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Abstract

This paper shows how to use my free software toolbox repgames for
R to analyze infinitely repeated games. Based on the results of Gold-
luecke & Kranz (2012), the toolbox allows to compute the set of pure
strategy public perfect equilibrium payoffs and to find optimal equilib-
rium strategies for all discount factors in repeated games with perfect
or imperfect public monitoring and monetary transfers. This paper
explores various examples, including variants of repeated public goods
games and different variants of repeated oligopolies, like oligopolies with
many firms, multi-market contact or imperfect monitoring of sales. The
paper also explores repeated games with infrequent external auditing
and games were players can secretly manipulate signals. On the one
hand the examples shall illustrate how the toolbox can be used and
how our algorithms work in practice. On the other hand, the exam-
ples may in themselves provide some interesting economic and game
theoretic insights.

*skranz@uni-bonn.de. I want to thank the Deutsche Forschungsgemeinschaft (DFG)
through SFB-TR 15 for financial support.
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1 Overview

A main goal of the theory of infinitely repeated games is to understand for dif-
ferent environments how and to which degree self-interested parties can sustain
cooperative outcomes through repeated interaction. This tutorial describes a
free software toolbox for R that allows to calculate optimal equilibria and
the set of implementable payoffs for any discount factor in infinitely repeated
games with imperfect or perfect monitoring monitoring that allow for monetary
transfers. It is based on my joint paper with Susanne Goldlücke1 (Goldlücke
and Kranz, 2012) that develops and explains the underlying theoretical results.
To understand how and why the software works and to interpret the results, I
strongly recommend to have a look at our theoretical paper.

I believe that the presented toolbox can be quite helpful for economists and
other social scientists who use game theoretic models to get a deeper under-
standing of many interesting social phenomena. Here are several situations, in
which you may find the software useful:

1. You analyze a static game theoretic model of some economic phe-nomena
and quickly want to check with some numerical examples the robustness
of your predictions to repeated interactions (in particular, the robustness
of your comparative statics).

2. Similarly, you may want to use the toolbox for robustness checks if you
already analyze a repeated game but have considered only a particular
class of strategies, like grim-trigger strategies.

3. You may want to check whether some particular class of equilibria you
study are optimal or how far they are away from the boundary of op-
timal (pure strategy) equilibria. The toolbox only analyzes repeated
games where monetary transfers are allowed, but the resulting payoff
sets generate an upper bound to payoff sets of games where no monetary
transfers are possible.

4. You can use the toolbox to develop and test conjectures about the struc-
ture of optimal equilibria in a particular repeated games, e.g. whether
w.l.o.g. some symmetry constraints can be imposed. I try to illustrate
this approach in several examples studied in this paper.

5. You want to design an experiment about repeated games (with monetary
transfers) and want to quickly find the equilibrium payoff sets for different
possible treatment configurations.

6. You may also consider the toolbox when teaching about repeated games,
in particular if you think that students should not only learn math and
economics, but should also acquire some programming skills. R is really
a great software that is very popular among statisticians.

1Susanne just recently married and may still be better known by her former name
Susanne Ohlendorf
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Besides the core functions that solve a repeated game using our algorithm, the
software contains several additional tools, in particular for graphical analysis,
that facilitate testing and interpretation of the results and the analysis of
comparative statics. So far, the toolbox itself is not yet well documented (the
the source code is often commented, however) so this paper is the main source
of documentation.

The main goals of this paper are the following:

1. Describe how my software toolbox for R can be used.

2. Make some advertisement for our theoretical paper by showing how our
theoretical results can be applied.

3. Analyze some non-trivial examples of repeated games. Show how com-
parative statics of the payoff sets can be performed and how optimal
strategies look like. I hope that the game theoretic and economic in-
sights from some examples are in themselves interesting for some readers.
I am planning to extend several examples and analyze them in separate
papers.2

Section 2 explains how you can install the software. Afterward this paper is
divided in two parts. Part I treats repeated games with perfect monitoring
and Part II treats games with imperfect public monitoring. Each parts consist
of different Sections that explain you how to use my toolbox (from basic to
more advanced techniques) for different classes of games and at the same time
contain some brief economic and game theoretic discussion of the results. In
an appendix, I give some hints on debugging. (When I analyzed a new class
of games, I nearly always made some mistakes in my code that specifies the
stage game. I guess it is normal to need some debugging before everything
runs fine). There are several exercises distributed across the different sections
that invite you to explore my toolbox yourself.

