma distribution with parameters n and A,
ET,, =n/A.

Clearly, all T}, are dependent random variables.

Proposition 2.5.2. Let N = {N(t),t > 0} be a Poisson process with intensity one (A = 1)
with arrival times {1y, }nen. Let { Ry fnen be a sequence of i.i.d. random variables, independent

of {T}nen. Then X = Y00, Tn_l/aRn is a strictly a—stable random wvariable provided that
a € (0,2] and this series converges a.s.

Proof Let X; = Zozl(Téi))*l/aRg),i = 1,2,3 be three independent copies of X, where
{R,} 4 {Rﬁf)},i =1,2,3, {T,,} 4 {Tnl)},i = 1,2,3, and all three sequences are independent.
X, + Xy Lol/ay,

X1+ Xz + X3 £ 310X,
/e X = 2% (T,/2) " Y*R,, where {T),/2}nen forms a Poisson process 2N with intensity
A = 2, since 7,/2 = (T, — Ty,—1)/2 Vn, and P(7,/2 > x) = P(1, > 2z) = exp(—2z),z > 0.
It is clear that X; + Xy = %0 (7))~ Y*R/,, where {T'} are arrival times of the super-
position N7 + No (being a Poisson process of intensity 2, cf. Exercise 2.5.1), and R/, =

{R,(cl), it T = T,gl) for some k € N

By Definition 2.1.4 and Remark 2.1.5, it suffices to show that {

. d d
Since {Rp}nen = {R) }nen, and Ni + No = 2N, we
R,(f), ifT,’L:T,g) for some m € N. {Bntnen (B bnen ! 2

have X7 + Xo 4 X, so we are done. For X7 + X5 + X3, the proof is analogous. O

In order to get a series representation of a Sa.S random variable X, we’ll have to ensure the
a.s. convergence of this series. For that, we impose restrictions on « € (0,2) and on {R,} : we
+1, if R, >0,

W, = |Ry|, EW® < co.
~1, if R, <0,

assume R, = ¢, W, where ¢, = sign(R,) = {
Theorem 2.5.1 (LePage representation):
Let {en}, {Wy},{T} be independent sequences of random variables, where {e, }nen are i.i.d.
+1, with probability 1/2,
—1, with probability 1/2
variables with E|W,|% < oo, € (0,2), and {7}, }nen is the sequence of arrival times of a unit
rate Poisson process N (A = 1).

Rademacher random variables, €, = { , {Wh}nen are i.i.d. random
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E[Wh |

o and
{e3

Then X £ ¥, enTi W, ~ Sa(0,0,0), where this series converges a.s., o =

Cq 18 a constant introduced in Proposition 2.3.5.

Remark 2.5.1

1) Proposition 2.5.2 yields the fact that X ~ Sa.S, but it does not give insights into the value
of o.

2) Since the distribution of X depends only on E|W;|%, it does not matter, which {W,,} we
choose. A usual choice can be W,, ~ U|0, 1], or W,, ~ N(0,1). Hence, W,, do not need to be
non-negative, as in the comment before Theorem 2.5.1.

3) The LePage representation is not used to simulate stable variables, since the convergence
of the series is rather slow. Indeed, methods in Chapter 3 are widely used.

4) Skewed stable variables have another series representation which will be given (without
proof) in Theorem 2.5.3 below.

5) It follows directly from Theorem 2.5.1 that for any Sa.S random variable X ~ S, (), 0,0), it

h : d ([ ear Voo —1/a .
as the LePage representation X = (W) o 1 enTn " Wy, where sequences {e,, }, {Wy},
{T},} are chosen as above. In particular, choosing the law of W7 s.t. E|W;|* = X reduces the rep-
resentation to X = cé/a o EnTn_l/aWn. Since T, 1 a.s. as n — oo, the terms EnTn_l/aWn +
stochastically, and one can show that the very first term 17} 1 “W, dominates the whole tail
behaviour of X. In more details, by Proposition 2.3.5, it holds P(X > x) S 3¢z, and it
is not difficult to see that

a) IF’(cé/aalTl_l/an > x) ~ SeaATTY as ¥ — +00,

b) P(3°02, enTi VoW, > x) =o(x™%) as x — +00.
Exercise 2.5.2
Prove the statement of the previous Remark 5,a).

