A note on first-passage times

of continuously time-changed Brownian motion!
Peter Hieber
Lehrstuhl fiir Finanzmathematik (M13),
Technische Universitdt Miinchen,
Parkring 11, 85748 Garching-Hochbriick, Germany,
phone (+0049) 89-289-17414, fax (+0049) 89-289-17407,
email: hieber@tum.de,

Matthias Scherer
Lehrstuhl fiir Finanzmathematik (M13),
Technische Universitat Miinchen,
Parkring 11, 85748 Garching-Hochbriick, Germany,
phone (+0049) 89-289-17402, fax (+0049) 89-289-17407,
email: scherer@tum.de.

Abstract

The probability of a Brownian motion with drift to remain between two constant
barriers (for some period of time) is known explicitly. In mathematical finance, this
and related results are required, e.g., for the pricing of single- and double-barrier
options in a Black-Scholes framework. One popular possibility to generalize the
Black-Scholes model is to introduce a stochastic time-scale. This equips the mod-
elled returns with desirable stylized facts such as volatility clusters and jumps. For
continuous time transformations, independent of the Brownian motion, we show that
analytical results for the double-barrier problem can be obtained via the Laplace
transform of the time-change. The result is a very efficient power series represen-
tation for the resulting exit probabilities. We discuss possible specifications of the
time change based on integrated intensities of shot-noise type and of basic-affine
process type.

Keywords: Double-barrier problem, first-exit time, first-passage time, time
change, time-changed Brownian motion, Fourier pricing, barrier option.

1 Introduction

One- and two-sided exit problems for stochastic processes are classical problems with vari-
ous applications in mathematical finance, see e.g. Darling and Siegert [1953], Black and Cox
[1976], Kunitomo and Ikeda [1992], Geman and Yor [1996], Bertoin [1998|, Lin [1999],

I This version may differ from the final published version A note on first-passage times of continuously
time-changed Brownian motion, Statistics €& Probability Letters, Vol. 82 (2012), pp. 165-172 in
typographical detail.



2 Notation and problem formulation

Kyprianou [2000], Pelsser [2000], Rogers [2000], Sepp [2004]|, and Hurd [2009]. For in-
stance, first-passage time problems appear when barrier options are to be priced or when
default probabilities in structural models are to be computed. For most stochastic pro-
cesses, however, a closed-form solution to the various problem specifications is unknown;
an exception is the case of Brownian motion with drift, which is sufficient to price single-
and double-barrier options in the seminal Black-Scholes model. This model, however, is
often criticized for its simplicity. Consequently, various extensions have been proposed.
One popular way of generalizing the Black-Scholes model is to replace the calendar time
by some suitable increasing stochastic process®. Related techniques can also be applied
to credit risk models, see, e.g., Kammer [2007], Hurd [2009]. In the present model, we
show how several results can be generalized to the situation of a continuous® time shift.
Required is the Laplace-transform of the time-change, which is known for several popu-
lar specifications. We explicitly discuss models where the time-change is constructed as
an integrated intensity. This includes, e.g., models where the intensity is a basic-affine
process or a shot-noise process. All results are verified using Monte-Carlo techniques.
Also note that we present an alternative approach for some single barrier problems that
are currently solved via Fourier inversion.

2 Notation and problem formulation

Throughout we work on the probability space (€2, F,P), supporting all required stochastic
processes. We consider a Brownian motion B = {B;}:>o with drift © € R, volatility
o > 0, and initial value By = 0, satisfying the stochastic differential equation (sde)
dB; = pdt + 0dWy, where W = {W;}4>0 is a standard Brownian motion. Assume that
there are two constant barriers b < 0 < a and define

Ty :=inf{t >0 : By ¢ (b,a)}, (1)

as well as T;g = AT | Top = Ta,—co} and T, := {Ttp, | Tup = Toop}- If the lower barrier
b is hit first, the first-exit time is Ty, = T, ; if the upper barrier a is hit first, the first-exit
time is Ty = T(;lr).

2Clark [1973] gave the following motivation: "the different evolutions of price series on different days
is due to the fact that information is available to traders at a varying rate. On days when no new
information is available, trading is slow, and the price process evolves slowly. On days when new
information violates old expectations, trading is brisk, and the price process evolves much faster.”.
Geman et al. [2000] show that a time change represents a measure of activity in the economy.

