Decomposition of life insurance liabilities into

risk factors — theory and application

Joint work with Daniel Bauer, Marcus C. Christiansen,

Katja Schilling | University of Ulm| March 7, 2014 Alexander Kling




Decomposition of life insurance liabilities |  Katja Schilling |  March 7, 2014

Introduction

Risk decomposition methods from literature
Life insurance modeling framework

MRT approach

Application to annuity conversion options

Outlook



Decomposition of life insurance liabilities |  Katja Schilling |  March 7, 2014

Introduction



Decomposition of life insurance liabilities |  Katja Schilling |  March 7, 2014

Motivation

British insurance companies during the 1980s vs. 1990s:

Interest | |Morta|ity




Decomposition of life insurance liabilities |  Katja Schilling |  March 7, 2014

Motivation

British insurance companies during the 1980s vs. 1990s:

| Interest | |Morta|ity|

Question: Which are the most relevant risk drivers?



Decomposition of life insurance liabilities |  Katja Schilling | March 7, 2014

Motivation

British insurance companies during the 1980s vs. 1990s:

| Interest | |Morta|ity|

Question: Which are the most relevant risk drivers?

Why is that important?

To be able to take adequate risk management strategies such as
» Product modifications
» Hedging
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Research objectives

Situation:
> It is common to measure the total risk by advanced stochastic models.

» The question of how to determine the most relevant risk driver is not very
well understood.
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Research objectives

Situation:
> It is common to measure the total risk by advanced stochastic models.

» The question of how to determine the most relevant risk driver is not very

well understood.

Our paper
(1) Theory:
How to allocate the randomness of liabilities to different risk sources?

(2) Application:
What is the dominating risk in annuity conversion options?

Note: we focus on the distribution under the real-world measure P.
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Risk decomposition methods from literature
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General setting

» |Insurance product with maturity T

> Insurer’s liability as from time 0: Lg

» Two risk drivers: X; := (Xl(t))OStST* and X, = (X2(t))0§t§T*

Liability Lo

Risk Xi

Risk X,

Question: How to decompose Ly with respect to X; and X7
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Variance decomposition approach

Step 1: Lo = E(Lo| X1) + [Lo — E (Lo| X1)]
—_— —m —
=Ry =R,
> R; represents the randomness of Ly caused by Xi
> R, represents the randomness of Lo caused by X,

Step 2: Var (Lo) = Var (Ry) + Var (Rz)
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Variance decomposition approach

Step 1: Lg = E(L0| X1) =F [LO = E(L0| Xl)]
—_———— —  —
=R =R,
> Ry represents the randomness of Lo caused by X;
> R» represents the randomness of Lo caused by X»

Step 2: Var (Lg) = Var (Ry) + Var (R»)

Desirable property: full distribution of R; and R,

» BiihImann (1995): annual loss = financial loss + technical loss

» Example: Ly = Xi(T)Xo(T), X1, Xs independent Brownian motions
> Lo = E(Lo[X1) + [Lo — E(Lo|X1)] = _0_+Xi(T)Xa(T)
~N —{

=Ry =Ry

> Lo = E(Lo‘Xz) —+ [Lo — E(L0|X2)] = \0//+X1(T)X2(T)

=Ry =Ry
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Variance decomposition approach

Step 1: Lg = E(L0| X1) =F [LO = E(L0| Xl)]
—_———— ———
=R =R,
> Ry represents the randomness of Lo caused by X;
> R» represents the randomness of Lo caused by X»

Step 2: Var (Lg) = Var (Ry) + Var (R»)

Desirable property: full distribution of R; and R,

» Biihlmann (1995): annual loss = financial loss + technical loss

» Example: Ly = Xi(T)Xo(T), X1, X5 independent Brownian motions
» Lo = E(Lo|X1) + [Lo — E(Lo|X1)] = 0+ Xa(T)Xo(T)
» Lo =E(Lo|X2) + [Lo — E(Lo| X2)] = 0+ Xa(T)Xo(T)

Desirable property: symmetric definition (uniqueness)‘
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Further approaches

Sensitivity analysis
» Analyzing the effect of changes in the input parameters/variables on the
insurer’s liability

» Usually based on derivatives

Desirable property: comparability of the risk contributions‘
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Sensitivity analysis
» Analyzing the effect of changes in the input parameters/variables on the
insurer's liability