Proof of Theorem 2.5.1 1) Let {Up, }nen be a sequence of i.i.d. U|[0, 1]—distributed random
variables, independent of {e, }nen and {W), }nen. Then {Y), }ren given by Y, = EnUn_l/aWn, n e
N is a sequence of symmetric i.i.d. random variables. Let us show that the law of Y7 lies in the
domain of attraction of a SaS random variable. For that, compare its tail probability

P(|Yi] > ) = P(U; /WA | > 2) = P(Uy < 2~ ([Wh|°)
:/0 P(Uy < 2™ %w®)dFjy)(w) :/0 x_awo‘dF‘W‘(w)—l-/ dFjw(w)

_ x—a/ WPy (w) + P(W3] > @),
0

xT

where Fjyy|(z) = P(|W1] < ). So,

r—r-+00 “+oo

lim xaIP’(\Y1|>a;):/ WdFy) () + lim_2“B(Wh| > ) = E[W;[".
0 X

E[Wy|> =0, since E|W;|*

Hence, condition (2.4.3) of Theorem 2.4.1 is satisfied. Due to symmetry of Y7, tail balance
condition (2.4.2) is obviously true with p = ¢ = 1/2. Then, by Theorem 2.4.1 and Corollary
2.1.1, it holds nl% S Yy n_%oo X ~ S4(0,0,0), where the parameters (\, 3, ) of the limiting

stable law come from the proof of Theorem 2.1.1 with ¢; = co = w (due to the symmetry

of Y1 and X).
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2) Rewrite % Y k=1 Yr to show that is limiting random variables X coincides with
n
-1
Zzozl Ska /aWk
Exercise 2.5.3
Let N be the Poisson process with intensity A > 0 built upon arrival times {7}, },,cn. Show that
a) under the condition {7}41 =t} it holds (T, ..., T}/ 4 (u(rys - - -5 Un)), where uy), k =

1,...,n are order statistics of a sample (ui,...,u,) with ux ~ U(0,1) being i.i.d. random
variables. .
T 7, \ 4
b) (Tnil goeey Tn+1) = (U(l), oo ,U(n)).

Reorder the terms Y}, in the sum >_}_; Y} in order of ascending uy, so to have >, eku(_kl)/ Wi.
Since W}, and ¢, are i.i.d., this does not change the distribution of the whole sum. Then

1 n n

a 1 n /a d 1 Tk -1/
e 2 Y = o 2 el W = S 0 (Tnﬂ W

Tn+1

Vo Z 1 d
> Z erT), /aWk T X with X as above.

by Exercise 2.5.3 b). Then, by part 1), (
k=1

=:S,

3) Show that S, LY POy slezl/aWk, then we are done, since then S,(0,0,0) ~ X 4

n+1
o) —1/a : Tot1 _ Tht1ntl Doy Ti n+l a.s.
> k=1 €k T}, " Wi. By the strong law of large numbers, it holds == = w52 = ==l — 28 =3

ET} = 1, as n — oo, since the Poisson process N has the unit rate, and 77 ~ Exp(1l). Then
P(A) = 1, where A = {lim, % = 1} N Ty >0. Let us show that Yw € A
S22 ek (W) (Th(w)) "YWy (w) < oo. Apply the following three-series theorem by Kolmogorov
(without proof).

Theorem 2.5.2 (Three-series theorem by Kolmogorov):
Let {Y,}nen be a sequence of independent random variables. Then > 0° Y, < oo a.s. iff
Vs >0

a) Yoo P(|Y,] > s) < o0

b) ¥, B(YaI(|Ya] < 5)) < o0

c) Yoo Var(YI(|Yn] < s)) < oo
See the proof in [1, Theorem 1X.9.2.]