3To stress the limitations of this technique, we discuss why subordination with jumps must be treated
differently.



2 Notation and problem formulation

Lemma 1 (Double exit problem for a Brownian motion with drift)
Consider a Brownian motion B, with drift p € R and volatility o > 0. Then

exp —2b g
P(T < T) = exp{;;’{} jp - +exp (45) K7 0), (2)
1—exp —2ua
FILET S {eX;{}w} exp (45) K (a), 3)
P(T, <T)=1— (exp (%)K;?(a) —exp (’%)K%O(b)), (4)
where
K%V(k) = (a0_27;))2 nZ]::l ;}:(+1;(%;;)22 exp ( - <2'1222 + m> T) sin <:ikb> .
Proof

Denote by ;rb(t), [op(t), and fop(t) the corresponding first-passage time densities. Their

Laplace transforms fab()\) = fooo exp(—At) fap(t)dt are derived in Darling and Siegert
[1953] as

R pa sinh (7V “2;202)\17) b sinh <7” “2:2202>‘a)

;l;()\) - (72 sinh <@(b — a)) ’ f“_b()\) - (ﬁ sinh (@(b — a)> |

From Laplace inversion tables, e.g. Oberhettinger and Badii [1973], p. 295, one obtains

2 2,22
1T et 11 ! o‘nm . ([ nmb ua
7RO =~ Z )" exp ( (37" 25 b>2>t> sin (55 ) e ().
Finally, P(T+ fo f+ )dt can be obtained by mtegmtwn To obtain the given
representation in Lemma 1, the identity sinh(kz) = Zsinh(km) Y 00, 7112)7% sin(nx)

(see, e.g., Rottmann [2008], p. 126) has to be used. By setting x = wb/(a — 1), k =
+(a — b)u/(70?), and using that sinh(—y) = —sinh(y) for all y € R, we find

paN o 2 (=)™'n ./ onxb
xp (;) (a — b)? nz p 02712;322 S (a — b)

=1 257 T 2(a=
sinh %ﬂ 1-— ( - Lb)
= Xp (%) sinh ((Sb)>u> - exp ( — 2;)31)— exp z - 272&)

By symmetry, P(T,, <T') (respectively fa_b) can be obtained from P(T; < T) (respectively
f;rb) by replacing a — —b, b — —a, and p — —pu. The expression for P(Ty, < T) =



2 Notation and problem formulation

P(T, < T)+PB(T, <T) is given in, e.g., Darling and Siegert [1953], p. 633% and in
Dominé [1996], p. 175. O

Using Lemma 1, we now investigate the situation of a time-changed Brownian motion.
To do so, let A = {A¢}+>0 be a (pathwise) continuous and increasing stochastic process
with limy; soo Ay = oo P-a.s. and Ag = 0. This stochastic time-scale is used to time-
change B, i.e. we consider the process S; := Bjy,, for ¢ > 0. The idea to approach exit
problems for the process S is conceptually simple. Conditioned on Ap, we are back in
a situation that was already solved. When we integrate out Ap to obtain unconditional
probabilities, we observe that the required quantities can be interpreted as functions of
the Laplace transform of Ap, for which we exploit the specific structure of (1). For-
tunately, this Laplace transform is known for most popular specifications of A, see the
examples presented below.

Theorem 2 (Double exit problem for a time-changed Brownian motion)
Consider a time-changed Brownian motion Sy := Bp, with a (pathwise) continuous
time-change A, independent of B. Denote the Laplace transform of Ap by 9p(u) :=
Elexp(—uAr)], u > 0. Then

IP’(Tab<T)—eXp{_ “Qb}—e p{—%“} — exp (5—2)[(}{3( ), (6)
P(T,, < T) =1 (exp (55) K32 (a) — exp (L5 ) K32 0))). (7)
where
P N n(—1)"*! 9 LQ o’n’m? . [ nrk
Ark) =1 b 2 ; LA S(Z”Qbf T (202 "2 b)2> o <a - b) '
Proof

The first-passage times of Brownian motion (S; = By, i.e. Ay = t) are given in Lemma

4Note that the expression in Darling and Siegert [1953], p. 633, contains two typos: 72 has to be
replaced by m and (—1)" by (=1)""*.



