

ulm university universität **UUUIM**

Decomposition of life insurance liabilities into risk factors - theory and application

Joint work with Daniel Bauer, Marcus C. Christiansen, Alexander Kling

Katja Schilling | University of Ulm | March 7, 2014

Introduction

Risk decomposition methods from literature

Life insurance modeling framework

MRT approach

Application to annuity conversion options

Outlook

Introduction

Risk decomposition methods from literature

Life insurance modeling framework

MRT approach

Application to annuity conversion options

Outlook

Motivation

British insurance companies during the 1980s vs. 1990s:

Question: Which are the most relevant risk drivers?

Why is that important?

To be able to take adequate risk management strategies such as

- Product modifications
- Hedging

Motivation

British insurance companies during the 1980s vs. 1990s:

Question: Which are the most relevant risk drivers?

Why is that important?

To be able to take adequate risk management strategies such as

- Product modifications
- Hedging

Motivation

British insurance companies during the 1980s vs. 1990s:

Question: Which are the most relevant risk drivers?

Why is that important?

To be able to take adequate risk management strategies such as

- Product modifications
- Hedging

Research objectives

Situation:

- ▶ It is common to measure the total risk by advanced stochastic models.
- The question of how to determine the most relevant risk driver is not very well understood.

Our paper

(1) Theory:

How to allocate the randomness of liabilities to different risk sources?

(2) **Application:**

What is the dominating risk in annuity conversion options?

<u>Note:</u> we focus on the distribution under the real-world measure \mathbb{P} .

Research objectives

Situation:

- ▶ It is common to measure the total risk by advanced stochastic models.
- The question of how to determine the most relevant risk driver is not very well understood.

Our paper

(1) Theory:

How to allocate the randomness of liabilities to different risk sources?

(2) **Application:**

What is the dominating risk in annuity conversion options?

<u>Note:</u> we focus on the distribution under the real-world measure \mathbb{P} .

Introduction

Risk decomposition methods from literature

Life insurance modeling framework

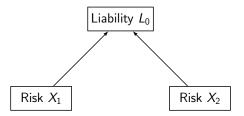
MRT approach

Application to annuity conversion options

Outlook

General setting

- ▶ Insurance product with maturity *T*
- ▶ Insurer's liability as from time 0: L₀
- ▶ Two risk drivers: $X_1 := (X_1(t))_{0 \le t \le T^*}$ and $X_2 := (X_2(t))_{0 \le t \le T^*}$



Question: How to decompose L_0 with respect to X_1 and X_2 ?

Step 1:
$$L_0 = \underbrace{\operatorname{E} (L_0 | X_1)}_{=:R_1} + \underbrace{[L_0 - \operatorname{E} (L_0 | X_1)]}_{=:R_2}$$

 $\triangleright R_1$ represents the randomness of L_0 caused by X_1
 $\triangleright R_2$ represents the randomness of L_0 caused by X_2
Step 2: $\operatorname{Var} (L_0) = \operatorname{Var} (R_1) + \operatorname{Var} (R_2)$

Step 1:
$$L_0 = \underbrace{\mathrm{E}(L_0|X_1)}_{=:R_1} + \underbrace{[L_0 - \mathrm{E}(L_0|X_1)]}_{=:R_2}$$

• R_1 represents the randomness of L_0 caused by X_1

▶ R_2 represents the randomness of L_0 caused by X_2

Step 2: $Var(L_0) = Var(R_1) + Var(R_2)$

Desirable property: full distribution of R_1 and R_2

- ▶ Bühlmann (1995): annual loss = financial loss + technical loss
- Example: $L_0 = X_1(T)X_2(T), X_1, X_2$ independent Brownian motions

$$L_0 = E(L_0|X_1) + [L_0 - E(L_0|X_1)] = \underbrace{0}_{=R_1} + \underbrace{X_1(T)X_2(T)}_{=R_2}$$

►
$$L_0 = \mathrm{E}(L_0|X_2) + [L_0 - \mathrm{E}(L_0|X_2)] = \underbrace{\mathbf{0}}_{=R_2} + \underbrace{X_1(T)X_2(T)}_{=R_1}$$

Step 1:
$$L_0 = \underbrace{\mathrm{E}(L_0|X_1)}_{=:R_1} + \underbrace{[L_0 - \mathrm{E}(L_0|X_1)]}_{=:R_2}$$

• R_1 represents the randomness of L_0 caused by X_1

▶ R_2 represents the randomness of L_0 caused by X_2

Step 2: $\operatorname{Var}(L_0) = \operatorname{Var}(R_1) + \operatorname{Var}(R_2)$