Let us check conditions a)-c) above. Vs > 0

a) > ]P’(|5nT{1/aWn| > 5) = > 0 P(|Wh|* > s9T5) < 302 P(IWh|* > s%in) < oo,
since Jeg,c2 > 0 en < Ty(w) < can Vn > N(w) (due to T”T(w) n_%oo 1 Vw € A) and

E|W1]* < oo by assumptions.

b) It holds E [, 75, /W, I(|enTr V/* Wiy < 5)] = Bz, E T WL T W] < 5)| = 0by

=0
independence of ¢, from T, and W,, and by symmetry of {e,}. Then

2L E [T O WI(|en T VAW < 8))] =0 < o0
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>~ Var (e, Ty VW[ T /oW, | < s ] Z (T2 WR( T, W < )]
n=1 n=1
o0 9 2 )1/a
< Z ¢ /op =2/ [Wf]l(|W1\ < s(ean)V®) ] = 2 Z nfz/o‘/ deF|W|(w)
CE 1/cx 0o
< C3/ ~2/e / : w dFIWI( w)dz frubnt / w dqu( )/ ) Y%z
0 ST, Twe

= 64/ wo‘dF|W|(w) = C4]E‘W1’a < 00,
0

where c3,cq > 0.

Hence, by Theorem 2.5.2 S, é Py aE;.CT,;l/aVV;C < oo as and X 2 POy 5le;1/aWk ~
n o0

Sa(0,0,0). ]

Theorem 2.5.3 (LePage representation for skewed stable variables):
Let {W,, }nen be a sequence of i.i.d. random variables and let N = {N(t),t > 0} be a unit rate
Poisson process with arrival times {7}, },cn, independent of {W,, },en. Assume E|W7|* < 0o, €

(0,2),a # 1, and E|[W; log(|W1])| < 00, = 1. Then X := 5% (Tor /Wy — k™) ~ Sa(A, B,0),

where this convergence is a.s., A = ”22‘ with ¢, being a constant introducing in Proposition
2.3.5, f = MWLLIEW) g
0<a<l,
557,&) _ ( ‘%1“//”" 1) smxd ) a=1

( (-1 )EWl, a> 1.

If @« =1, then

Wil/n xr

Z ( T-'W, —E <W1 /'Wll/(nl) Sinfdm)) ~ S1(A B, 7), (2.5.1)

with A and g as above, and v = —%E(Wl log |[W1]).
Proof see [3, §1.5.] O

Some remarks are in order.

Remark 2.5.2
1) the statement of Theorem 2.5.3 can be easily converted into a representation: a random
variable X ~ S4 (A, 8,7),0 < a < 2, has a representation X g Ay + Z;’lozl(Tﬁl/aWn - n,(@a)),
where the i.i.d. random variables {W,, }nen satisfy E|W1|® = co\, E(|W1[2signW7) = ca SN
Apart from this restrictions on {W, },en, the choice of their distribution is deliberate.

2) Theorem 2.5.1 is a special case of Theorem 2.5.3 if we replace W,, by €, W,,, where {e,, }nen
are independent of {W,, },en i.i.d. random variables.
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3) The LePage representation of a stable subordinator X ~ S,(\,1,0),A > 0,a € (0,1),
follows easily from Theorem 2.5.3. Indeed, set W,, = 1,Vn. Then, > 7>, Tt~ Sa(c;t,1,0),
so X 4 Al/acé/a ) Tn_l/a.

4) For a > 1, the series Y o2 Ty 1 “W, diverges in general, if W, are not symmetric.
Hence, the correction m%o‘) is needed, which is of order of the E(W,, T}, 1/ “). Indeed, for A > 1
E(T, *W,) = ET, V*EW, ~ n~YeEW;, ~ (). Analogously, for a = 1 E(T;71W,) ~
nTEW ~ [ SB24  BW) as in (2.5.1).

The following result yields the integral form of the cumulative distribution function of a Sa.S
law.

Theorem 2.5.4
1) Let X ~ S,(1,0,0) be a SaS random variable, a # 1, € (0,2]. Then

1 [7/2 L _JPO<X <z), ac(0,1),
%/0 exp (oI (t)) di = {IP’(X Sa), ae(l,2

for x > 0, where

alt) = (sin(at))aal cos((1 — a)t)’t c (O, 77} .

cost cost
2) Let X ~ S,(1,1,0), € (0,1]. Then

1 [7/2 o
P(X <z)= —/ exp (—xafl /?ca(t)) dt,z > 0,

o T J—7/2

where

- /sin(a(n/2 4+ )\ a1 sin((1 — @) (/2 + 1)) o
”O‘(t)_< sin(m/2 + t) ) sin(m/2 + t) e <_2’2}'

See [5, Remark 1 p.78.]



