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Motivation

British insurance companies during the 1980s vs. 1990s:

GAOs

Equity

MortalityInterest

…

Question: Which are the most relevant risk drivers?

Why is that important?

To be able to take adequate risk management strategies such as

I Product modifications

I Hedging
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Research objectives

Situation:

I It is common to measure the total risk by advanced stochastic models.

I The question of how to determine the most relevant risk driver is not very

well understood.

Our paper

(1) Theory:

How to allocate the randomness of liabilities to different risk sources?

(2) Application:

What is the dominating risk in annuity conversion options?

Note: we focus on the distribution under the real-world measure P.
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General setting

I Insurance product with maturity T

I Insurer’s liability as from time 0: L0

I Two risk drivers: X1 := (X1(t))0≤t≤T∗ and X2 := (X2(t))0≤t≤T∗

Liability L0

Risk X1 Risk X2

Question: How to decompose L0 with respect to X1 and X2?
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Variance decomposition approach

Step 1: L0 = E (L0|X1)︸ ︷︷ ︸
=:R1

+ [L0 − E (L0|X1)]︸ ︷︷ ︸
=:R2

I R1 represents the randomness of L0 caused by X1

I R2 represents the randomness of L0 caused by X2

Step 2: Var (L0) = Var (R1) + Var (R2)
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I Bühlmann (1995): annual loss = financial loss + technical loss

I Example: L0 = X1(T )X2(T ), X1,X2 independent Brownian motions
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Further approaches

Sensitivity analysis

I Analyzing the effect of changes in the input parameters/variables on the

insurer’s liability

I Usually based on derivatives

Desirable property: comparability of the risk contributions

Taylor expansion approach

I Function of random variables ≈ first-order Taylor expansion

Desirable property: L0 − E(L0) = R1 + . . .+ Rn

I Local method: expansion point is relevant

Desirable property: no problem-specific choices (uniqueness)
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Risk driving processes (1)

1.) State process X (t): financial and demographic factors

I Risky assets

I Short rate

I Mortality intensity

Assumption

X = (X1(t), . . . ,Xn(t))0≤t≤T∗ is an n-dimensional diffusion process satisfying

dXi (t) = θi (t,X (t))dt +
d∑

j=1

σij(t,X (t))dWj(t), i = 1, . . . , n,

with deterministic initial value X (0) = x0 ∈ Rn.

I W = (W1(t), . . . ,Wd(t))0≤t≤T∗ d-dimensional standard Brownian motion

I G = (Gt)0≤t≤T∗ augmented natural filtration generated by W
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Risk driving processes (2)

2.) Counting process N(t): actual occurrence of death

I Portfolio of m homogeneous policyholders of age x at time 0

I τ ix : remaining lifetime of the i-the policyholder as from time 0

I first jump time of a doubly stochastic process with intensity µ = (µ(t))0≤t≤T∗

I µ is assumed to be continuous, G-adapted, and non-negative

I N(t) =
∑m

i=1 1{τ ix≤t}: number of policyholders who died until time t

I Ii = (I it)0≤t≤T∗ augmented natural filtration generated by (1{τ ix>t})0≤t≤T∗

We assume: (Ω,F ,F,P) with F = G ∨
∨m

i=1 Ii
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Insurer’s net liability

The life insurance contract implies:

I Cash flows C (tk), independent of the policyholder’s survival

I Cash flows Ca(tk), in case the policyholder survives until time tk

I Cash flows Cad(t), in case the policyholder dies at time t

The insurer’s time-t net liability is given by the sum of the (possibly

discounted) future cash flows as from time t:

Lt =
∑

k: tk≥t

C (tk) +
∑

k: tk≥t

(m − N(tk))Ca(tk) +

∫ T∗

t

Cad(v)dN(v).

In what follows: we focus on the insurer’s net liability L0 at time 0.
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MRT decomposition

Idea

Decompose L0 − EP(L0) into Itô integrals with respect to the compensated

risk driving processes, i.e.

L0 − EP(L0) =
n∑

i=1

∫ T

0

ψW
i (t)dMW

i (t)︸ ︷︷ ︸
=:Ri

+

∫ T

0

ψN(t)dMN(t)︸ ︷︷ ︸
=:Rn+1

(1)

for some F-predictable processes ψW
i (t) and ψN(t), where

I dMW
i (t) =

∑d
j=1 σij (t,X (t))dWj (t)

I dMN (t) = dN(t)− (m − N(t−))µ(t)dt.

