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MODELING AND MANAGEMENT OF NONLINEAR
DEPENDENCIES–COPULAS IN DYNAMIC FINANCIAL
ANALYSIS
Martin Eling
Denis Toplek

ABSTRACT

We study the influence of nonlinear dependencies on a non-life insurer’s risk
and return profile. To achieve this, we integrate several copula models in a
dynamic financial analysis framework and conduct numerical tests. We also
test risk management strategies in response to adverse outcomes. Nonlinear
dependencies have a crucial influence on the insurer’s risk profile that can
hardly be affected by the analyzed management strategies. We find large
differences in risk assessment for the ruin probability and for the expected
policyholder deficit. This has important implications for insurers, regulators,
and rating agencies that use these measures as a foundation for internal risk
models, capital standards, and ratings.

INTRODUCTION

Dynamic financial analysis (DFA) is a financial modeling approach that projects fi-
nancial results under a variety of possible scenarios, showing how outcomes might be
affected by changing internal and external conditions (see Casualty Actuarial Society,
2006). DFA has become an important tool for decision making and an essential part
of enterprise risk management (ERM), particularly within the field of non-life insur-
ance. The DFA results and the quality of decisions derived from them depend on an
appropriate modeling of the stochastic behavior of assets and liabilities. In this con-
text, the correct mapping of nonlinear dependencies is of central concern. Although

Martin Eling is with the Institute of Insurance Science, Ulm University, Ulm, Germany. Denis
Toplek is with the Institute of Insurance Economics, University of St. Gallen, St. Gallen, Switzer-
land. The authors can be contacted via e-mail: martin.eling@uni-ulm.de and denis.toplek
@unisg.ch. The authors are grateful to anonymous referees, Andrew Cairns, Paul Embrechts,
Edward Frees, Nadine Gatzert, Gudrun Hoermann, Steffi Höse, Thomas Parnitzke, Hato
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many DFA models and most practitioners still focus on linear correlation, the litera-
ture suggests that solely considering linear correlation is not appropriate in modeling
dependence structures between heavy-tailed and skewed risks, which are frequent
in the insurance context (see, e.g., Embrechts, McNeil, and Straumann, 2002). These
risks are especially relevant in case of extreme events, e.g., the September 11, 2001,
terrorist attacks that resulted in insurance companies experiencing large losses both
from their underwriting business and the related capital markets plunge (see, e.g.,
Achleitner, Biebel, and Wichels, 2002). A more recent example is the subprime credit
crisis, in which insurers have sustained large losses from their investments, e.g., in
mortgage-backed securities, as well as from insuring structured credit products such
as collateralized debt obligations (American International Group (AIG) is the most
prominent example).

In this article, we evaluate the influence of such extreme events on a nonlife insurer’s
risk and return profile. We integrate nonlinear dependencies in a DFA framework
using the copulas concept and evaluate their effects on the insurer’s risk and return
distribution within a simulation study. As one cannot generally say which copula
describes reality best, we compare different forms of copulas (i.e., the Gauss, t, Gum-
bel, Clayton, and Frank copulas) and evaluate the possible impact in a stress-testing
sense.

In our simulation study, we find that nonlinear dependencies have a strong influence
on the insurer’s default risk and performance. We also find different impacts of nonlin-
ear dependencies on ruin probability and expected policyholder deficit, a result that
is of special relevance for policyholders, regulators, and rating agencies. For example,
for some kinds of nonlinear dependencies, the expected policyholder deficit cannot
be reduced by increasing equity capital. It thus seems that these tail dependencies are
relevant not only for low-capitalized companies but also for well-capitalized ones.
Furthermore, we test several risk management strategies implemented in response
to adverse outcomes generated by nonlinear dependencies. Our simulation results
show that simple risk-reduction strategies are of little use. For example, a reinsurance
strategy can delimit the high ruin probability generated by nonlinear dependencies,
but not necessarily the expected policyholder deficit.

Our article builds upon two branches of literature—DFA and the copulas concept.
In the late 1990s, the Casualty Actuarial Society introduced simulation models for
property-casualty insurers, calling them “DFA” (see Casualty Actuarial Society, 2006).
Since then, several surveys and applications of DFA have been published in academic
journals. Lowe and Stanard (1997), as well as Kaufmann, Gadmer, and Klett (2001),
provide an introduction to DFA by presenting a model framework and an applica-
tion of their model. Lowe and Stanard develop a DFA model for the underwriting,
investment, and capital management process of a property-catastrophe reinsurer
and Kaufmann, Gadmer, and Klett provide an up-and-running model for a non-
life insurance company. Blum et al. (2001), D’Arcy and Gorvett (2004), and Eling,
Parnitzke, and Schmeiser (2008) use DFA to examine specific decision making situ-
ations. Blum et al. investigate the impact of foreign-exchange risks on reinsurance
decisions within a DFA framework and D’Arcy and Gorvett apply DFA to search for
an optimal growth rate in the property–casualty insurance business. The influence of
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management strategies on an insurer’s risk and return position using DFA is investi-
gated in Eling, Parnitzke, and Schmeiser.

The copulas concept and the problem of mapping nonlinear dependencies in an
insurance context was first introduced by Wang (1998), who discusses models and
algorithms for the aggregation of correlated risk portfolios. Frees and Valdez (1998)
also provide an introduction to the use of copulas in risk measurement by describ-
ing the basic properties of copulas, their relationships to measures of dependence,
and several families of copulas. Klugman and Parsa (1999), Mashal and Zeevi (2002),
Malevergne and Sornette (2003), Dias (2004), and Kole, Koedijk, and Verbeek (2007)
develop appropriate models to analyze capital and insurance markets by fitting cop-
ulas to empirical data. Blum, Dias, and Embrechts (2002) discuss the use of copulas
to handle the measurement of dependence in alternative risk transfer products. Em-
brechts, McNeil, and Straumann (2002) present properties, pitfalls, and simulation
algorithms for correlation and dependence in risk management and analyze the ef-
fect of dependence structures on the value at risk. Pfeifer and Nešlehová (2004)
propose approaches for modeling and generating dependent risk processes in the
framework of collective risk theory. McNeil (2007) presents algorithms for sampling
from a specific copula class which can be used for higher-dimensional problems.

The aim of this article is to contribute to this literature by integrating copulas in an
extended version of the DFA model presented by Eling, Parnitzke, and Schmeiser
(2008) and by evaluating their influence on the insurer’s risk and return position. Our
results indicate that it is crucial to consider the copulas concept in order to improve
DFA and decision making in ERM of insurance and reinsurance companies. Our
findings are also important for regulators and rating agencies as they reveal large
differences in risk assessment for the expected policyholder deficit and for the ruin
probability. As these measures are the basis of many capital standards and ratings,
it is important to integrate nonlinear dependencies in the regulatory framework and
in rating assessment, e.g., in stress testing and scenario analysis.1 Furthermore, these
measures are the foundation of internal risk models emphasizing the relevance of the
results for insurers and reinsurers.