2 Notation and problem formulation

exp (“—3)0277 > n(—1)"+ 12 o?n2n? . nmb

g E — =+ —-—== A —

+ (CL — 6)2 Z_: el i o2n2n2 exp 952 + 2(a — b) T sin p—
exp {—20%1’} —1 n+1

U T
= o ()25
exp { 2‘”’} — exp {—2%5} 0%/ (a~ Z e

i+ 2(a—b)?
2 2,252
7 ™n . nb
A | — + —0——— — .
T<202+ 2(a — b)? > Sm(a—b)
Note that the first equality holds for continuous time changes only (see Remark 5). The
expressions for P(T, < T) and P(To, < T) are obtained analogously. O

Ezxzample 38 (CIR process)
A popular possibility to include a continuous stochastic time change is an integrated CIR
process as introduced in, e.g., Duffie et al. [2000]. The CIR process is given via the sde

dhe = 0(v — N)dt + v/ AedWy, Ao > 0, (8)

where 0, v, and v are non-negative constants, {Wt}tzo a one-dimensional Brownian
motion. The Feller condition, see Feller [1951], 20v > ~* guarantees that the process is

almost surely positive. The Laplace transform of the integrated process Ap := fOT Asds is
given by, see e.g. Cox et al. [1985], Dufresne [2001]

ﬁTC’IR(u) = E[exp ( - u/OT )\sds>] 9)

20v

exp(0T/2) e UAQ 2sinh(oT/2) (10)
= X - ,
cosh(oT'/2) + %sinh(gT/Q) 0 cosh(0T/2) + %sinh(gT/2)
where o0 = /6% + 2u~y?. Furthermore
)\0 )\0
E[Ar] = 50 — 2+ 0T +exp(— QT)(—?—FH) (11)
The case p = —1/2, o = 1 is the special case of a Heston-type stochastic volatility

model treated in Lipton [2001], p. 492ff. As a generalization of the CIR process, one
can use basic affine processes, see, e.g., Duffie et al. [2000]. Those processes allow for
an additional jump component of the intensity process. Note that the integrated intensity
remains continuous in t.



3 Implementation

Example 4 (Shot-noise process)
Consider a shot-noise process® as in Cox and Isham [1980], Dassios and Jang [2003]

At = Ngexp(—dt) + Z M;exp (—0(t — s;)), (12)

where N\g > 0 is the initial intensity, 6 > 0 the exponential decay rate, {s;}3°, are
the jump times of a time-homogeneous Poisson process with intensity p > 0, and M; ~
Ezp(C) are the jump sizes. The Laplace transform of the integrated process Ap := fOT Asds
is given by®

95 () = E[exp ( —u /0 ! Asds) |A0}

UA p 1 U
= exp (— To(l —exp(—6T)) — pT + T+ (T+ gln (1 + E(l - exp(—éT))))).

Furthermore

pT

= (13)

E[Ar] = <);50 - 52’2) (1 — exp(—4T)) +
Remark 5 (Restriction to continuous time-transformations)
Note that Theorem 2 does not hold for discontinuous time-transformations, e.g. for Lévy
subordinators. If there is a jump in the time transformation A, we do mot observe the
time-changed Brownian motion on the whole interval [0, Ar]. Thus, the true barrier
hitting probabilities in the case of a discontinuous time transformation are always lower

than the expressions given in Theorem 2. Hurd [2009] introduces a (slightly modified)
first-passage time of second kind to account for this issue.

3 Implementation

To implement the probabilities given in Lemma 1 and Theorem 2, the infinite sums K3

have to be approximated by finite sums K /]\VT. Given a predefined precision € > 0, Lemma
6 gives lower bounds for the number of required summands N. These are conveniently
small.

Lemma 6 (Truncating K3° )
Define the (absolute) computation error of P(Tyy < T) by

€= ’]P’(be <T)— (1 - (exp (g—g)Kf\VT(a) — exp (g>Kf\VT(b)>) ‘ . (14)

To obtain a given precision €, a lower bound for the summation index N € N is

5Note that the presented model is not the most general shot-noise process. It is without difficulty
possible to, e.g., change the jump size distribution, see Dassios and Jang [2003].