» Usually based on derivatives

Desirable property: comparability of the risk contributions‘

Taylor expansion approach

» Function of random variables = first-order Taylor expansion

Desirable property: Lo — E(Ly) =R +...+ R,
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Further approaches

Sensitivity analysis
» Analyzing the effect of changes in the input parameters/variables on the
insurer's liability

» Usually based on derivatives

Desirable property: comparability of the risk contributions‘

Taylor expansion approach

» Function of random variables = first-order Taylor expansion

’ Desirable property: Lo — E(Ly) =R +...+ R,

> Local method: expansion point is relevant

’ Desirable property: no problem-specific choices (uniqueness) ‘
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Life insurance modeling framework
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Risk driving processes (1)

1.) State process X(t): financial and demographic factors
> Risky assets
» Short rate
> Mortality intensity

X = (Xi(t),..., Xn(t))o<t< T+ is an n-dimensional diffusion process satisfying
d
dX(t) = 0:(t, X(£))dt + > oyi(t, X(£))dWj(t), i =1,...,n,
j=1

with deterministic initial value X(0) = xo € R".

» W= (WA(t),..., Wau(t))o<e<T+ d-dimensional standard Brownian motion
» G = (Gt)o<t<T+ augmented natural filtration generated by W
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Risk driving processes (2)
2.) Counting process N(t): actual occurrence of death

» Portfolio of m homogeneous policyholders of age x at time 0

» 7). remaining lifetime of the i-the policyholder as from time 0

> first jump time of a doubly stochastic process with intensity p = (u(t))o<e<7*
> is assumed to be continuous, G-adapted, and non-negative

> N(t) =327, 1ii<ey: number of policyholders who died until time t

» 1" = (Z})o<t< 7+ augmented natural filtration generated by (Lirisep)o<e<T=

We assume: (Q,F,F,P)with F=GVv\/, T
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Insurer’s net liability

The life insurance contract implies:
» Cash flows C(tx), independent of the policyholder’s survival
» Cash flows C,(tx), in case the policyholder survives until time ¢

» Cash flows C,4(t), in case the policyholder dies at time t

The insurer’s time-t net liability is given by the sum of the (possibly
discounted) future cash flows as from time t:

L=Y cw+ 3 (m—N(tk))Ca(tk)-i-/ Caa(v)dN(v).

k: x>t k: ty>t

In what follows: we focus on the insurer’s net liability Lo at time O.
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MRT approach
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MRT decomposition

Decompose Lo — EF(Lp) into Itd integrals with respect to the compensated
risk driving processes, i.e.

Lo — EF(Lo) = / o (M () + / G (£)dMY (1) (1)

=:R; =iRpt1
for some F-predictable processes 1Y (t) and 1" (t), where
> dMPY(t) = S, oyt X(£)dW(t)
> dMN(t) = dN(t) — (m — N(t—))u(t)dt.
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MRT decomposition

Decompose Lo — EF(Lp) into Itd integrals with respect to the compensated
risk driving processes, i.e.

Lo — EF(Lo) = / o (M () + / G (£)dMY (1) (1)

=:R; =iRpt1
for some F-predictable processes 1Y (t) and 1" (t), where
> dMPY(t) = S, oyt X(£)dW(t)
> dMN(t) = dN(t) — (m — N(t—))u(t)dt.

Existence and uniqueness
Assume that n = d, deto(t,x) # 0 for all (t,x) € [0, T*] x R", and Ly is
Fr-measurable. Then the MRT decomposition in eq. (1) exists and is unique.

y




Page 25 Decomposition of life insurance liabilities |  Katja Schilling |  March 7, 2014

Properties of the MRT decomposition

MRT decomposition

lo=F(Lo) = 3 [ M)+ [ oMM (r).

=R; =:Rni1

List of desirable properties:

v Full distribution of each risk contribution R;
v Symmetric definition

v No problem-specific choices

v ltholds: Lo —E(L))=Ri+...+ R,

v~ Comparability of the risk contributions



Page 26 Decomposition of life insurance liabilities |  Katja Schilling |  March 7, 2014

Properties of the MRT decomposition

MRT decomposition

lo=F(Lo) = 3 [ M)+ [ oMM (r).