3 Simulation of stable variables

In general, the simulation of stable laws can be demanding. However, in some particular cases,
it is quite easy.

Proposition 3.0.1 (Lévy distribution). Let X ~ Si/5(A,1,7). Then X can be simulated by
representation X 42y -2 4 Ay, where Y ~ N(0,1).
Proof It follows from Exercise 1.0.6,1) and Theorem 2.3.1, 3),4). O

Proposition 3.0.2 (Cauchy distribution). Let X ~ S1(\,0,7v). Then X can be simulated by
representatz’ons

1) X = )\Y1 + Ay, where Y1 and Ys are i.i.d. N(0,1) random variables,
2) X 4 Mg(m(U —1/2)) + Ay, where U ~ Uni form]0,1].
Proof 1) Use Exercise 4.1.29 and the scaling properties of stable laws given in Theorem 2.3.1,

3),4).
2) By Example 1.0.2 it holds tgY 4 Z2)Y ~U|-7/2,7/2] 4 (U —1/2),Z ~ Cauchy(0,1) ~
S51(1,0,0). Then use again Theorem 2.3.1, 3),4) to get X 2NZ + M. O

Now we reduced the simulation of Lévy and Cauchy laws to the simulation of U[0, 1] and
N(0,1) random variables. A realisation of a U[0, 1] is given by generators of pseudorandom
numbers built into any programming language. The simulation of N(0, 1) is more involved,
and we give it in the following Proposition 3.0.3 below. From this, it can be easily seen that
the method of Proposition 3.0.2, 2) is much more efficient and fast than that of Proposition
3.0.2, 1).

Proposition 3.0.3. 1) Let R and 0 be independent random variables, R?> ~ Exp(1/2), 0
Ul0,27]. Then X; = Rcosf and X9 = Rsin® are independent N(0,1)-distributed random
variables.

2) A random variable X ~ N(u,0?) can be simulated by X < w4 o/ —2log U cos(27V),
where U,V ~ UJ0,1] are independent.

Proof 1) For any z,y € R consider
P(X) <z,Xy<y)= (\/ R2cosf) < x,VR?sinf) < y)
2w
=5 / / Vitcosp <z, \/Esmgo<y)2 tﬂdtdgo—‘t—r’
T

X1 = 7 COS P,

27
- %/o /0 I(rcos < x,rsing < y)re™" 2drdp = 2y = rsin g

1 oe] oo z%+ac§
= —/ / I(x) <z,mo <y)e” 2 dridxs

1 (v _=3
\/%/ 2 dxlm/o 6772dl‘2 =P(X; <z2)P(X2 <y).

34
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Hence, X, Xy ~ N(0,1) are independent.

2) If X ~ N(p,0%) then Y = 22# ~ N(0,1). By 1), Y 2 Rcos®, where R2 ~ Eap(1/2),
ol 2wV, V ~ U|0,1]. Simulate R? by the inversion method, i.e. show that R 4 9 log U, where
U ~ U[0,1], independent of V. Indeed, P(—2logU < z) = P(logU > z/2) = P(U > e */?) =
1—¢%/2 2> 0. Hence —2log U ~ Exp(1/2), then, it holds % £ v/ —2log U cos(2nV), and we
are done. O

Remark 3.0.1 (Inverse function method):

From the proof of Proposition 3.0.3, 2) it follows that for X ~ Exp()) it holds X 4 —% logU, U ~
U[0,1], A > 0. This is the particular case of the so-called inverse function simulation method:
for any random variable X with c.d.f. Fx(z) = P(X < x) s.t. Fx is increasing on (a,b)
—00 < a <b< Hoo, limy_yqt Fx(z) = 0,lim,p— Fx(x) =1 : it holds X 4 F};l(U), where
U ~ U[0,1], and Fy' is the quantile function of X. Indeed, we may write P(Fy'(U) < z) =
P(U < Fx(z)) = Fx(x),z € (a,b), since P(U <y) =y, Yy € [0, 1].