5This Laplace transform can be obtained from Dassios and Jang [2003] by introducing exponential
jump sizes §(u) = 1/(1 + u/¢) in Equation (2.10), p. 79.



3 Implementation
a) in the case of Brownian motion

2(a —b)? 02T ap
N > l,———— In| — | ——| |. 15
- J e ( T R2grr | (4(@ —b)? o? (15)
b) in the case of an integrated CIR process with parameters (0,v,7, o)

_ 2 2
N > max [ 1, (a —b)\/20% + 4y
modo(1l — exp(—+/60% + 292T))
2 _ _./92 2
(Za N 0“vT i <e7r oXo(1 — exp(—+/0? + 2v T))))) (16)

2 72 4v/2(a — b) /0% + 2+2

c¢) in the case of an integrated shot-noise process with parameters (8,C, p, Ao)

302X (1 — exp(—dT))e _ap
. 46(a — b)? a2 | )

The same lower bounds hold for the (absolute) computation error of (T < T) and
P(T, < T).

_p)2
N>, max|1,— 20(a —b)
T202 X0 (1 — exp(—6T))

Proof
If 9p(u) < Jexp(—Mu), where J >0, M > 0 are constants, we get from Equation (14)

€ =

exp (1) (K35 ) = K5, @) - o0 (25 ) (K500 - K3,0)

b 2 e 2 2,22
<€Xp (Iu ) +ex p (/J/a>> (QU_Z)Q Z 0.2:;”2 '19T (21122 + 2?-&717;;)2>‘

=N+1 2(a—b)2

(

*

)

IN

paN 4 =1 o?n?m?
< — = — 7| ——
- eXp(O‘z)ﬂ' Z n T<2(a—b)2
n=N+1
oo 2 2
< Jexp(m)4/ 1 exp M7 2 )dn
o?) T n 2(a —b)

pa 4(a — b)? 202 9
< i Bk Sl S _
S |Jexp (02) w3g2M P M2(a - b)zN

2(a —b)?2 m302Me a
N>\lmax<1,7s_202]\} [ln<4(a—b)2J>_a'L;]>' (17)




3 Implementation

In the Gaussian case (Vr(u) = exp(—uT)), we set M =T, J = 1.
Since one can show by a lengthy calculation that g(u) = 1+Ll(T + %ln (1 + 5—“{(1 —
3¢
exp(—éT)))) is decreasing for u € [0, 00) with g(0) = pT', we get
sn Ao
97 (u) < exp ( - F(l - eXp(—éT))u)

and thus M = )\0(1 — exp(—5T))/5, J =1 if the time change is an integrated shot-noise
process.

If 9p(u) < J*exp(—M*\/u), where J* > 0, M* > 0 are constants, we get analogously

(%) pa\ 4 [ 1 To
< _ _ ¥ -
e < |J* exp(UQ)ﬁ/N nexp( M ﬂ(a—b)n)dn
. pay 4v/2(a — b) . 7O
< reyzvaevwe 7 - M
< |7 exp (O’2> oM+ P V2(a — b)N .

Then,

_ 2 *
N > max 17_7\/§(a b) In _rowe oMe _
o M* 4v/2(a — b)J* o?

). as)

If the time-change is an integrated CIR process, using that cosh(oT/2)460/0sinh(oT/2) >

cosh(T'/2) > 1, exp(0T/2) > exp(—0T/2), and /0 < 1, we get:

2972V

i A 2sinh(o1'/2
exp [ 0 sin (Q /2)

exp(07'/2) o
0 cosh(0T/2) + 2 sinh(pT'/2)

B [cosh(gT/Q) + %Sinh(QT/2)

92VT AO D)
< exp 2 exp —ui( exp( V0?2 + 2u~? T )

oCIR(,,

V02 + 2u~?
< exp T exp | — \/EL( — exp ( V0?2 + 2+2 T
- 72 V0% + 242

where the last inequality holds forw > 1. Thus M* = \o(1—exp(—+/0% + 24°T)) /\/6? + 272,
J* = exp (6*vT/+?).