Desirable property: full distribution of R_1 and R_2

- ▶ Bühlmann (1995): annual loss = financial loss + technical loss
- ▶ <u>Example:</u> $L_0 = X_1(T)X_2(T), X_1, X_2$ independent Brownian motions ▶ $L_0 = E(L_0|X_1) + [L_0 - E(L_0|X_1)] = \underbrace{0}_{=R_1} + \underbrace{X_1(T)X_2(T)}_{=R_2}$ ▶ $L_0 = E(L_0|X_2) + [L_0 - E(L_0|X_2)] = \underbrace{0}_{=R_2} + \underbrace{X_1(T)X_2(T)}_{=R_1}$

Step 1:
$$L_0 = \underbrace{\mathrm{E}(L_0|X_1)}_{=:R_1} + \underbrace{[L_0 - \mathrm{E}(L_0|X_1)]}_{=:R_2}$$

• R_1 represents the randomness of L_0 caused by X_1

▶ R_2 represents the randomness of L_0 caused by X_2

Step 2: $Var(L_0) = Var(R_1) + Var(R_2)$

Desirable property: full distribution of R_1 and R_2

- ▶ Bühlmann (1995): annual loss = financial loss + technical loss
- ▶ Example: $L_0 = X_1(T)X_2(T), X_1, X_2$ independent Brownian motions

►
$$L_0 = E(L_0|X_1) + [L_0 - E(L_0|X_1)] = 0 + X_1(T)X_2(T)$$

► $L_0 = E(L_0|X_2) + [L_0 - E(L_0|X_2)] = 0 + X_1(T)X_2(T)$

Desirable property: symmetric definition (uniqueness)

Further approaches

Sensitivity analysis

- Analyzing the effect of changes in the input parameters/variables on the insurer's liability
- Usually based on derivatives

Desirable property: comparability of the risk contributions

Taylor expansion approach

• Function of random variables \approx first-order Taylor expansion

Desirable property: $L_0 - E(L_0) = R_1 + \ldots + R_n$

Local method: expansion point is relevant

Desirable property: no problem-specific choices (uniqueness)

Further approaches

Sensitivity analysis

- Analyzing the effect of changes in the input parameters/variables on the insurer's liability
- Usually based on derivatives

Desirable property: comparability of the risk contributions

Taylor expansion approach

• Function of random variables \approx first-order Taylor expansion

Desirable property: $L_0 - E(L_0) = R_1 + \ldots + R_n$

Local method: expansion point is relevant

Desirable property: no problem-specific choices (uniqueness)

Further approaches

Sensitivity analysis

- Analyzing the effect of changes in the input parameters/variables on the insurer's liability
- Usually based on derivatives

Desirable property: comparability of the risk contributions

Taylor expansion approach

• Function of random variables \approx first-order Taylor expansion

Desirable property: $L_0 - E(L_0) = R_1 + \ldots + R_n$

Local method: expansion point is relevant

Desirable property: no problem-specific choices (uniqueness)

Introduction

Risk decomposition methods from literature

Life insurance modeling framework

MRT approach

Application to annuity conversion options

Outlook

Risk driving processes (1)

1.) State process X(t): financial and demographic factors

- Risky assets
- Short rate
- Mortality intensity

Assumption

 $X = (X_1(t), \dots, X_n(t))_{0 \le t \le T^*}$ is an *n*-dimensional **diffusion process** satisfying $dX_i(t) = \theta_i(t, X(t))dt + \sum_{j=1}^d \sigma_{ij}(t, X(t))dW_j(t), \ i = 1, \dots, n,$

with deterministic initial value $X(0) = x_0 \in \mathbb{R}^n$.

- ▶ $W = (W_1(t), ..., W_d(t))_{0 \le t \le T^*} d$ -dimensional standard Brownian motion
- ▶ $\mathbb{G} = (\mathcal{G}_t)_{0 \le t \le T^*}$ augmented natural filtration generated by W

Risk driving processes (2)

- 2.) **Counting process** N(t): actual occurrence of death
 - Portfolio of *m* homogeneous policyholders of age *x* at time 0
 - τ_x^i : remaining lifetime of the *i*-the policyholder as from time 0
 - ▶ first jump time of a doubly stochastic process with intensity $\mu = (\mu(t))_{0 \le t \le T^*}$
 - $\blacktriangleright~\mu$ is assumed to be continuous, $\mathbb G\text{-}\mathsf{adapted},$ and non-negative
 - ▶ $N(t) = \sum_{i=1}^{m} \mathbb{1}_{\{\tau_x^i \le t\}}$: number of policyholders who died until time t
 - ▶ $\mathbb{I}^i = (\mathcal{I}^i_t)_{0 \le t \le T^*}$ augmented natural filtration generated by $(\mathbb{1}_{\{\tau^i_x > t\}})_{0 \le t \le T^*}$