=R; =:Rni1

List of desirable properties:

Full distribution of each risk contribution R;
Symmetric definition

No problem-specific choices

It holds: Lo —E(Ly)=Ri+...+ R,
Comparability of the risk contributions
Unsystematic mortality risk is diversifiable

AN N NN RN

Appropriate dealing with correlations
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Properties of the MRT decomposition

MRT decomposition

Lo —EP(Ly) = Z/ PV (t)dMY ( t)+/ PN () dMN(t).

=R; =:Rni1

List of desirable properties:

Full distribution of each risk contribution R;
Symmetric definition

No problem-specific choices

It holds: Lo —E(Ly)=Ri+...+ R,
Comparability of the risk contributions
Unsystematic mortality risk is diversifiable

AN N NN RN

Appropriate dealing with correlations
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Specification of the MRT decomposition
Exemplarily, we decompose Lo = (m — N(T))C,(T).

Special case

Let the assumptions for existence and uniqueness hold.
If BF (e~ J #9)ds C,(T)|G,) = F(t,X(t)), 0 < t < T, for some sufficiently
smooth function f, then It6’s lemma yields

~ [T of
Lo =B (1) = 3 [ (m = N(E=) (e X() v (0

- /T F(t, X(£)) dMY(2).
0

+

Existence of f:

» Co(T) = h(X(T)) for some Borel-measurable function h: R" — R
Smoothness of f:

» Conditions from Theorem 1 in Heath and Schweizer (2000)
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Application to annuity conversion options
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Guaranteed annuity option (GAO)

» Special type of annuity conversion option (cf. UK)

Annuity
conversion
option

L 1

T T+ T2

o T
——

» Guaranteed annual annuity = g (conversion rate) x At (account value)
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Guaranteed annuity option (GAO)

» Special type of annuity conversion option (cf. UK)

Annuity
conversion
option

% EEJEIEIEJ‘J

. :
0 T

» Guaranteed annual annuity = g (conversion rate) x Ar (account value)

» Insurer’s liability (= option payoff at time T):
LGAO

= ]].{,.X> T} max {gATaT — AT, O}

1
=1 > 8AT max{a-r — g,O}

» Ty: remaining lifetime of a policyholder aged x at time 0

» ar: time-T value of an immediate annuity of unit amount per year
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Stochastic model

Insurer’s total liability (= option payoff at time T for a portfolio)

. 1
LOGAO = Z ]].{.,.;;>7-} gAT max{a-r - E,O}

=1
—_——— -
—m—N(T) =G(T)
Risk Process | Model
Fund risk S(t) | GBM
Interest risk r( CIR model

t)
Systematic mortality risk (1) time-inhomogeneous CIR model

L
Unsystematic mortality risk | N(t) | Binomial distribution

Assumption: Processes S, r and p are independent
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MRT decomposition of GAO (1)

It can be shown:

> G(T) = h(S(T), r(
> (6 X(8) =B (e

This yields:

LOGAO _ EP (LS}AO)

_ /0 (= N(t=)) g (6 X () sS(1)Ws 1)
+/OT(m—N(t ))aaf t, X(t))a/r(t)dW,(t)
—I—/O (m— N(t— ))aﬁf t, X(t))ou(t)/ p(t)dW,(

+/Tf(t,X(t))dM’V(t).

-+

), u(T)) for some measurable function h
S uls)ds Ca(T)) gt) is sufficiently smooth

I
2

I
ey

.| |.
il

I
2

—— —— —— —— ——
I
ey
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MRT decomposition of GAO (2)

Guaranteed annuity option (GAO)

0.9
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(interest)
(
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syst. mortality)
unsyst. mortality)

=l

3
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Empirical cdf of standardized risk

031

0.2
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» Unsystematic mortality plays a minor role (m = 100)
» Distributions of fund, interest and systematic mortality risk are comparable
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Outlook
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Future research

» Model

» Extension to Lévy processes (instead of Brownian motions)

» Application
» Further annuity conversion options, e.g. modified GAOs

» Taking into account hedging
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Model parameters

Description Parameter Value
Age X 50
Term to maturity T 15
Single premium Po 1
Conversion rate g 0.07
Limiting age w 121
Number of realizations (outer) N 10,000
number of realizations (inner) M 100
Number of discretization steps per year n 100
Number of contracts m 100
GBM drift s 0.06
GBM volatility s 0.22
CIR initial value r(0) 0.0029
CIR speed of reversion k (R) 0.2 (0.2)
CIR mean level 0 (6) 0.025 (0.025)
CIR volatility or (6+) 0.075 (0.075)
Correlation p 0
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