()
The estimation < is an upper bound for the (absolute) computation error of P(T,, < T)

and IP’(T;Z < T). Thus, the given lower bounds for N hold for those expressions, too. [



4 Numerical examples

4 Numerical examples

The parameters in this section are chosen such that E[Ap] = T, i.e. on average our time
change A7 increases as the calendar time. If we set a = —b = 0.2 and want to evaluate
P(Ty, < T) for a precision € = 1e-08, we obtain for reasonable parameters (p,o) =
(0.1,0.2), (0,v,v,X0) = (0.12,1.00,0.05,1.00), and (4,¢, p, o) = (0.80,0.80,0.64,1.00)
lower bounds of only N < 5 for the Brownian motion and the shot-noise type time
change. If the time change is an integrated CIR process, our error bound yields N ~ 25.
Note, however, that the error bounds in Lemma 6 are rather coarse and the actual
precision is supposedly much higher.

1.4 T T T T 1.06

131 1 1.05}

1.2r

11r

0.8

0.7}

0.6

% 02 04 06 08 1 o 02 04 06 08 1
time t time t

Figure 1 Sample paths of a shot noise process (left) and a CIR process (right). When-
ever \; > 1, we approach faster than calendar time.

First-passage time probabilities for single barrier problems can be obtained by letting
a — oo (or b — —oo, respectively). If we choose a such that P(T; < T) ~ 0, then
P(T, <T)~P(Twp <T). In the case of Brownian motion, it is a classical result (used
in credit risk, see Black and Cox [1976|) that

b— uT 2bu b+ uT
P(Top <T)=0 +exp| — | P . 19
(oo,b—) (U\/T) p(02> <0’\/T ()
For time-changed Brownian motion, Hurd [2009] derived the following equation using
Fourier inversion:

1+ exp(2ub/o?)

P(Jéob S IU - 2
1 > exp(2ub/0?) - exp(izb) — exp(—izb
Ll / exp(2ub/a?) exp(m ) — exp(—ixzb) ﬂT(—iqu+$202T/2) dz |,
= 0 i

(20)



5 Conclusion

where R[z + iy] = = denotes the real part of the complex numer = + iy. Due to the fast
convergence of our power series expansion, we get very fast and accurate results that
provide a meaningful alternative to the Fourier inversion algorithm by Hurd [2009]. The
power series expansion has got two advantages: 1) error bounds can easily be computed
and 2) the computation is extremely fast due to the exponentially decaying error term.
Numerical results are presented in Table 1. To obtain P(T}; < T) < le-16, we set
a = 3.0.

Table 2 compares the power series technique to a Monte-Carlo simulation on a discrete
grid. Due to the binary character (default vs. no default) of the first-exit time probabil-
ities, one needs a surprisingly fine grid to minimize the discretization bias. Our results
indicate that even k = 1000 discretization intervals per unit of time are not enough.

5 Conclusion

We showed how first-exit time problems with two constant barriers are solved analytically
if the underlying process is a continuously time-changed Brownian motion. The resulting
infinite power series converges very fast, for most parameter constellations N < 10
summands are enough to obtain a precision of ¢ = 1e-08. Furthermore, we applied the
result to single-barrier first-exit problems by setting the barriers appropriately. This
provides a reasonable alternative to the Fourier inversion technique presented in Hurd
[2009]. Due to the discretization bias, one should avoid simulating first-exit times on a
grid.

10



5 Conclusion

Brownian motion in True Power series Fourier inversion
calendar time (a = 3.0, N =40)

P(Toop <1) | P(T5p <1) | error | P(Toyp <1) | error
b=-0.80 7.81e-06 7.81e-06 <1e-08 7.81e-06 | 2.8e-16
b=-0.20 0.1803 0.1803 <1e-08 0.1803 | 1.7e-15
b=-0.10 0.4619 0.4619 <1e-08 0.4619 | 8.9e-16
b=-0.05 0.6929 0.6929 <1e-08 0.6929 | 1.0e-15