The rest of the article is organized as follows. In the “Model Framework” section
we present a DFA framework containing the essential elements of a nonlife insurance
company. In the “Integration of Copulas in DFA” section we describe the copulas con-
cept, different types of copulas, and how we integrated them in the DFA framework.
In the “Measurement of Risk, Return, and Performance in DFA” section we define
financial ratios, reflecting both risk and return in a DFA context. A DFA simulation

1Ibragimov and Walden (2007) and Ibragimov, Jaffee, and Walden (in press) investigate the
diversity of optimal insurance in the presence of heavy tails versus light tails. Although these
two studies analyze individual risks, our focus is on enterprise risk management at the whole-
company level. Ibragimov, Jaffee, and Walden analyze i.i.d. risks and Ibragimov and Walden
symmetric spherical distributed risks, whereas we consider the dependence of differently
distributed risks including nonlinear and, in particular, asymmetric dependence. Our model
not only addresses value at risk, but also looks at several other risk measures, return measures,
and the risk-adjusted performance of the company. Ibragimov, Jaffee, and Walden; Ibragimov
and Walden; and our paper highlight the fact that solely considering linear correlation is not
appropriate in modeling dependence structures between heavy-tailed and skewed risks.
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study to examine the effects of the copulas on risk and return is presented in the “Mea-
suring the Influence of Copulas in DFA” section. In the “Measuring the Influence of
Copulas in DFA” section we measure the influence of risk management strategies
implemented as a response to adverse outcomes generated by the copulas. And the
final section concludes.

MODEL FRAMEWORK

We build on the DFA framework used by Eling, Parnitzke, and Schmeiser (2008) to
investigate the influence of management strategies on an insurer’s risk and return.
In this model, a management rule changes the portion of risky investments and
the market share in the underwriting business depending on the insurer’s financial
situation. We extend this framework with a modified underwriting cycle following
an autoregressive process and a modified claims process consisting of noncatastrophe
and catastrophe losses.

Let ECt be the equity capital of the insurance company at the end of time period t (t ∈
1 , . . . , T) and Et the company’s earnings in t. Then, development of the equity capital
over time can be written as

ECt = ECt−1 + Et. (1)

The financial statement earnings Et in period t consist of the investment result It and
the underwriting result Ut. In case of positive earnings, taxes are paid. We denote tr
as the tax rate and obtain the company’s earnings in t as

Et = It + Ut − max(tr · (It + Ut), 0). (2)

The assets can be divided in high-risk investments, such as stocks or high-yield bonds,
and low-risk investments, such as government bonds or money market instruments.
We denote α t−1 as the portion of high-risk investments in time period t and r1t (r2t)
as the return of the high-risk (low-risk) investment in t. The return of the company’s
investment portfolio in t(rpt) can be calculated as

r pt = αt−1 · r1t + (1 − αt−1) · r2t. (3)

By multiplying the portfolio return with the funds available for investments, we
calculate the company’s investment result. The funds available for investments are
the equity capital and the premium income P t−1, less upfront costs ExP

t−1:

It = r pt
(
ECt−1 + Pt−1 − ExP

t−1
)
. (4)

To model the underwriting business, we denote β t−1 as the company’s portion of
the relevant market in t. The underwriting market accessible to the insurer (given by
MV) is obtained with β t−1 = 1. The market volume rises by the rate i, which might
represent average market growth or compensate for inflation. The premium rate level
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achievable in the market has been observed to exhibit a cyclical pattern. Following
Cummins and Outreville (1987), we model the underwriting cycle using a stationary
autoregressive process of order two (with the parameters a0, a1, and a2 for lags 0, 1,
and 2):

�t = a0 + a1�t−1 + a2�t−2 + εt. (5)

The rate level �t depends on the premium levels of the two previous periods and
a random error term εt following a white noise process. Depending on the param-
eterization, the process produces cycle lengths that can be calibrated according to
observed data. The premium income Pt in period t thus depends on the premium
rate level �t .2

Based on an experiment, Wakker, Thaler, and Tversky (1997) showed that a rise in
default risk leads to a rapid decline in the achievable premium level. The premium
income should thus not only be connected to the underwriting cycle but also to
a consumer response function. The consumer response function (denoted by the
parameter cr) represents the link between the premiums written and the company’s
safety level. We determine the safety level by considering the equity capital at the end
of the previous period. The premium income in our model is given as

Pt−1 = cr ECt−1
t−1

· �t−1 · βt−1 · MV · (1 + i)t−1. (6)

Two types of costs are integrated in the model: upfront costs (ExP
t−1) and claim set-

tlement costs (ExC
t ). The upfront costs depend linearly on the level of written market

volume (modeled with the factor γ ), and quadratically on the change in written mar-
ket volume (modeled with the factor η, e.g., because of increased advertising and
promotion efforts). The upfront costs ExP

t−1 are thus calculated as

ExP
t−1 = γ · βt−1 · MV · (1 + i)t−1 + η · ((βt−1 − βt−2) · MV · (1 + i)t−1)2. (7)

Claim settlement costs are given as a portion δ of the claims (denoted by C) incurred
(ExC

t = δCt). The claims consist of noncatastrophe losses and catastrophe losses (C =
Cncat+Ccat). The underwriting result is thus given by:

Ut = Pt−1 − Ct − ExP
t−1 − ExC

t . (8)

2The presented autoregressive process is the most widespread approach to model the cyclical
pattern of premium rate level over time; see Venezian (1985), Niehaus and Terry (1993), Daykin,
Pentikäinen, and Pesonen (1994), Lamm-Tennant and Weiss (1997), Fung et al. (1998), Chen,
Wong, and Lee (1999), and Meier (2006) for an overview. An alternative in the context of
DFA is to use Markov processes and transition probabilities as done in Eling, Parnitzke, and
Schmeiser (2008) and D’Arcy et al. (1998). We implemented this approach as a robustness test
and found that this modeling alternative does not influence our main results.
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Although we restrict ourselves to the standard components necessary in DFA (see
Kaufmann, Gadmer, and Klett, 2001, p. 218), one might argue that the model depends
on many parameters. However, there is a trade-off between accuracy and complexity.
Our aim is to take a holistic view of the company’s assets and liabilities and we
include the essential elements of a nonlife insurance company and calibrate them
using realistic data. Within this setting, we isolate the effect of different dependencies
on risk and return. We present results for alternative copulas and parameter settings
in order to assess the range of possible outcomes under different scenarios. For the
sake of clarity, a table containing all model parameters (and their initial values) is
presented in the “Model Specifications” section.

INTEGRATION OF COPULAS IN DFA
In this section, we consider the modeling of dependencies between risk categories, i.e.,
between different asset classes (high-risk versus low-risk investments), different kinds
of liabilities (noncatastrophe losses versus catastrophe losses), and between assets and
liabilities. The dependencies between these risk categories can be integrated in DFA
by generating correlated random numbers.