Theorem 3.0.1 (Simulation of S,(1,0,0)):
Let X ~ 5,(1,0,0),a € (0,2]. Then X can be simulated by representation

X

4 sin(or(U —1/2)) (cos((l — (U — 1/2)))15‘ |

(cos(m(U —1/2)))V/e —logV (3.0.1)

where U,V ~ U|0, 1] are independent random variables.

Proof Denote T = n(U—-1/2), W = —log V. By Remark 3.0.1 it is clear that ' ~ U[—n /2, 7/2],
W ~ Exp(1). So (3.0.1) reduces to

11—«

sin(aT cos((1 —a)T)\ o«
x4 (cos(T)l/)O‘ ( ( o ) )) . (3.0.2)

1) a =1: Then (3.0.2) reduces to X 4 tgT, which was proven in Proposition 3.0.2,2).
1—a
2) a € (0,1) : Under the condition 7" > 0, relation (3.0.2) rewrites as X Ly = (K"T(T)) o

: 1
where K, (T') = (S(IEO(SC%)) /e COS((IV;Q)T) as in Theorem 2.5.1.
Then

PO<Y <2)=PO<Y <a,T>0)=|V >0 T >0
11—«
KaT @ __a
:P(og (M(/)> §x,T>O> — P(W > Ku(T)o ™5, T > 0)

w/2 o ~Ex /2 N
- 1/ P(W > K, (t)z Ta)dt W Eap(1) 1/ exp (—Ka(t)xﬁ) dt.
0 0

™ s

Hence, Y ~ Sa(1,0,0) by Theorem 2.5.4 = X <Y ~ S,(1,0,0).
3) a € (1,2] is proven analogously as in 2) considering 1 — a < 0 and P(Y > z) = P(Y
xz,T > 0).

v
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Remark 3.0.2 '
In the Gaussian case a = 2, the formula (3.0.2) reduces to X 4 VWERED) _ | /yy2sinTcos T

cosT cosT
) W ~ Exp(1)
2v2W sin T, where
vz {TNU[—Tr/2,7T/2]

ated by the algorithm 2) of Proposition 3.0.3, so formula (3.0.1) contains Proposition 2.4.7,2)
as a spacial case.

, 50 2W ~ Exp(1/2). Hence, X ~ N(0,2) is gener-

Now let us turn to the general case of simulating a random variable X ~ S, (\, 3,7). We
show first that, to this end, it sufficient to know how to simulate X ~ S,(1,1,0).

Lemma 3.0.1
Let X ~ So(\, B,7),a € (0,2). Then

My 4 Al/ey, 1
Xi{ vt ’ a7l (3.0.3)

M+ 2BAlog A+ Y, A =1,
where Y ~ S,(1, 3,0) can be simulated by
1+ 1/a 1-8\ 1/
ya ) (%) - (5°) " ¥ aF L 50
)Y - () va+ 2 (A p)log () - (1= plog (55)) =1,
with ¥7,Y2 ~ S,(1,1,0) being independent random variables.

Proof Relation (3.0.4) follows from the proof of Proposition 2.3.3 and Exercise 4.1.28. Relation
(3.0.3) follows easily from Theorem 2.3.1,3)-4). O

Now let us simulate X ~ S,(1,1,0). First, we do it for a € (0, 1).

Lemma 3.0.2 .
. d sin(af) (sin((1—a)8) e
Let X ~ S,(1,1,0),a € (0,1). Then X can be simulated by X = ( ) , where

sin 0 W sin 6
0 and W are independent random variables, 8 ~ U[0, 7], W ~ Exp(1). As before, § and W

can be simulated by 6 4 wU,U ~ U|0, 1], where W 4 logV,V ~ U|0,1], where U and V are
independent.