<u>We assume</u>: $(\Omega, \mathcal{F}, \mathbb{F}, \mathbb{P})$ with $\mathbb{F} = \mathbb{G} \vee \bigvee_{i=1}^{m} \mathbb{I}^{i}$

Insurer's net liability

The life insurance contract implies:

- Cash flows $C(t_k)$, **independent** of the policyholder's survival
- ▶ Cash flows $C_a(t_k)$, in case the policyholder survives until time t_k
- Cash flows $C_{ad}(t)$, in case the policyholder **dies** at time t

The **insurer's time-t net liability** is given by the sum of the (possibly discounted) future cash flows as from time *t*:

$$L_t = \sum_{k: t_k \geq t} C(t_k) + \sum_{k: t_k \geq t} (m - N(t_k)) C_{\mathrm{a}}(t_k) + \int_t^{T^*} C_{\mathrm{ad}}(v) dN(v).$$

In what follows: we focus on the insurer's net liability L_0 at time 0.

Introduction

Risk decomposition methods from literature

Life insurance modeling framework

MRT approach

Application to annuity conversion options

Outlook

MRT decomposition

Idea

Decompose $L_0 - E^{\mathbb{P}}(L_0)$ into **Itô integrals with respect to the compensated** risk driving processes, i.e.

$$L_{0} - E^{\mathbb{P}}(L_{0}) = \sum_{i=1}^{n} \underbrace{\int_{0}^{T} \psi_{i}^{W}(t) dM_{i}^{W}(t)}_{=:R_{i}} + \underbrace{\int_{0}^{T} \psi^{N}(t) dM^{N}(t)}_{=:R_{n+1}}$$
(1)

for some $\mathbb F\text{-predictable processes }\psi^{\sf W}_i(t)$ and $\psi^{\sf N}(t),$ where

•
$$dM_i^W(t) = \sum_{j=1}^d \sigma_{ij}(t, X(t)) dW_j(t)$$

• $dM^N(t) = dN(t) - (m - N(t-))\mu(t)dt.$

Existence and uniqueness

Assume that n = d, det $\sigma(t, x) \neq 0$ for all $(t, x) \in [0, T^*] \times \mathbb{R}^n$, and L_0 is \mathcal{F}_T -measurable. Then the MRT decomposition in eq. (1) exists and is unique.

MRT decomposition

Idea

Decompose $L_0 - E^{\mathbb{P}}(L_0)$ into **Itô integrals with respect to the compensated** risk driving processes, i.e.

$$L_{0} - E^{\mathbb{P}}(L_{0}) = \sum_{i=1}^{n} \underbrace{\int_{0}^{T} \psi_{i}^{W}(t) dM_{i}^{W}(t)}_{=:R_{i}} + \underbrace{\int_{0}^{T} \psi^{N}(t) dM^{N}(t)}_{=:R_{n+1}}$$
(1)

for some $\mathbb F\text{-predictable processes }\psi^{\sf W}_i(t)$ and $\psi^{\sf N}(t),$ where

•
$$dM_i^W(t) = \sum_{j=1}^d \sigma_{ij}(t, X(t)) dW_j(t)$$

• $dM^N(t) = dN(t) - (m - N(t-))\mu(t)dt.$

Existence and uniqueness

Assume that n = d, det $\sigma(t, x) \neq 0$ for all $(t, x) \in [0, T^*] \times \mathbb{R}^n$, and L_0 is \mathcal{F}_T -measurable. Then the MRT decomposition in eq. (1) exists and is unique.

Properties of the MRT decomposition

MRT decomposition

$$L_0 - \mathbb{E}^{\mathbb{P}}(L_0) = \sum_{i=1}^n \underbrace{\int_0^T \psi_i^W(t) dM_i^W(t)}_{=:R_i} + \underbrace{\int_0^T \psi^N(t) dM^N(t)}_{=:R_{n+1}}.$$

List of desirable properties:

- \checkmark Full distribution of each risk contribution R_i
- ✓ Symmetric definition
- \checkmark No problem-specific choices
- ✓ It holds: $L_0 E(L_0) = R_1 + \ldots + R_n$
- $\checkmark\,$ Comparability of the risk contributions
- \checkmark Unsystematic mortality risk is diversifiable
- \checkmark Appropriate dealing with correlations