As the literature suggests that solely considering linear correlation is not appropriate
in modeling dependence structures between heavy-tailed and skewed risks, we use
copulas to model nonlinear dependencies and a rank correlation measure (Kendall’s
tau) that is invariant under monotonic transformations and thus not affected by the
marginal distributions (see, e.g., McNeil, Frey, and Embrechts, 2005, pp. 206–208).
Copulas provide a means of separating the description of a dependence structure
from the marginal distributions (see Embrechts, 2009, for an overview of the copulas
concept).

To investigate the effects of different copulas, we model correlations between high-
risk investments, low-risk investments, noncatastrophe losses, and catastrophe losses
using the Gauss copula, the t copula, and three nonexchangeable Archimedean cop-
ulas (Gumbel, Clayton, Frank). We selected these copulas because they are actually
used in practice, easy to parameterize, and simple to calibrate from a technical per-
spective (see, e.g., Sun, Frees, and Rosenberg, 2008; SCOR Switzerland AG, 2008).
In addition, they exhibit different forms of tail dependence and thus are useful for
scenario analyses and stress testing.3,4 Also useful in the context of scenario analysis

3According to Joe (1997, p. 33) tail dependence can be defined as follows: λL = limu→0+ Pr(U1 ≤
u | U2 ≤ u.) = limu→0+ Pr(U2 ≤ u, U1 ≤ u)/Pr(U2 ≤ u) is the lower tail dependence parameter
for two standard uniform random variables U 1,U 2 with joint distribution function C(U 1, U 2).
Upper tail dependence λU can be defined analogously. Note that there are different definitions
of tail dependence measures in the literature that can lead to different indications of asymptotic
dependence and independence; see, e.g., Coles, Heffernan, and Tawn (1999) and Charpentier
(2006). Tail dependence is a copula property as the tail dependence coefficient can be expressed
in terms of the copula; see, e.g., McNeil, Frey, and Embrechts (2005, p. 209).

4An empirical motivation for selection of the copulas would be ideal, but it is problematic
to calibrate parametric copulas to aggregated empirical data because the volume of data is
rarely sufficient. Copula selection and calibration methods are discussed in the literature (see,
e.g., Genest and Rivest, 1993; Chen and Fan, 2006; Patton, 2006). An important argument
for selecting the Clayton copula is that it provides a natural limit for conditional bivariate
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is that all these copulas span the full range from bivariate countermonotonicity to
comonotonicity (except for the Gumbel, which only ranges from independence to
comonotonicity).

The Gauss and the t copulas have been studied extensively in risk management
literature (see, e.g., McNeil, Frey, and Embrechts, 2005). The Gauss copula is contained
in the multivariate normal distribution and does not exhibit tail dependence:

CGauss
P (u) = �P (
−1(u1), 
−1(u2), 
−1(u3), 
−1(u4)). (9)

And 
 denotes the standard univariate normal density function and �P is the joint
density function of a four-dimensional Gaussian vector u with correlation matrix P .
The t copula arises from the multivariate Student-t distribution. In contrast to the
Gauss copula, the t copula exhibits upper and lower tail dependence (see Demarta
and McNeil, 2005).

Ct
ν,P (u) = tν,P

(
t−1
ν (u1), t−1

ν (u2), t−1
ν (u3), t−1

ν (u4)
)
, (10)

where tν is the density function of a standard univariate t distribution and tν,P is the
joint density function of a four-dimensional vector with correlation matrix P . The
subscript v denotes the degrees of freedom of the multivariate t distribution.

McNeil, Frey, and Embrechts (2005) propose a method to calibrate elliptical copu-
las such as the Gauss and the t copula using the relationship between Kendall’s
rank correlation ρτ and the off-diagonal elements ρ i j of the correlation matrix P ,
where ρ i j stands for the correlation between the two random variables Xi and
Xj. We follow their approach and calibrate the Gauss and the t copula parameters
according to

ρτ (Xi ,Xj ) = (2/π ) arcsin ρi j . (11)

In addition to the Gauss and t copulas, we implement three Archimedean copulas
and their respective Survival copulas. The key characteristic of Archimedean copulas
is that they can be easily constructed using generator functions φ(u) (see Nelsen, 2006,
p. 109). We use three different copulas to account for different types of tail dependence.
The Gumbel copula shows upper tail dependence, the Clayton copula has dependence
in the lower tail, and the Frank copula exhibits no tail dependence. In the insurance
industry, a threatening development is simultaneous high losses in several lines of
business and/or low asset returns in different asset classes. Such a situation could
occur, for example, during a financial market crisis where insurers are exposed to
financial risk on both the asset and liability sides of the balance sheet. Other adverse
scenarios involve natural or man-made catastrophes that lead to high losses and
have severe impacts on the financial markets. In our analysis, such developments
are visualized by the Clayton copula, which exhibits lower tail dependence (i.e., low

extremes having an Archimedean dependence structure. This is especially relevant for prac-
tical purposes when only few data are available and fitting of copulas is not possible (see Juri
and Wüthrich, 2002).
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returns in asset classes and low underwriting result corresponding to high losses
in several lines of business), and can be thought of as an analysis of the worst-
case scenarios in a stress-testing context. Usually, however, data for analyzing tail
dependence are rarely available in sufficient volume in most insurance companies. In
practice, the form of tail dependence can be deduced based only on available data.
However, these can be complemented by scenario analyses of adverse outcomes by
employing the Clayton copula.

We also consider the Survival Gumbel and Survival Clayton copulas, which can be
generated by transforming the Gumbel and Clayton random numbers with 1 – u.
The Survival Gumbel exhibits lower tail dependence and the Survival Clayton upper
tail dependence. Note that we do not consider the Survival Frank copula, as it is
symmetric and equal to the Survival copula. The generator functions φ(u) for the five
copulas are given in Table 1. θ denotes the respective copula parameter.

Archimedean copulas can be calibrated to data based on the functional relationship
between Kendall’s rank correlation ρτ and the copula parameter θ . These relation-
ships are summarized in the fourth column of Table 1 for the copulas used in our
model. For example, Kendall’s tau ρτ equals 1 − 1/θ for the Gumbel copula. By
inverting this relationship, the parameter value θ can be obtained for any given value
of ρτ .

The family of Archimedean copulas contains both exchangeable and nonexchangeable
copulas. As exchangeable copulas impose restrictive conditions on the dependence
structure, especially in a multivariate context (e.g., exchangeable copulas result in
the same correlation within liabilities as between assets and liabilities), we will use
nonexchangeable copulas in order to avoid these unfavorable features. We choose
a four-dimensional nonexchangeable construction, described in McNeil, Frey, and
Embrechts (2005), consisting of three strict Archimedean generators with completely
monotonic inverses and composite functions φ3 ◦ φ−1

1 and φ3 ◦ φ−1
2 :

C(u1, u2, u3, u4) = φ−1
3

(
φ3 ◦ φ−1

1 (φ1(u1) + φ1(u2))︸ ︷︷ ︸
high−risk and low−risk investments

)

+φ3 ◦ φ−1
2 (φ2(u3) + φ2(u4))︸ ︷︷ ︸

noncatastrophe and catastrophe losses

)
. (12)

There are other possible four-dimensional nonexchangeable constructions, but this
one proves helpful because it results in two exchangeable groups. The first group
consists of the high-risk and the low-risk investments and the second group of non-
catastrophe losses and catastrophe losses. Thus, we are able to calibrate the copulas
according to different correlations for assets and liabilities.