2 Installation of the software

2.1 Installing R

My toolbox and all software you need to run it is open source and freely
available for download.

First you have to install R, which is a very well developed software package
for statistical and numerical computations with great graphic abilities, a very
active community and a huge repository of contributed packages. To download
the actual version of R visit the Comprehensive R Archive Network under

http://cran.r-project.org/

On the CRAN you can also find many tutorials that introduce you to R.

2I know that it is not good style to put half-finished work that has almost no literature
review to the web. Still, I chose do to so, since I wanted to include a lot of examples in this
paper to illustrate various ways how our algorithm and the toolbox can be applied.

http://cran.r-project.org/


2 INSTALLATION OF THE SOFTWARE 6

2.2 Installing the package under Windows 32 bit

My toolbox is an R package with name repgames. To run it also requires the
packages skUtils, slam and glpkAPI. My own packages repgames and skUtil are
not yet available on the CRAN. If you use Windows 32 bit, you can download
the zip files of the two packages from my homepage:

http://www.wiwi.uni-bonn.de/kranz/

You can install it in R by choosing the menu “packages” in your RGui and
then the submenu “Install package from local zip files”. Alternatively you can
paste the current code, where you have to adjust the file path to the folder to
which you have copied the zip files:

install.packages("D:/libraries/skUtils.zip", repos = NULL)

install.packages("D:/libraries/repgames.zip", repos = NULL)

Note: Use / instead of \ to specify file paths in R.
The two packages: “glpkAPI” and “slam” can be found on the CRAN. If

you have internet access, you can simply type

install.packages("slam")

install.packages("glpkAPI")

which installs these packages directly from the CRAN. Before you can use the
package repgames, you also have to load it in the actual R session. You can
do this with the following command:

library(repgames)

(You do not have to manually load the other packages).
If installation fails, please send me an email.

2.3 Installing the package for a different operating sys-
tem

If you want to use the package for a different operating system please send me
an email.

2.4 Running Examples

In the different Sections below you find a series of examples. One way to try
them out, is to copy-and-paste them directly from this PDF file. Alternatively,
you can download to .r files on my homepage that contain the examples of Parts
I and II of this paper.

http://www.wiwi.uni-bonn.de/kranz/
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2.5 Installing a text editor for R files

One convenient way to use R is to have some text editor, ideally with syntax
highlighting for R files, and to copy-and-paste from the editor any sequence
of R commands directly in the R console. Here is a list of editors for which
syntax highlighting of R code is available:

http://www.sciviews.org/_rgui/projects/Editors.html

I am a Windows User and like Notepad++ very much. It comes with
syntax highlighting for R.

http://notepad-plus-plus.org/

2.6 About RStudio

RStudio is a great IDE for R with integrated editor that can be used as re-
placement of the default RGui. I use RStudio for most of my work with R and
generally would recommend to every beginner.

I would not recommend it for my packacke repgames, though. The reason
is that the current version of RStudio (0.95) does not update plots during
program execution on my computer. For most work that is not a big issue,
but when solving longer models in the repgames package I use a lot of dynamic
plots that give the user some impression what is going on. In the moment,
this does not really work under RStudio. Thus, so far, I would recommend to
use the default RGui when working with the repgames package.

http://www.sciviews.org/_rgui/projects/Editors.html
http://notepad-plus-plus.org/
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Part I

Perfect Monitoring

3 A Simple Cournot Game

3.1 Initializing the game

As first example, let us consider the simple Cournot game from Abreu (1988)
that is manually solved in Section 3 of Goldluecke & Kranz (2010). The payoff
matrix of the stage game is given by

Firm 2
L M H

L 10,10 3,15 0,7
Firm 1 M 15,3 7,7 -4,5

H 7,0 5,-4 -15,-15

We assume that every period consists of 3 stages: an ex-ante payment
stage, an action stage, and an ex-post payment stage. In the payment stages
the players can simultaneously conduct monetary transfers to each other and in
the action stage they play the simultaneous move stage game specified above.
We also allow for money burning (or equivalently for transfers to a non-involved
third party). Payoffs are additive in money and stage game payoffs and players
are risk-neutral. Payoffs in future periods are discounted by a discount factor
δ ∈ [0, 1) and there is no discounting between the different stages within a
period. For the moment, we assume that monitoring is perfect, i.e. all players
perfectly observe all past action profiles.