Properties of the MRT decomposition

MRT decomposition

$$L_0 - \mathbb{E}^{\mathbb{P}}(L_0) = \sum_{i=1}^n \underbrace{\int_0^T \psi_i^W(t) dM_i^W(t)}_{=:R_i} + \underbrace{\int_0^T \psi^N(t) dM^N(t)}_{=:R_{n+1}}.$$

List of desirable properties:

- \checkmark Full distribution of each risk contribution R_i
- ✓ Symmetric definition
- ✓ No problem-specific choices
- ✓ It holds: $L_0 E(L_0) = R_1 + \ldots + R_n$
- \checkmark Comparability of the risk contributions
- \checkmark Unsystematic mortality risk is diversifiable
- $\checkmark\,$ Appropriate dealing with correlations

Properties of the MRT decomposition

MRT decomposition

$$L_0 - \mathbb{E}^{\mathbb{P}}(L_0) = \sum_{i=1}^n \underbrace{\int_0^T \psi_i^W(t) dM_i^W(t)}_{=:R_i} + \underbrace{\int_0^T \psi^N(t) dM^N(t)}_{=:R_{n+1}}.$$

List of desirable properties:

- \checkmark Full distribution of each risk contribution R_i
- ✓ Symmetric definition
- ✓ No problem-specific choices
- ✓ It holds: $L_0 E(L_0) = R_1 + \ldots + R_n$
- $\checkmark\,$ Comparability of the risk contributions
- \checkmark Unsystematic mortality risk is diversifiable
- $\checkmark\,$ Appropriate dealing with correlations

Specification of the MRT decomposition

Exemplarily, we decompose $L_0 = (m - N(T))C_a(T)$.

Special case

Let the assumptions for existence and uniqueness hold. If $E^{\mathbb{P}}(e^{-\int_{t}^{T} \mu(s)ds} C_{a}(T)|\mathcal{G}_{t}) = f(t, X(t)), \ 0 \leq t \leq T$, for some sufficiently smooth function f, then Itô's lemma yields

$$\begin{split} L_0 - \mathrm{E}^{\mathbb{P}}\left(L_0\right) &= \sum_{i=1}^n \int_0^T (m - N(t-)) \frac{\partial f}{\partial x_i}(t, X(t)) \, dM_i^W(t) \\ &- \int_{0+}^T f(t, X(t)) \, dM^N(t). \end{split}$$

Existence of f:

▶ $C_a(T) = h(X(T))$ for some Borel-measurable function $h : \mathbb{R}^n \to \mathbb{R}$ Smoothness of f:

▶ Conditions from Theorem 1 in Heath and Schweizer (2000)

Introduction

Risk decomposition methods from literature

Life insurance modeling framework

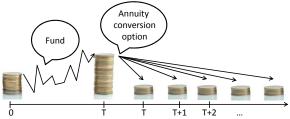
MRT approach

Application to annuity conversion options

Outlook

Guaranteed annuity option (GAO)

▶ Special type of annuity conversion option (cf. UK)



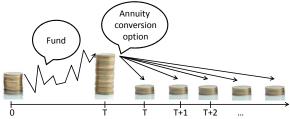
- Guaranteed annual annuity = g (conversion rate) $\times A_T$ (account value)
- ► Insurer's liability (= option payoff at time T) $L_0^{\text{GAO}} = \mathbb{1}_{\{\tau_x > T\}} \max \{gA_T a_T - A_T, 0\}$ $= \mathbb{1}_{\{\tau_x > T\}} gA_T \max \left\{a_T - \frac{1}{g}, 0\right\}$

• τ_x : remaining lifetime of a policyholder aged x at time 0

▶ a_T : time-T value of an immediate annuity of unit amount per year

Guaranteed annuity option (GAO)

Special type of annuity conversion option (cf. UK)



- Guaranteed annual annuity = g (conversion rate) $\times A_T$ (account value)
- Insurer's liability (= option payoff at time T):

$$L_0^{\text{GAO}} = \mathbb{1}_{\{\tau_x > T\}} \max \left\{ g A_T a_T - A_T, 0 \right\}$$
$$= \mathbb{1}_{\{\tau_x > T\}} g A_T \max \left\{ a_T - \frac{1}{g}, 0 \right\}$$

- τ_x : remaining lifetime of a policyholder aged x at time 0
- ▶ a_T : time-T value of an immediate annuity of unit amount per year