Although it would also be possible to combine the copulas shown in Table 1 in the
four-dimensional construction, we will concentrate on the same copula for all three
generating functions in the construction scheme (Equation (12)) in order to analyze
the pure effects of different types of tail dependence. Thus, the generators φ1, φ2,
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FIGURE 1
Dependence Structure of Nonexchangeable Archimedean Copulas

Assets 1φ Liabilities 2φ

Noncatastrophe
Losses

Catastrophe
Losses  

High-Risk
Investments  

Low-Risk
Investments 

Assets and Liabilities 3φ

and φ3 differ only in their respective parameter values, which are calibrated using
Kendall’s rank correlation ρτ .

We will use the generator function φ1 and its corresponding parameter θ 1 to model
the correlation between high-risk and low-risk investments, φ2 with parameter θ 2
for the correlation between noncatastrophe losses and catastrophe losses, and φ3
with θ 3 to correlate assets and liabilities. The copula parameter values θ 1, θ 2, and
θ 3 are calibrated based on the correlations ρτ1 (high- and low-risk investments), ρτ2
(noncatastrophe losses and catastrophe losses), and ρτ3 (assets and liabilities).

To generate random deviates from the Archimedean copulas, we apply the in-
verse transform method to the conditional distributions using numerical rootfind-
ing techniques following the algorithm described in Embrechts, Lindskog, and Mc-
Neil (2001).5 An application of this algorithm to a financial market context can be
found in Savu and Trede (2006). Berg and Aas (2007) compare the nonexchangeable
Archimedean model with a pair-copula construction, examine estimation as well as
simulation techniques and test the goodness-of-fit with two data sets. Nonexchange-
able Archimedean copulas are computationally demanding and usually result in
clumsy expressions. Therefore, we restrict ourselves to the basic description in Ta-
ble 1. Nonexchangeable Archimedean copulas following the construction scheme of
Equation (12) result in a hierarchical dependence structure that can be represented by
a tree diagram, as shown by Figure 1.

One of the technical requirements in the construction of nonexchangeable
Archimedean copulas results in higher correlations for copulas on a lower level
in the hierarchical structure. This technical condition limits the level of correlation
at higher hierarchical levels (see Joe, 1997, pp. 89–91). In our model the correlation
between assets and liabilities must thus be smaller than the minimum of correlations
of different asset classes and the correlations of different liability classes. Note that
we concentrate on spatial correlation at certain points in time and do not model an
intertemporal correlation on aggregate risk level. The only intertemporal correlation
is at the premium level via the underwriting cycle.

5An alternative algorithm using Laplace transforms is presented in McNeil (2007). We also
implemented this modeling approach. See Berg and Aas (2007) for a comparison of the different
approaches.
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FIGURE 2
Lower Tail Dependence for the Survival Gumbel, the Clayton Copula, and the t Copula
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In the simulation analysis, the tail dependent copulas are each calibrated to the same
set of Kendall’s tau values so as to make them comparable. An advantage of using
Kendall’s tau for calibration is that it is more readily available than other measures
of dependence, such as, e.g., the tail dependence coefficient λ. For the Gumbel and
Clayton copulas, tail dependence can be fully determined by Kendall’s tau (see Table
1, columns 5 and 6), but for the t copula, tail dependence involves both Kendall’s tau
and the degrees of freedom v chosen.6 The higher Kendall’s tau, the higher the tail
dependence. Moreover, the fewer the degrees of freedom in the t copula, the higher
the tail dependence. For degrees of freedom → ∞, the t copula converges to the
Gaussian copula and the tail dependence converges toward 0.

Focusing on lower tail dependence, Figure 2 compares the Survival Gumbel, the
Clayton, and the t copulas for different degrees of freedom (1 to 9) for a bivariate
couple in the four-variate nonexchangeable copula.7 The figure also illustrates the
range of lower tail dependence that can be achieved with the different copulas. For
the Clayton, the Survival Gumbel, and the t copulas the range goes from 0 to 1; for
a negative Kendall’s tau, the lower tail dependence of the Clayton and the Survival
Gumbel copula is 0. Upper tail dependence is similar to the dependence shown in
Figure 2, with Survival Gumbel replaced by Gumbel and Clayton replaced by Survival
Clayton.

The degrees of freedom can be chosen so that the lower tail dependence of the t
copula matches the lower tail dependence of the Clayton copula or of the Survival
Gumbel. For example, if Kendall’s tau is 0.18 (dotted line in Figure 2), the lower
tail dependence of the t copula with three degrees of freedom corresponds to the

6The t copula is symmetric and its tail dependence is given by 2tv+1(−√
(v + 1)(1 − ρ)/(1 + ρ));

see Equation (11) for the relationship between ρ and Kendall’s tau. Note that the Gauss and
Frank copulas do not exhibit tail dependence and therefore are not mentioned in this context.

7In the later simulations (the “Measuring the Influence of Copulas in DFA” section) the Survival
function for one of the variates is used in order to obtain negative dependence for the Survival
Gumbel copula.
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lower tail dependence of the Clayton copula. If Kendall’s tau is 0.34 (dashed line in
Figure 2), the t copula with one degree of freedom would lead to the same lower tail
dependence as the Clayton copula.

In our simulation analysis we present results for five different degrees of freedom
(1, 3, 5, 7, and 9). We do this because in our model we vary Kendall’s tau for the dif-
ferent assets, liabilities, and between assets and liabilities and we thus need different
degrees of freedom to match the lower tail dependence of the t and Clayton copulas.
However, since we generate random numbers from one multidimensional t distri-
bution, we can choose only one degree of freedom parameter for the whole model.
Therefore, we can calibrate the t copula to exactly match the Clayton copula only for
the special case when Kendall’s tau is identical for all three dependencies being con-
sidered.8 We use two different approaches to deal with this technical problem. First,
we show the full spectrum of possible outcomes by considering different degrees of
freedom (see the “Measuring the Influence of Copulas in DFA” section). Second, we
present two examples where the lower tail dependence of the t and Clayton cop-
ulas corresponds to each other (see the Appendix, where we consider an identical
Kendall’s tau of 0.1 (0.2) and 7.00 (2.83) degrees of freedom, which leads to a lower
tail dependence of 0.04 (0.25) for both the t and Clayton copulas).