Existence and uniqueness

Assume that n = d , detσ(t, x) 6= 0 for all (t, x) ∈ [0,T ∗]× Rn, and L0 is

FT -measurable. Then the MRT decomposition in eq. (1) exists and is unique.
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Properties of the MRT decomposition

MRT decomposition

L0 − EP(L0) =
n∑

i=1

∫ T

0

ψW
i (t)dMW

i (t)︸ ︷︷ ︸
=:Ri

+

∫ T

0

ψN(t)dMN(t)︸ ︷︷ ︸
=:Rn+1

.

List of desirable properties:

X Full distribution of each risk contribution Ri

X Symmetric definition

X No problem-specific choices

X It holds: L0 − E(L0) = R1 + . . .+ Rn

X Comparability of the risk contributions

X Unsystematic mortality risk is diversifiable

X Appropriate dealing with correlations
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Specification of the MRT decomposition

Exemplarily, we decompose L0 = (m − N(T ))Ca(T ).

Special case

Let the assumptions for existence and uniqueness hold.

If EP(e−
∫ T
t
µ(s)dsCa(T )|Gt) = f (t,X (t)), 0 ≤ t ≤ T , for some sufficiently

smooth function f , then Itô’s lemma yields

L0 − EP (L0) =
n∑

i=1

∫ T

0

(m − N(t−))
∂f

∂xi
(t,X (t)) dMW

i (t)

−
∫ T

0+

f (t,X (t)) dMN(t).

Existence of f :

I Ca(T ) = h(X (T )) for some Borel-measurable function h : Rn → R
Smoothness of f :

I Conditions from Theorem 1 in Heath and Schweizer (2000)
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Guaranteed annuity option (GAO)

I Special type of annuity conversion option (cf. UK)

0                                        T                T T+1       T+2         …

Annuity

conversion

option
Fund

I Guaranteed annual annuity = g (conversion rate) × AT (account value)

I Insurer’s liability (= option payoff at time T):

LGAO
0 = 1{τx>T}max {gATaT − AT , 0}

= 1{τx>T}gAT max

{
aT −

1

g
, 0

}
I τx : remaining lifetime of a policyholder aged x at time 0

I aT : time-T value of an immediate annuity of unit amount per year
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Stochastic model

Insurer’s total liability (= option payoff at time T for a portfolio)

LGAO
0 =

m∑
i=1

1{τ i
x>T}︸ ︷︷ ︸

=m−N(T )

gAT max

{
aT −

1

g
, 0

}
︸ ︷︷ ︸

=Ca(T )

Risk Process Model

Fund risk S(t) GBM

Interest risk r(t) CIR model

Systematic mortality risk µ(t) time-inhomogeneous CIR model

Unsystematic mortality risk N(t) Binomial distribution

Assumption: Processes S , r and µ are independent
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MRT decomposition of GAO (1)

It can be shown:

I Ca(T ) = h(S(T ), r(T ), µ(T )) for some measurable function h

I f (t,X (t)) := EP
(
e−

∫ T
t
µ(s)dsCa(T )

∣∣∣Gt) is sufficiently smooth

This yields:

LGAO
0 − EP (LGAO

0

) }
=: R

=

∫ T

0

(m − N(t−))
∂f

∂x1
(t,X (t))σSS(t)dWS(t)

}
=: R1

+

∫ T

0

(m − N(t−))
∂f

∂x2
(t,X (t))σr

√
r(t)dWr (t)

}
=: R2

+

∫ T

0

(m − N(t−))
∂f

∂x3
(t,X (t))σµ(t)

√
µ(t)dWµ(t)

}
=: R3

+

∫ T

0+

f (t,X (t))dMN(t).

}
=: R4
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MRT decomposition of GAO (2)
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R4 (unsyst. mortality)

I Unsystematic mortality plays a minor role (m = 100)

I Distributions of fund, interest and systematic mortality risk are comparable
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Future research

I Model

I Extension to Lévy processes (instead of Brownian motions)

I Application

I Further annuity conversion options, e.g. modified GAOs

I Taking into account hedging
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Model parameters

Description Parameter Value

Age x 50

Term to maturity T 15

Single premium P0 1

Conversion rate g 0.07

Limiting age ω 121

Number of realizations (outer) N 10,000

number of realizations (inner) M 100

Number of discretization steps per year n 100

Number of contracts m 100

GBM drift µS 0.06

GBM volatility σS 0.22

CIR initial value r(0) 0.0029

CIR speed of reversion κ (κ̃) 0.2 (0.2)

CIR mean level θ (θ̃) 0.025 (0.025)

CIR volatility σr (σ̃r ) 0.075 (0.075)

Correlation ρ 0
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