Brownian motion with True Power series Fourier inversion
integrated CIR process (a = 3.0, N =40)
as time change P(Toop <1) | P(T5, <1) ‘ error P(Toop < 1) ‘ error
b= -0.80 7.66e-06 7.66e-06 <1e-08 7.66e-06 | 4.8e-15
b=-0.20 0.1768 0.1768 <1e-08 0.1768 | 1.3e-15
b=-0.10 0.4574 0.4574 <1e-08 0.4574 | 6.6e-15
b=-0.05 0.6899 0.6899 <1e-08 0.6899 | 1.1e-15
Brownian motion with True Power series Fourier inversion
integrated shot-noise (a =3.0, N =40)
process as time change | P(Toop, < 1) | P(T5, < 1) ‘ error P(Toop < 1) ‘ error
b=-0.80 0.0002 0.0002 <1e-08 0.0002 | 2.5e-08
b=-0.20 0.1641 0.1641 <1e-08 0.1641 | 1.1e-05
b=-0.10 0.4431 0.4431 <1e-08 0.4431 | 2.4e-05
b=-0.05 0.6806 0.6806 <1e-08 0.6806 | 2.5e-05

Table 1 Comparison of the Power series and the Fourier inversion technique for
P(Twp < 1) of a Brownian motion (¢ = 0.1, ¢ = 0.2) in calendar time
(above), time-changed by an integrated CIR process (middle; (0,v,v, ) =
(0.12,1.00,0.05,1.00)), and time-changed by an integrated shot-noise process
(below, (4, ¢, p, Ao) = (0.80,0.80,0.64,1.00)). The Fourier integral in Equation
(20) was evaluated using a Trapezoid rule with discretization A = 0.01 on the
interval [0, 100]. The absolute error of both approaches is given.

11



Brownian motion in

5 Conclusion

Monte Carlo

Monte Carlo

Power series

calendar time k =100 k = 1000 N =10
P(Ty, <1) | error | P(Toy <1) | error | P(Tyy < 1) | error
(b,a) = (—0.80,0.80) 0.0003 | 9.2e-05 0.0004 | 7.2e-05 0.0004 | < 1e-08
(b,a) = (—0.20,1.00) 0.1601 | 0.0202 0.1743 | 0.0058 0.1803 | < 1le-08
(b,a) = (—0.20,0.20) 0.6181 | 0.0469 0.6499 | 0.0001 0.6650 | < 1e-08
(b,a) = (—0.05,0.20) 0.9369 | 0.0289 0.9575 | 0.0083 0.9658 | < 1e-08

Brownian motion with Monte Carlo Monte Carlo Power series
integrated CIR process k =100 k = 1000 N =40
as time change P(T, <1) ‘ error | P(Tgy < 1) ‘ error | P(Tgy < 1) ‘ error
(b,a) = (—0.80,0.80) 0.0004 | 0.0001 0.0004 | 0.0001 0.0004 | < 1e-08
(b,a) = (—0.20, 1.00) 0.1601 | 0.0202 0.1734 | 0.0069 0.1803 | < 1e-08
(b,a) = (—0.20,0.20) 0.6183 | 0.0464 0.6502 | 0.0145 0.6647 | < 1e-08
(b,a) = (—0.05,0.20) 0.9365 | 0.0302 0.9574 | 0.0083 0.9657 | < 1e-08

Brownian motion with Monte Carlo Monte Carlo Power series
integrated shot-noise k=100 k = 1000 N =10

process as time change | P(Tyy < 1) | error | P(Ty < 1) | error | P(Toy < 1) | error
(b,a) = (—0.80,0.80) 0.0079 | 0.0007 0.0084 | 0.0002 0.0086 | <1le-08
(b,a) = (—0.20,1.00) 0.1471 | 0.0195 0.1601 | 0.0065 0.1666 | <le-08
(b,a) = (—0.20,0.20) 0.5550 | 0.0413 0.5834 | 0.0129 0.5963 | <1e-08
(b,a) = (—0.05,0.20) 0.8975 | 0.0362 0.9231 | 0.0106 0.9337 | <1e-08

Table 2 Comparison of the Power series technique (N = 10 and N = 40) to a naive
Monte-Carlo simulation (1.000.000 simulation runs) on a discrete grid with
mesh A = 1/k according to the absolute error. The barrier hitting proba-
bility P(Ty, < 1) of a Brownian motion (u = 0.1, ¢ = 0.2) in calendar time
(above), time-changed by an integrated CIR process (middle; (6,v,v, ) =
(0.12,1.00,0.05,1.00)), and time-changed by an integrated shot-noise process
(below, (4, ¢, p, Ao) = (0.80,0.80,0.64,1.00)) is presented. Note that a simula-
tion on a discrete grid underestimates exit probabilities, the bias is larger as
one might expect, even for A = 0.001.

12
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