MEASUREMENT OF RISK, RETURN, AND PERFORMANCE IN DFA
Return
In the simulation study, we measure risk, return, and performance considering seven
financial ratios used in Eling, Parnitzke, and Schmeiser (2008). As a measure of return,
we consider the expected gain per annum. We denote the expected gain from time 0
to time T as E(ECT) − EC0. The expected gain E(G) per annum can be written as

E(G) = E (ECT ) − EC0

T
. (13)

Risk
We analyze three risk measures: standard deviation, ruin probability, and expected
policyholder deficit (results for value at risk and tail value at risk (see Dowd and Blake,
2006) are available upon request). The standard deviation of the gain per annum σ (G)
takes into account both positive and negative deviations from the expected value and

8Due to the hierarchical structure of the problem, we cannot calculate tail dependence for the
full model, as we use pairwise tail dependence on the different hierarchical levels. We also
cannot apply the t copula with multiple parameters of degrees of freedom as presented, e.g.,
in Luo and Shevchenko (2007), because this approach can be used only to calibrate within
groups (Kendall’s tau for the different assets or for the different liabilities) but not between
groups (Kendall’s tau between assets and liabilities; for the grouped t copula; see also McNeil,
Frey, and Embrechts, 2005). Schmid and Schmidt (2007) consider multivariate extensions of
Spearman’s rho and of tail dependence measures, which could be used to extend our model
when there are more than two elements in one hierarchical group (e.g., more than two asset
classes or more than two groups of liabilities).
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thus is a measure of total risk:

σ (G) = σ (ECT )
T

. (14)

However, in the insurance context, risk is often measured using downside risk mea-
sures such as the ruin probability (RP) or the expected policyholder deficit (EPD).
Downside risk measures differ from total risk measures in that only negative de-
viations from a certain threshold are taken into account. In this context, the ruin
probability can be defined as

RP = Pr (τ̂ ≤ T) , (15)

where τ̂ = inf{t > 0; ECt < 0} with t = 1, 2 , . . . , T describes the first occurrence
of ruin (i.e., a negative equity capital; see, e.g., Heilmann, 1988, p. 247). Note that
the calculation of ruin probabilities in discrete time leads to lower values than does
continuous-time analysis (see, e.g., Bühlmann, 1996, p. 134). However, closed-form
solutions of ruin problems are generally available only under very restrictive con-
ditions (see Rolski et al., 1998, p. 19). Thus, for more complex models, analytical or
numerical approximations are necessary. An argument in favor of simulation mod-
els in discrete time is that they make it easy to consider dependencies of differently
distributed risks (see, e.g., McNeil, Frey, and Embrechts, 2005, p. 232).

The ruin probability does not provide any information regarding the severity of
insolvency (see Butsic, 1994; Barth, 2000) or the time value of money (see Powers,
1995; Gerber and Shiu, 1998). To take these into account, the EPD can be considered:

EPD =
T∑

t=1

E [max (−ECt , 0)]
(
1 + r f

)−t , (16)

where rf stands for the risk-free rate of return.

Performance
We consider three performance measures. The Sharpe ratio SRσ measures the rela-
tionship between the risk premium (mean excess return above the risk-free interest
rate) and the standard deviation of returns (see Sharpe, 1966):

SRσ = E(ECT ) − EC0 · (1 + r f )T

σ (ECT )
. (17)

In the numerator, the risk-free return is subtracted from the expected value of the
equity capital in T . Using the standard deviation as a measure of risk, the Sharpe
ratio also measures positive deviations of the returns in relation to the expected
value. Since risk is often calculated by downside measures, either the ruin probability
or the EPD can be used in the denominator of the Sharpe ratio:
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SRRP = E(ECT ) − EC0 · (1 + r f )T

RP
, (18)

SREPD = E(ECT ) − EC0 · (1 + r f )T

EPD
. (19)

SRRP denotes the Sharpe ratio based on ruin probability. SREPD is the Sharpe ratio
based on expected policyholder deficit.

MEASURING THE INFLUENCE OF COPULAS IN DFA
Model Specifications
In our simulation study we present results for a stylized example so as to focus
directly on the methodology. An application of our methodology to real-world data
is available upon request (the “real-world” application uses data from a German non-
life insurance company). Table 2 summarizes the model parameters, their definitions,
and their initial values for the stylized example.

In the simulation study we consider a time horizon of 5 years. The market volume
MVt of the underwriting market accessible to the insurance company is €1,000 million
and rises by i = 3 percent each year. Assets are normally distributed, noncatastrophe
losses are log-normally distributed, and the catastrophe claims are modeled using a
Pareto distribution.9 The underwriting cycle is parameterized using the German all-
lines underwriting profit ratios as an example.10 The consumer response parameter
cr is 1 (0.95) if the equity capital at the end of the last period is above (below) the
company’s safety level. The company’s safety level is determined by the minimum
capital required (MCR), which is based on the Solvency I rules in effect in Germany.

Another important set of input parameters in our simulation are the correlation as-
sumptions. There is no clear empirical evidence concerning these correlation values
(see Lambert and Hofflander, 1966; Haugen, 1971; Kahane and Nye, 1975; Li and
Huang, 1996); however, in the robustness tests we will present results for alternative

9To avoid the situation where the Pareto distribution generates infinitely large losses, we
define a maximum loss based on the concept of the probable maximum loss (see Woo, 2002).
Although the ruin probability is hardly affected by the choice of this cutoff point, the level
of EPD depends on the maximum loss. However, additional robustness tests show that the
relationship between the different copulas is not affected by the choice of the maximum loss. In
additional tests, we also varied the distributional assumptions and, e.g., considered the normal
inverse Gaussian and skewed t distribution for the assets, the Gamma for the noncatastrophe
losses, and the Frechet for the catastrophe losses. See Bali and Theodossiou (2008) for the risk
measurement performance of alternative distribution functions.

10The data are taken from Cummins and Outreville (1987). A cycle will be present if a1 > 0,
a2 < 0, and a1

2+4a2 < 0. These statonarity conditions imply that underwriting profits follow
a cyclical pattern. The cycle period can then be obtained by 2π/cos−1(a1/2

√−a2). In our case,
the cycle period equals 7.76 years. This cycle will either have a tendency to die down over
time if

√−a2<1 or be explosive if
√−a2>1. Even a damped cycle will be maintained over

time if random shocks occur.
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TABLE 2
Parameter Configuration for Stylized Example

Initial Value
Parameter Symbol at t = 0

Time period in years T 5
Equity capital at the end of period t ECt €75 million
Tax rate tr 0.25
Portion invested in high-risk investments in period t αt−1 0.40
Normally distributed high-risk investment return in period t r1t

Mean return E(r1t) 0.10
Standard deviation of return σ (r1t) 0.20

Normally distributed low-risk investment return in period t r2t

Mean return E(r2t) 0.05
Standard deviation of return σ (r2t) 0.05

Risk-free return rf 0.03
Underwriting market volume MV €1,000 million
Market growth i 0.03
Company’s underwriting market share in period t βt−1 0.20
Premium rate level in period t �t 1

Autoregressive process parameter for lag 0 a0 1.191
Autoregressive process parameter for lag 1 a1 0.879
Autoregressive process parameter for lag 2 a2 –0.406