Proof By Theorem 2.5.4, 2) we have true following representation formula for the c.d.f. P(X <
x) = Fx(x):

/2 o -
Fx(z) = 1/ exp (—xﬁKa(t)) dt,z > 0,

T Jny2
where
0= () " ey e (53]
The rest of the proof is exactly as in Theorem 3.0.1, 2). 0

Similar results can be proven for a € [1,2) :



3 Simulation of stable variables

Theorem 3.0.2
The random variable X ~ S,(1,1,0),« € [1,2) can be simulated by

IZWecosT
vl %((77/2+T)th—log(2%+T )), ) a=1,
B L sin(a T cos((1—a)T—am Ta
(1+tg? (3a)) 2 Sm@TEDR) (collgffoamf) = o e (1,2),

where W ~ Exp(1) and T ~ U[|—n/2,7/2] are independent random variables.
Without proof.

37



4 Additional exercises

4.1

Exercise 4.1.1
Let X1, X5 be two i.i.d. r.v.s with probability density ¢. Find a probability density of aX;+bX5,
where a,b € R.

Exercise 4.1.2
Let X be a symmetric stable random variable and X7, Xs be its two independent copies. Prove
that X is a strictly stable r.v., i.e., for any positive numbers A and B, there is a positive number
C such that

AX, + BX,2CX.

Exercise 4.1.3 1. Prove that ¢ = {e71*l,z € R} is a characteristic function. (Check
Pélya’s criterion for characteristic functions.!)

2. Let X be areal r.v. with characteristic function ¢. Is X a stable random variable? (Verify
definition.)

Exercise 4.1.4
Let real r.v. X be Lévy distributed (see Exercise Sheet 1, Ex. 1-4). Find the characteristic
function of X. Give parameters («, o, 3, u) for the stable random variable X.

Hint: You may use the following formulas. 2

00 o—1/(2x)
/ 672 cos(yzx)dr = V2me VIl cos(y/|yl),y € R,
0

x3/
o0 ¢—1/(2z)
/ sz sin(yr)dr =/ 2me~ VW sin(y/|y|)signy, y € R.
0 x

Exercise 4.1.5

Let Y be a Cauchy distributed r.v. Find the characteristic function of Y. Give parameters
(a, 0, B, p) for the stable random variable Y.

Hint: Use Cauchy’s residue theorem.

Exercise 4.1.6
Let X ~ Si(0,8,n) and a > 0. Is aX stable? If so, define new (aq, o2, B2, u2) of aX.

Exercise 4.1.7
Let X ~ N(0,0?) and A be a positive a—stable r.v. Is the new r.v. AX stable, strictly stable?
If so, find its stability index as.

! Pélya’s theorem. If ¢ is a real-valued, even, continuous function which satisfies the conditions (0) = 1,
@ is convex for ¢t > 0, lim; o0 ¢(t) = 0, then ¢ is the characteristic function of an absolutely continuous
symmetric distribution.

2Oberhettinger, F. (1973). Fourier transforms of distributions and their inverses: a collection of tables. Aca-
demic press, p.25
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Exercise 4.1.8
Let L be a positive slowly varying function, i.e., Vx > 0

L(t
lim (t2)

Jim o5 =1 (4.1.1)

1. Prove that x7¢ < L(x) < z¢ for any fixed £ > 0 and all z sufficiently large.

2. Prove that limit (4.1.1) is uniform in finite intervals 0 < a < z < b.

Hint: Use a representation theorem:?

A function Z varies slowly iff it is of the form Z(x) = a(x)exp ( Ix#dy) , where g(z) — 0
and a(z) = ¢ < 0o as x — 00.
Definition 4.1.1 (Infinitely divisible distributions):
A distribution function F' is called infinitely divisible if for all n > 1, there is a distribution
function Fj, such that
Zan,l‘i‘"'"i‘Xn,na

where Z ~ F' and X, ;,1 < k < n are i.i.d. r.v’s with the distribution function F;,.
Exercise 4.1.9
For the following distribution functions check whether they are infinitely divisible.

1. (1 point) Gaussian distribution.

2. (1 point) Poisson distribution.

3. (1 point) Gamma distribution.