I describe now how to initialize and solve the game using the repgame

package and R. First, we have to initialize the payoff matrix for player 1 and
2:

# Define Payoff Matrices for player 1 and 2

#L #M #H

g1 = rbind(c( 10, 3, 0), # L

c( 15, 7, -4), # M

c( 7, 5,-15)) # H

g2 = t(g1)

You can simply copy and paste the code above into the RGui. To get help
on an function in R simply type ?functionname, e.g. ?rbind. To look at a
variable, you simply have to type its name into the command screen, e.g.

g2

## [,1] [,2] [,3]

## [1,] 10 15 7
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## [2,] 3 7 5

## [3,] 0 -4 -15

Note that in this PDF file, R output is typically commented out with ##
before each output line. This is done to make it easier to copy and paste code
into R. We now load the library and initialize the game:

# Load package repgames

library(repgames, warn.conflicts = FALSE)

## Loading required package: glpkAPI

## Warning message: package ’glpkAPI’ was built under R version 2.14.2

## Loading required package: methods

## Loading required package: slam

## Loading required package: skUtils

# Initialize the model of the repeated game

m = init.game(g1 = g1, g2 = g2, lab.ai = c("L",

"M", "H"), name = "Simple Cournot Game", symmetric = FALSE)

Ideally, you could get detailed information about the function init.game
by typing ?init.game. Practically, I have not yet written helpfiles for my
toolbox. So most information is contained in this paper. While at some point
of time the documentation hopefully extends, the reader interested in more
details should look at the source code, which is partially commented.

Anyhow, the function init.game sets up basic information about the stage
game and converts it into a format that is suitable for further calculation. If
you wonder, why I set symmetric=FALSE, read this footnote.3 All calculated
objects are stored in the variable m. Type m to have a look at its content. You
can access particular elements of m by the $ operator. For example, type m$g

in the R command line:

m$g

## [,1] [,2]

## L|L 10 10

## L|M 3 15

## L|H 0 7

## M|L 15 3

## M|M 7 7

3If the stage game is symmetric and the flag symmetric=TRUE is set, the algorithm works
a bit faster, since it only calculates optimal punishment profiles for player 1. But even
though the game is symmetric, you can always specify to solve it without taken advantages
of knowing that the game is symmetric. So why did I chose the later option by setting the
flag symmetric=FALSE? Nothing important, just when looking at m$opt.mat (see below) the
label of the action plans then contains a punishment profile for every player not only player
1. I found this nicer for an initial example.
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## M|H -4 5

## H|L 7 0

## H|M 5 -4

## H|H -15 -15

The variable contains a matrix that stores the payoffs of the stage game:
every row corresponds to an action profile and every column to a particular
player. This is the standard format my package uses to store and process
payoffs. There is a fixed scheme how action profiles are ordered that you
probably can induce from the example. Action profiles are internally indexed
by their row number in the matrix m$g. R has the convenient feature that rows
and columns of a matrix can be accessed by specified names. For example,

m$g["H|M", ]

## [1] 5 -4

yields the payoff vector associated with the action profile (H,M). You
would get the same result by typing m$g[8,]. When we called, init.model
we provided with the parameter lab.ai=c("L","M","H"), a vector of ac-
tion names and by default the names of action profiles have the structure
a1|a2|...|an. Providing short sensible action names, is helpful when using the
toolbox.

The next example, lists all pure strategy Nash equilibria of the stage game:

m$nash

## M|M

## 5

The variable m$nash is a numerical vector giving the index of the action
profiles that are Nash equilibria. The first row is simply the named assigned
to this profile.