Consumer response function cr ECt−1
t−1

1
Upfront expenses linearly depending on the written market

volume
γ 0.05

Upfront expenses nonlinearly depending on the change in
written market volume

η 0.001

Log-normal noncatastrophe claims as portion underwriting
market share

Cncat

Mean claims E(Cncat) €170 million
Standard deviation of claims σ (Cncat) €17 million

Claim settlement costs as portion of claims δ 0.05
Pareto distributed catastrophe claims Ccat

Mean claims E(Ccat) €0.5 million
Dispersion parameter D(Ccat) 4.5

Kendall’s rank correlation between high- and low-risk
investments

ρτ1 0.2

Kendall’s rank correlation between noncatastrophe losses
and catastrophe losses

ρτ2 0.2

Kendall’s rank correlation between assets and liabilities ρτ3 –0.1

parameter settings. In our stylized example, we use random numbers with the fol-
lowing correlation structure. Kendall’s rank correlation between high- and low-risk
investments is 0.2, the correlation between catastrophe losses and noncatastrophe
losses is 0.2, and between assets and liabilities Kendall’s rank correlation is −0.1.11

11To generate the negative dependence between assets and liabilities, we apply the uniform ran-
dom variates generated with the hierarchical Archimedean copulas to the Survival functions
of the marginal distributions for the liabilities.
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Simulation Results
Table 3 sets out the simulation results for six different dependence structures. All re-
sults have been calculated on basis of a Monte Carlo simulation with 500,000 iterations
(for details on Monte Carlo simulation, see, e.g., Glassermann, 2004).

In the case without correlations (i.e., we assume independence between assets, li-
abilites, and assets and liabilities), we find an expected gain of €31.51 million per
annum with a standard deviation of €13.57 million. The ruin probability amounts
to 0.09 percent. This corresponds to an investment grade rating and is below the re-
quirements of many regulatory authorities (e.g., the Solvency II framework planned
in the European Union requires a ruin probability below 0.50 percent; see European
Commission, 2008).

Comparing the case without correlations and the Gauss copula (i.e., only linear de-
pendence is considered), we observe minor effects on the mean returns. E(G) is re-
duced about 1.24 percent, from €31.51 million to €31.12 million. However, we find
much larger changes in risk. σ (G) rises from €13.57 million to €16.04 million (+18.20
percent) and RP from 0.09 percent to 0.42 percent (+466.67 percent). Obviously, the ex-
treme changes in risk are especially due to the lower partial moments, as the increase
in ruin probability (the measure for downside risk) is 26 times higher than the increase
in standard deviation (the measure for total risk). Therefore, the performance is much
lower than in the case without correlations: SRσ is reduced about 16.52 percent and
SRRP by about 78.15 percent.

We find large differences when comparing the results for the copulas. Looking at
the t, the Gumbel, the Clayton, and the Frank copulas, we again observe only minor
effects on the mean returns and extreme effects on the risk. However, the change
in risk depends on the form of nonlinear dependence. With the copulas that exhibit
upper or no tail dependence (the Gumbel and Frank copulas), the ruin probability is
lower than with the Gauss copula, whereas these values are much higher with lower
tail dependent copulas (the t and Clayton copulas). These findings are confirmed by
the results of the Survival copulas. The Frank copula, which is the only symmetric
Archimedean copula, exhibits a lower ruin probability than the Gauss copula as it
is lighter in the tails (see Venter, 2002). It is also noteworthy that in this example the
ruin probability for the t, the Survival Gumbel, and for the Clayton copulas are above
most regulatory requirements (e.g., 0.50 percent in Solvency II).

The impact of nonlinear dependencies on different risk measures can be illustrated by
the results for ruin probability and expected policyholder deficit. The Gumbel copula
has a smaller RP compared to the Gauss and the t copulas, but the EPD is much
higher; comparing the performance measures based on downside risk, we find that
the Gumbel copula has a higher SRRP than the Gauss and the t copulas, but a lower
SREPD. These differences might be due to the extreme levels of the higher moments
(skewness, kurtosis) with the nonsymmetric Gumbel copula, as the EPD is more
sensitive to higher moments than is the ruin probability.12 The results illustrate the

12The EPD is much higher with the nonsymmetric copulas compared to the symmetric Gauss, t,
and Frank copulas because nonsymmetric copulas generate more extreme values in the tails
compared to their symmetric counterparts. For example, based on lower tail dependence,
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importance of modeling nonlinear dependencies in DFA, as the integration of these
features has extreme effects on the risk and performance of the insurance company.
The results found with the RP and the EPD might be of special relevance for regulators
and rating agencies because, depending on the copula concept employed, we find
large differences in risk assessment for different risk measures.

Robustness of Findings
We check the robustness of our findings by varying the level of equity capital, the
correlation settings, and the time horizon. The results are robust if the basic relations
between the analyzed copulas are independent of the given input parameters.

In the first step, we vary the level of equity capital in t = 0, which determines the
company’s safety level, leaving everything else constant. In the “Simulation Results”
section, the level of equity capital was set at €75 million. To test the implications of
different levels of equity capital, we vary the equity capital in t = 0 from €50 to €100
million in €5 million intervals. The results are shown in Figure 3, where the ruin
probability and the expected policyholder deficit are displayed as a function of the
equity capital.

As the level of equity capital increases, the ruin probability decreases with all copulas
because the company’s safety level is improved. However, the relative difference
between the copulas increases with an increasing level of equity capital. For example,
with EC0 = 50, the ruin probability of the Clayton copula (RP = 2.62 percent) is five
times higher than the ruin probability without correlation (RP = 0.49 percent), but
with EC0 = 100, the ruin probability of the Clayton copula (RP = 0.316 percent) is 26
times higher than in the case without correlation (RP = 0.012 percent). The fact that
the influence of nonlinear dependencies increases with an increasing level of equity
capital is an important result because it indicates that copulas are relevant not only
for low-capitalized companies but also for well-capitalized companies.

Looking at the expected policyholder deficit, we find a relatively small risk reduction
especially with the Gumbel and the Clayton copulas. As mentioned, the asymmetric
Gumbel and Clayton copulas generate more extreme values compared to the sym-
metric copulas and these high values are not affected by an increase in equity capital;
thus, the EPD is hardly affected by a change in equity capital. Considering the EPD,
the results of the simulation thus indicate that the risks generated by tail dependen-
cies are not much reduced by an increasing level of equity capital. Therefore, it again
seems that copulas are important for well-capitalized companies. This result is also
relevant for policyholders and regulators because the expected policyholder deficit is
more important for the policyholders than for the equity holders (see Bingham, 2000),
given that policyholders have to bear the amount of loss, whereas the shareholders
(in case of limited liability) have a limited downside risk.

we would expect that the risk of the t copula with three degrees of freedom is comparable
to the risk of the Clayton copula. However, this is only true for the ruin probability but
not for the EPD. Therefore, the extent of lower tail dependence corresponds to the ruin
probability, but not to the EPD, which is much more sensitive to the extreme values produced
by the nonsymmetric Gumbel and Clayton copulas. The EPD reflects both the lower tail
dependence and the asymmetry of the copulas.
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FIGURE 3
Variation of Equity Capital in t = 0 Between €50 and €100 m (RP and EPD)
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In the second step, we vary the correlations. In our basic setting, these are rela-
tively low. Kendall’s rank correlation between high- and low-risk investments is 0.2,
between catastrophe losses and noncatastrophe losses 0.2, and between assets and li-
abilities −0.1. To test the implications of different correlation assumptions on the level
of ruin probability, we vary the correlation between the high- and low-risk invest-
ments from 0.1 to 0.5 in 0.1 intervals (upper part of Figure 4) and between catastrophe
losses and noncatastrophe losses also from 0.1 to 0.5 in 0.1 intervals (lower part of
Figure 4).