Exercise 4.1.10
Find parameters (a, b, H) in the canonic Lévy-Khintchin representation of a characteristic func-
tion for

1. (1 point) Gaussian distribution.
2. (1 point) Poisson distribution.
3. (1 point) Lévy distribution.

Exercise 4.1.11
What is wrong with the following argument? If Xi,..., X,, ~ Gamma(a, ) are independent,
then Xy + -+ X,, ~ Gamma(na, 3), so gamma distributions must be stable distributions.

Exercise 4.1.12
Let X;,7 € N be i.i.d. r.v’s with a density symmetric about 0 and continuous and positive at

0. Prove 171 1
d
o = e — | 3 X —
- ( X +-+ Xn> , N — 00,
where X is a Cauchy distributed random variable.
Hint: At first, apply Khintchin’s theorem (T.2.2 in the lecture notes). Then find parameters
a,b and a spectral function H from Gnedenko’s theorem (T.2.3 in the lecture notes).

3Feller, W. (1973). An Introduction to Probability Theory and its Applications. Vol 2, p.282
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Exercise 4.1.13
Show that the sum of two independent stable random variables with different a-s is not stable.

Exercise 4.1.14
Let X ~ S, (A, B,7). Using the weak law of large numbers prove that when « € (1, 2], the shift
parameter u = Ay equals EX.

Exercise 4.1.15
Let X be a standard Lévy distributed random variable. Compute its Laplace transform

Eexp(—yX),~v > 0.

Exercise 4.1.16
Let X ~ So(XN,1,0), and A ~ S, /0/(A4,1,0), 0 < a < o < 1 be independent. The value of

A4 is chosen s.t. the Laplace transform of A is given by Eexp(—yA4) = exp(—y*/®'),y > 0.
Show that Z = AY* X has a Su(), 1,0) distribution for some A > 0.

Exercise 4.1.17
Let X ~ S,(A,1,0),a < 1 and the Laplace transform of X be given by Eexp(—yX) =
exp(—cav®),y > 0,where ¢, = A\¥/ cos(ma/2).

1. Show that
Jim. P{X >z} = C,,

where C, is a positive constant.

Hint: Use the Tauberian theorem.*

2. (2 points) Prove that

E|X|P < o0, for any 0 < p < a,
E|X|P = o0, for any p > a.

Exercise 4.1.18
Let X1, X5 be two independent a-stable random variables with parameters (), 3, ). Prove that
X1 — Xo is a stable random variable and find its parameters (aq, A1, 81,71)-

Exercise 4.1.19
Let Xi,..., X, beiid S,(A, 3,7) distributed random variables and S,, = X; +---+ X,,. Prove
that the limiting distribution of

1. n_l/aSn,n — o0, if @ € (0,1);
2. nfl(Sn - 27r*1)\5nlogn) —Ay,n — oo, if a=1;

3. n_l/a(sn - n)")/)’n — 0, if o € (172]’

*(Feller 1971 Theorem XIII.5.4.) If L is slowly varying at infinity and p € Ry, the following
relations are equivalent

1 o0 1 1
t) ~ —t°PL(¢),t / —d ~—L|[— .
U(t) T +1) (t),t — oo, A e U(x) — (T>,T—>0
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is Sa(A, 8,0).
Exercise 4.1.20

Let X1, X5..., be a sequence of i.i.d. random variables and let p > 0. Applying the Borel-
Cantelli lemmas, show that

1. E|X,[P < oo if and only if lim, o n /?X,, = 0 a.s.,
2. E|X1|P = oo if and only if limsup,,_,., n~/PX,, = 0o a.s.

Exercise 4.1.21
Let & be a non-negative random variable with the Laplace transform E exp(—\{) = exp(—A%), A >

0. Prove that
INOREE)

B = I'(1l—as)

,s€(0,1).

Exercise 4.1.22
Denote by

flo)i= [~ e wyda,

the Laplace transform of a real function f defined for all s > 0, whenever f is finite. For the
following functions find the Laplace transforms (in terms of f):

1. Fora e R fi(z) = f(xr —a),x € Ry, and f(z) =0,z <O0.

2. For b > 0 fo(x) := f(bx),r € Ry.

3. fa(z) := f(z),z € Ry.