Stochastic model

Insurer's total liability (= option payoff at time T for a portfolio)

$$L_0^{\text{GAO}} = \underbrace{\sum_{i=1}^m \mathbb{1}_{\{\tau_x^i > T\}}}_{=m-N(T)} \underbrace{gA_T \max\left\{a_T - \frac{1}{g}, 0\right\}}_{=C_a(T)}$$

Risk	Process	Model
Fund risk	<i>S</i> (<i>t</i>)	GBM
Interest risk	r(t)	CIR model
Systematic mortality risk	$\mu(t)$	time-inhomogeneous CIR model
Unsystematic mortality risk	N(t)	Binomial distribution

Assumption: Processes S, r and μ are independent

MRT decomposition of GAO (1)

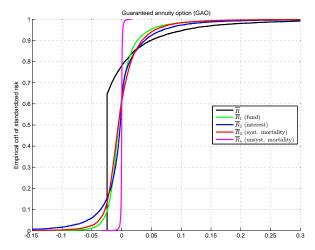
It can be shown:

►
$$C_a(T) = h(S(T), r(T), \mu(T))$$
 for some measurable function h
► $f(t, X(t)) := E^{\mathbb{P}} \left(e^{-\int_t^T \mu(s) ds} C_a(T) \middle| \mathcal{G}_t \right)$ is sufficiently smooth

This yields:

$$\begin{split} L_0^{\text{GAO}} &- \text{E}^{\mathbb{P}} \left(L_0^{\text{GAO}} \right) & \Big\} =: R \\ &= \int_0^T (m - N(t-)) \frac{\partial f}{\partial x_1}(t, X(t)) \sigma_S S(t) dW_S(t) & \Big\} =: R_1 \\ &+ \int_0^T (m - N(t-)) \frac{\partial f}{\partial x_2}(t, X(t)) \sigma_r \sqrt{r(t)} dW_r(t) & \Big\} =: R_2 \\ &+ \int_0^T (m - N(t-)) \frac{\partial f}{\partial x_3}(t, X(t)) \sigma_\mu(t) \sqrt{\mu(t)} dW_\mu(t) & \Big\} =: R_3 \\ &+ \int_{0+}^T f(t, X(t)) dM^N(t). & \Big\} =: R_4 \end{split}$$

MRT decomposition of GAO (2)



• Unsystematic mortality plays a minor role (m = 100)

> Distributions of fund, interest and systematic mortality risk are comparable

Introduction

Risk decomposition methods from literature

Life insurance modeling framework

MRT approach

Application to annuity conversion options

Outlook

Future research

- ► Model
 - Extension to Lévy processes (instead of Brownian motions)

Application

- Further annuity conversion options, e.g. modified GAOs
- Taking into account hedging

Contact

Institute of Insurance Science University of UIm www.uni-ulm.de/ivw

Katja Schilling katja.schilling@uni-ulm.de

Thank you very much for your attention!

Literature

- Bühlmann, H. (1995). Life insurance with stochastic interest rates. In: Ottaviani, G. Financial Risk in Insurance. Springer.
- Christiansen, M.C. (2007). A joint analysis of financial and biometrical risks in life insurance. Doctoral thesis, University of Rostock.
- Christiansen, M.C., Helwich, M. (2008). Some further ideas concerning the interaction between insurance and investment risk. *Blätter der DGVFM*, 29:253–266.
- Dahl, M., Møller, T. (2006). Valuation and hedging of life insurance liabilities with systematic mortality risk. *Insurance: Mathematics and Economics*, 39(2):193–217.
- Heath, D., Schweizer, M. (2000). Martingales versus PDEs in finance: an equivalence result with examples. *Journal of Applied Probability*, 37(4):947–957.
- ▶ Kling, A., Ruß, J., Schilling, K. (2012). Risk analysis of annuity conversion options in a stochastic mortality environment. To appear in: *Astin Bulletin*.

Model parameters

Description	Parameter	Value
Age	x	50
Term to maturity	Т	15
Single premium	P_0	1
Conversion rate	g	0.07
Limiting age	ω	121
Number of realizations (outer)	N	10,000
number of realizations (inner)	Μ	100
Number of discretization steps per year	п	100
Number of contracts	т	100
GBM drift	μ_{S}	0.06
GBM volatility	σ_{S}	0.22
CIR initial value	r(0)	0.0029
CIR speed of reversion	κ ($\tilde{\kappa}$)	0.2 (0.2)
CIR mean level	θ $(ilde{ heta})$	0.025 (0.025)
CIR volatility	$\sigma_r (\tilde{\sigma}_r)$	0.075 (0.075)
Correlation	ρ	0