We find that the ruin probability increases with an increasing correlation between the
assets. This occurs because the higher the correlation, the higher the likelihood that
negative outcomes are generated for both types of assets (i.e., low returns with the
high- and the low-risk investments). With the Clayton copula the increase is larger
than with the Survival Gumbel because the relative increase in lower tail dependence
is much higher (when Kendall’s tau is increased; see Figure 2). All other relations
remain robust. The increase in ruin probability is much smaller when the correlation
between the liabilities is varied. This is because, with the given parametrization, the
underwriting business is more profitable than the insurer’s investments on the capital
market.
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FIGURE 4
Variation of Correlation Between 0.1 and 0.5 (RP)
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In the “Simulation Results” section, a time period of T = 5 years was considered. To
check how different time horizons affect our results, Figure 5 presents ruin probability
and expected policyholder deficit for time horizons ranging from 1 to 20 years.

Both the ruin probability and the expected policyholder deficit increase when the
time horizon is expanded. However, all the basic relations set out in the “Simulation
Results” section between the different copulas remain unchanged; thus, the results
are robust with regard to variation of the time horizon.

MEASURING THE INFLUENCE OF RISK MANAGEMENT STRATEGIES

Model Specifications
In this section, we investigate whether management can influence the risk introduced
by tail dependencies. To this end, in our model, decisions concerning the portion of
risky investments (α) and the market share in the underwriting business (β) can be
made at the beginning of each year. We first consider two management strategies
introduced by Eling, Parnitzke, and Schmeiser (2008): the solvency strategy and the
growth strategy.
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FIGURE 5
Variation of Time Horizon Between 1 and 20 Years
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The solvency strategy is aimed at risk reduction. For each point in time (t = 1,. . ., T−1),
we decrease the portion of risky investments α by 0.05 and the insurance market share
β by 0.02 as soon as the equity capital falls below the critical value defined by the
MCR plus a safety loading of 50 percent. The growth strategy combines the solvency
strategy with a growth target for the underwriting business. Should the equity capital
drop below the MCR, including a safety loading of 50 percent, the same rules apply
as in the solvency strategy. If the equity capital is above the trigger, there is a growth
of 0.02 in β.

In addition to the strategies used in Eling, Parnitzke, and Schmeiser (2008), we con-
sider a reinsurance strategy. Here the insurer signs a stop-loss reinsurance contract
on its whole book of business with an attachment point of €200 million, a limit of
€40 million, and a premium of €4 million at the beginning of each year. The payment
from the reinsurer at the end of each year can thus be calculated by min (max (Ct−200,
0); 40).

Of course, these three strategies are only heuristic risk management approaches. We
use them to provide some general insights into simple risk-reduction approaches
under the different copulas. Further research on this topic might include analyzing
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different reinsurance contracts (such as stop loss, excess of loss, and double trigger
contracts) and their effects on an insurers risk and return position (see Eling and
Toplek, 2007). Another idea would be to search for an optimal risk management
strategy within the DFA framework (see D’Arcy and Gorvett, 2004, for a related
analysis).

Simulation Results
The simulation results for the solvency, growth, and reinsurance strategies are pre-
sented in Table 4. When comparing the results of Table 4 with those of Table 3, we
see that downside risk is reduced under the solvency strategy although the return
remains almost unchanged. Thus, the solvency strategy reduces the ruin probability
without having much effect on the return. However, risk is not as much reduced when
nonlinear dependencies are taken into account. The solvency strategy is thus not ef-
fective in reducing downside risk in the case of nonlinear dependencies.

Under the growth strategy, we obtain a completely different risk and return profile—
a higher return is accompanied by higher risk. Again, the level of return is not
affected by the integration of nonlinear dependencies, but large differences are found
for downside risk measures. Here risk is much increased with all copula models.
Therefore, the performance numbers for the growth strategy are mostly lower than
those in the situation where no management rule is applied.

In contrast to the other strategies, the reinsurance strategy leads to a lower return. We
again find large differences for the downside risk measures. The ruin probability is
in all cases kept within the regulatory limits suggested by the Solvency II framework
(the maximum ruin probability is 0.37 percent for the Survival Gumbel copula). It
might thus seem that reinsurance is an efficient method to limit the risks generated
by nonlinear dependencies. However, this is again only true from the equity hold-
ers’ perspective, because we find that the EPD is very little reduced by purchasing
reinsurance.

Robustness of Findings
We checked the robustness of our findings using the tests described in the previous
“Robustness of Findings” section. Figure 6 shows the ruin probability for different
levels of equity capital under the solvency strategy (upper part of the figure), the
growth strategy (middle part of the figure), and the reinsurance strategy (lower
part of the figure). The expected policyholder deficit yields the same conclusions
as previously.

The results displayed in Figure 6 are comparable to the results presented in Figure
3. As the equity capital increases, the ruin probability decreases for all strategies.
The only difference is the base level of the ruin probability. The strategies cannot
influence the relative difference between the copulas described in the “Simulation
Results” section, i.e., the fact that the relative difference between the copulas increases
with the level of equity capital. However, overall these results indicate that the main
conclusions presented in the “Simulation Results” section are very robust. We also
investigated the implications of different correlation assumptions and different time
horizons and again found robust results.
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FIGURE 6
Variation of Equity Capital in t = 0 Between €50 m and €100 m (RP)
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CONCLUSION

We study the influence of nonlinear dependencies on a non-life insurers risk and
return profile by integrating several copula models in a DFA framework. Nonlinear
dependencies are especially relevant in the case of extreme events that might induce
tail dependencies between different assets, different kinds of liabilities, or between
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assets and liabilities. One example of such extreme events are the terrorist attacks
of September 11, 2001, which resulted in insurers experiencing large losses from the
underwriting business and on the capital markets.

We have three main findings, each with important implications for insurance com-
pany stakeholders. First, we find that extreme events are especially relevant for
policyholders and regulators (which have to monitor insurers solvency to protect
policyholders) because nonlinear dependencies do not affect the return level but, in-
stead, the ruin probability and the expected policyholder deficit (EPD). Depending
on the copula, the ruin probability increases up to a factor of 11 in our simulation
study compared to a situation without dependencies. We observe the highest lev-
els of risk in case of lower tail dependent copulas such as the t and the Clayton
copulas.