4. fa(z) = [§ f(u)du,z € Ry.

Exer:cise 4.1.23
Let f, g be Laplace transforms of functions f,g: Ry — Ry.

1. Find the Laplace transform of the convolution f * g.
2. Prove the final value theorem: lim,_ g sf(s) = limy—o0 f(2).

Exercise 4.1.24
Let { X, }n>0 be i.i.d. r.v’s with a density symmetric about 0 and continuous and positive at 0.
Applying the Theorem 2.8 from the lecture notes, prove that cumulative distribution function

F(z) := P(X;! < z),z € R belongs to the domain of attraction of a stable law G. Find its
parameters («, A, 8,7) and sequences ap, by, s.t. é o XZ-_1 —ap Ly ~Gasn— oo

Exercise 4.1.25
Let {X,,}n>0 be i.i.d. r.v/s with for z > 1

P(X: >2) =029 PX <—-z)=(1-0)z"°,

where 0 < § < 2. Applying the Theorem 2.8 from the lecture notes, prove that c.d.f. F(z) :=
P(X; < z),z € R belongs to the domain of attraction of a stable law G. Find its parameters

(a, A, B,7y) and sequences ay, by, s.t. i P Xi—an Ly ~Gasn— oo
Exercise 4.1.26

Let X be a random variable with probability density function f(x). Assume that f(0) # 0 and
that f(z) is continuous at x = 0. Prove that
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1. if 0 <7 < 3, then | X|™" belongs to the domain of attraction of a Gaussian law,

2. if 7 > 1/2 then |X|™" belongs to the domain of attraction of a stable law with stability
index 1/r.

Exercise 4.1.27
Find a distribution F which has infinite second moment and yet it is in the domain of attraction
of the Gaussian law.

Exercise 4.1.28
Prove the following statement which is used in the proof of Proposition 2.3.3.

Let X ~ S4(A, 8,0) with @ € (0,2). Then there exist two i.i.d. r.v’s ¥; and Y5 with common
distribution S, (A, 1,0) s.t.

1/ a1/« .
X:{gﬁg Y- (52) fatl

0 vi— () o+ 2 (A + A log 2 — (1 - B)log 12), ifa=1.

Exercise 4.1.29
Prove that for o € (0,1) and fixed A, the family of distributions Sy (A, 3,0) is stochastically
ordered in 3, i.e., if X3 ~ So(X,3,0) and 81 < fo then P(X5, > 2) < P(Xg, > ) for x € R.

Exercise 4.1.30
Prove the following theorem.

Theorem 4.1.1
A distribution function F is in the domain of attraction of a stable law with exponent « € (0, 2)
if and only if there are constants C'y,C_ > 0,C4 + C_ > 0, such that

1.
li F(_y) C*/CJM if CJr >0,
1m ———=
y—+oo 1 — F(y) +00, if O, =0,

2. and for every a > 0

limy s 4o ’;((—_“y? —a® ifC_>0.

{limy_>+oo %(Ezyy)) = a—a’ if C+ > O,



Bibliography
[1] W. Feller. An introduction to probability theory and its applications, volume 2. John Wiley
& Sons, 2008.

[2] J. Nolan. Stable Distributions: Models for Heavy-Tailed Data.

[3] G. Samorodnitsky and M. S. Taqqu. Stable non-Gaussian random processes: stochastic
models with infinite variance, volume 1. CRC press, 1994.

[4] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Ad-
vanced Mathematics. Cambridge University Press, 1999.

[5] V. V. Uchaikin and V. M. Zolotarev. Chance and stability: stable distributions and their
applications. Walter de Gruyter, 1999.

[6] V.M. Zolotarev. One-dimensional stable distributions, volume 65. American Mathematical
Soc., 1986.

[7] V. M. Zolotarev. Modern theory of summation of random variables. Walter de Gruyter,
1997.

43



	Introduction
	Properties of stable laws
	Equivalent definitions of stability
	Strictly stable laws
	Properties of stable laws
	Limit theorems
	Further properties of stable laws

	Simulation of stable variables
	Additional exercises
	Literature