3.2 Solving and plotting the game

Let us now solve the repeated game. We do this by pasting the following lines:

# Solve the game

m = solve.game(m, keep.only.opt.rows = TRUE)

I will explain further below the meaning of the parameter keep.only.opt.rows.
If you take again a look at m, you will see that several new elements are added.
The relevant information about the solution is stored in the matrix m$opt.mat.
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# Show matrix with critical delta, optimal action plans

# and payoffs

m$opt.mat

## delta L Ue V v1 v2 ae a1 a2 r UV opt

## (M|M),(M|M),(M|M) 0.0000 0 14 14 7 7 5 5 5 Inf 0 1

## (L|M),(M|H),(H|M) 0.2500 6 18 0 0 0 2 6 8 3 18 1

## (L|L),(M|H),(H|M) 0.3333 10 20 0 0 0 1 6 8 2 20 1

Each row characterizes an optimal action plan and payoff set for a certain
interval of discount factors. For an explanation of what are optimal action
plans and other important concepts for understanding the details of the solu-
tion, have a look at our theoretical paper (Goldluecke & Kranz, 2010).

The name of every row labels the optimal action plan (ae, a1, a2) and the
indices of the action profiles are given in the corresponding later columns.
The action profile ae is played in every period on the equilibrium path. The
punishment profiles a1 and a2 for player 1 and 2, respectively, would be played
for one period if a player once unilaterally defected from a required payment.
The column delta denotes the lowest discount factor, for which the action
plan is optimal and r is the corresponding maximal discount rate. Column Ue

denotes the maximal joint payoff and v1 and v2 denote the punishment payoffs
of player 1 and 2. V is simply the sum of all players’ punishment payoffs.

The variables L denotes the highest liquidity requirement of all action pro-
files in the action plan. The liquidity requirement of an action profile (or
action plan) plays a crucial role in our algorithm. If you just want to apply
the software, you can ignore it, but I would recommend to look at our paper
to learn more about it. Briefly said, to implement an action profile in a static
problem with enforceable payments and liquidity constraints, the sum of all
players liquidity must be at least equal to the liquidity requirement of the
action profile.

The set of (pure strategy public perfect) equilibrium payoffs corresponding
to a particular row is given by{

(u1, ..., un) |
n∑
i=1

ui ≤ U e and ui ≥ vi for all i

}
.

For example, if the discount factor satisfies δ ∈ [1
4
, 1
3
](well, as usual 0.3333333

actually means 1
3
), the set of equilibrium payoffs is given by every payoff vec-

tor u ∈ R2 with
∑n

i=1 ui ≤ 18 and ui ≥ 0. On the equilibrium path, players
infinitely often repeat the asymmetric equilibrium state action profile ae =
(L,M). The punishment profiles of player 1 and 2 are a1 = (M,H)and a2 =
(H,M), respectively.

To plot maximal joint equilibrium payoffs U e and lowest joint and payoffs
for all discount factors, we can type
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plot(m, xvar = "delta", yvar = c("Ue", "V"))

where the parameters should be self-explanatory. The result is shown in
Figure 1.

0.0 0.2 0.4 0.6 0.8 1.0

0
5

10
20

Simple Cournot Game

Discount Factor

Ue
V

Figure 1: Maximal payoffs and sum of punishment payoffs of the repeated
simple Cournot game (with side payments) for all discount factors.

By default the plot shows the joint equilibrium and punishment payoffs as
function of the discount factor, but the plot can be customized to show other
payoffs. The dotted horizontal lines indicate the maximal joint payoffs and
joint stage game payoffs. For repeated games with perfect monitoring (and
finite action space and monetary transfers) the maximal implementable joint
payoffs and lowest punishment payoffs are always step functions. Each step
corresponds to another optimal action plan, i.e. to another row in m$opt.mat.