A second key result is that although in general the ruin probability decreases when
equity capital increases, there are nonlinear dependencies where the expected policy-
holder deficit cannot be reduced by increasing equity capital—a finding that is again
of special importance for policyholders and regulators. It thus seems that copulas are
relevant not only for low-capitalized companies but also for well-capitalized compa-
nies. This finding also highlights the importance of considering nonlinear dependen-
cies, especially for regulators and rating agencies. Depending on the copula concept
employed, we find large differences in the risk assessment of policyholder deficit
and ruin probability. As these measures are the foundation of capital standards and
ratings, it is important to consider nonlinear dependencies in the regulatory frame-
work and in rating assessment, e.g., in stress testing and scenario analysis. The ruin
probability and EPD as well as related quantile based measures (value at risk, tail
value at risk; see Dowd and Blake, 2006) are also the most common risk measures in
internal risk models, emphasizing the relevance of the results for risk management
in insurance and reinsurance companies.

Third, we check the effectiveness of different risk management strategies used in
response to adverse outcomes generated by nonlinear dependencies, but we find that
the risk profile cannot be affected by simple risk reduction strategies. A reinsurance
strategy can delimit the ruin probability, but not the expected policyholder deficit. In
our simulation study, the reinsurance strategy thus proves to be an useful instrument
for securing the position of equity holders, but not necessarily for policyholders,
which have to bear the amount of loss in case of insolvency.

The article points toward an important distinction between copula functions when
it comes to modeling the ruin probability and the expected policyholder deficit,
i.e., the distinction between symmetric and asymmetric dependence structures of
different asset classes and different liabilities. Imposing a symmetric dependence
structure leads to significantly lower EPD values for matched Kendall’s tau and
degrees of freedom parameters across copula specifications. The survival copulas
confirm the higher sensitivity of the EPD to extreme tail events as compared to the
ruin probability. These results emphasize the importance of modeling asymmetric
nonlinear dependencies.

As mentioned, there are a number of empirical papers that attempt to answer the
question of which copula will provide the best fit for empirical data that contain
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different asset classes and different liabilities. The general finding of all these studies
is that it is not easy to fit parametric copulas to empirical data but that the Gaussian
copula is most likely not the best one for describing real-world dependencies, thus
giving our scenario analyses greater relevance. In practice, different business units of
an insurance company have detailed data for their specific segment and are thus able
to calculate a univariate loss distribution that is a reasonably accurate description of
their business. These marginal models are then integrated into a multivariate model
by assuming a correlation structure, which is typically Gaussian. This means that
detailed marginal data are combined with rather scarce dependence information, an
approach fraught with model risk. In this article, we provide an assessment of this
risk by considering a specific selection of copulas.

Moreover, the current financial market crisis, which has impacted many insurers on
both sides of their balance sheets, illustrates the importance of analyzing extreme
events in an asset liability management context. It is also important that existing reg-
ulation in Europe (Solvency II, Swiss Solvency Test) incorporates linear dependencies
but neglects nonlinear dependencies, which is also true of most internal risk models
used in practice. Our article shows what can happen in extreme scenarios such as
simultaneous adverse developments in different business areas, and we believe that
the current crisis is a good real-world illustration of their relevance. As these scenar-
ios are not fully reflected in current regulation and most of the internal models, we
recommend their use in stress testing.

APPENDIX

Results for Matched Kendall’s Tau and Degrees of Freedom

Dependence t Survival Survival
Structure No Corr. Gauss Upper Gumbel Gumbel Clayton Clayton Frank
Tail Dependence None None and Lower Upper Lower Lower Upper None

Kendall’s tau = 0.1 and degrees of freedom = 7.00
E(G) in million € 31.51 31.20 31.16 31.32 30.91 31.03 31.21 31.30
σ (G) in million € 13.57 15.52 15.55 15.50 17.06 15.87 17.01 15.30
RP 0.09% 0.33% 0.46% 0.26% 0.85% 0.73% 0.25% 0.25%
EPD in million € 0.01 0.04 0.06 1.28 1.04 1.64 0.87 0.04
SRσ 2.15 1.86 1.85 1.87 1.67 1.80 1.69 1.89
SRRP 157.56 43.45 31.43 56.16 16.76 19.76 58.67 57.58
SREPD 15.86 3.64 2.35 0.11 0.14 0.09 0.17 3.80

Kendall’s tau = 0.2 and degrees of freedom = 2.83
E(G) in million € 31.51 30.88 30.83 31.06 30.50 30.58 31.01 31.04
σ (G) in million € 13.57 17.25 17.24 18.20 18.41 18.18 18.42 16.86
RP 0.09% 0.80% 1.08% 0.50% 1.61% 1.66% 0.39% 0.52%
EPD in million € 0.01 0.11 0.17 1.40 1.14 1.49 0.94 0.08
SRσ 2.15 1.65 1.65 1.58 1.53 1.55 1.55 1.70
SRRP 157.56 17.81 13.18 28.71 8.75 8.48 36.50 27.80
SREPD 15.86 1.35 0.86 0.10 0.12 0.09 0.15 1.81
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Pfeifer, D., and J. Nešlehová, 2004, Modeling and Generating Dependent Risk Pro-
cesses for IRM and DFA, ASTIN Bulletin, 34(2): 333-360.

Powers, M. R., 1995, A Theory of Risk, Return and Solvency, Insurance: Mathematics
and Economics, 17(2): 101-118.

Rolski, T., H. Schmidli, V. Schmidt, and J. Teugels, 1998, Stochastic Processes for Insurance
and Finance (New York: Wiley).

Savu, C., and M. Trede, 2006, Hierarchical Archimedean Copulas, Working Paper,
University of Münster.

Schmid, F., and R. Schmidt, 2007, Multivariate Extensions of Spearman’s rho and
Related Statistics, Statistics & Probability Letters, 77(4): 407-416.

SCOR Switzerland AG, 2008, From Principle-Based Risk Management to Solvency
Requirements. Swiss solvency test documentation, Zurich.

Sharpe, W. F., 1966, Mutual Fund Performance, Journal of Business, 39(1): 119-138.
Sun, J., E. W. Frees, and M. A. Rosenberg, 2008, Heavy-Tailed Longitudinal Data

Modeling Using Copulas, Insurance: Mathematics and Economics, 42(2): 817-830.
Venezian, E. C., 1985, Ratemaking Methods and Profit Cycles in Property and Liability

Insurance, Journal of Risk and Insurance, 52(3): 477-500.
Venter, G., 2002, Tails of Copulas, Proceedings of the Casualty Actuarial Society, 89(171):

68-113.
Wakker, P. P., R. H. Thaler, and A. Tversky, 1997, Probabilistic Insurance, Journal of

Risk and Uncertainty, 15(1): 7-28.
Wang, S., 1998, Aggregation of Correlated Risk Portfolios: Models and Algorithms,

Proceedings of the Casualty Actuarial Society, 85(163): 848-939.
Woo, G., 2002, Natural Catastrophes Probable Maximum Loss, British Actuarial Journal,

8(5): 943-959.