Identifying optimal action plans by clicking on the plot
Sometimes you will encounter some plot of payoffs and would quickly

like to know about the optimal action plan that corresponds to some part
of the plot. Insert the following code:

plot(m, xvar = "delta", yvar = c("Ue", "V"), identify = TRUE)

The flag identify=TRUE makes the plot interactive, i.e. you can left-
click on the plot to get more information. I clicked on the second step of
the Ue function, at the position indicated by the dotted grey vertical line
in the figure below.
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When clicking, the R console prints out the following information about
the optimal action plan and payoffs for the selected level of δ:

"delta = 0.297"

delta L Ue V v1 v2 ae a1 a2 r UV opt

(L|M),(M|H),(H|M) 0.297 6 18 0 0 0 2 6 8 2.367003 18 1

You can click on as many points as you like. To leave the interactive
mode, you have to make a right-click on the plot and select the menu
point stop. Alternatively, you can click on the red stop button in the
toolbar of the RGui. I incorporated some interaction for most of the
plotting functions you will encounter further below in this tutorial (e.g.
levelplot.payoff.compstat or plot.compare.models). Just try out
what happens if you call them with the parameter identify=TRUE.

Finally, let us see what happens if we call solve.game and set the flag
keep.only.opt.rows = FALSE:

m = solve.game(m, keep.only.opt.rows = FALSE)

m$opt.mat

## delta L Ue V v1 v2 ae a1 a2 r UV opt

## (M|M),(M|M),(M|M) 0.0000 0 14 14 7 7 5 5 5 Inf 0 1

## (L|M),(M|M),(M|M) 0.5000 4 18 14 7 7 2 5 5 1 4 0

## (L|M),(M|H),(H|M) 0.2500 6 18 0 0 0 2 6 8 3 18 1

## (L|L),(M|H),(H|M) 0.3333 10 20 0 0 0 1 6 8 2 20 1

We find that m$opt.mat contains an additional 2nd row, for which the last
column “opt” is set to 0. The second row corresponds to an action plan that
optimizes all the static problems given total liquidity L = 4, but that is not
an optimal action plan for any discount factor. By default, we have the option
keep.only.opt.rows=FALSE, i.e. rows like the 2nd row will be kept.
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3.3 Comparing optimal equilibria with equilibria in grim-
trigger strategies

In many applied theoretical papers, repeated games are only analyzed by re-
stricting attention to so called grim-trigger strategies. I implemented a func-
tion to calculate the payoff sets under grim-trigger equilibria. More precisely,
I mean the payoffs that can be implemented by the class of equilibria that do
not use monetary transfers and have a constant outcome path in the sense that
a single action profile will be played in every period on the equilibrium path;
any unilateral deviation of some player i is punished by reverting forever after
to the worst Nash equilibrium of player i.

The following code solves the game by using only grim-trigger strategies:

# Solve the game with grim-trigger strategies

m.gt = set.to.grim.trigger(m)

m.gt = solve.game(m.gt)

m.gt$opt.mat

## delta Ue V r ae delta1 delta2 g1 g2 L1 L2 L opt

## M|M 0.000 14 14 Inf 5 0.000 0.000 7 7 0 0 4 1

## L|L 0.625 20 14 0.6 1 0.625 0.625 10 10 5 5 5 1

The structure of the matrix is similar to that of m$pm.opt.mat. We find
that when using only grim-trigger strategies the critical discount factor to sus-
tain the fully collusive outcome (L,L) is much larger than for optimal strategy
profiles: 0.625 = 5

8
compared to 1

3
. Playing the partial collusive outcome

(L,M) on the equilibrium path is never optimal in the class of grim-trigger
equilibria. We can also graphically compare the two models by typing:

plot.compare.models(m,m.gt,xvar="delta",yvar="Ue",

legend.pos="topleft",m1.name = "opt", m2.name="grim")

The resulting output is shown in Figure 2:

4 Public Goods Games

4.1 Parametrizing two player public goods games

For a deeper analysis of some class of games, it is helpful to write functions
that automatically initialize these games with a provided list of parameters.
I want to illustrate an implementation with a simple two player public goods
game. Each player i can choose a contribution level xi ∈ X = {0, 1, ..., xmax}.
Stage game payoffs shall be given by

gi(xi, xj) =
x1 + x2

2
− kixi (1)
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Figure 2: Comparison of payoffs under optimal equilibria and grim-trigger
equilibria

where ki ∈[1
2
, 1] is a cost parameter that measures the marginal production

cost of player i for each contributed unit. The following R code generates a
function that initializes, solves and plots a parametrized public goods game in
this class.

public.goods.game = function(X, k1,k2=k1) {

# Two lines that are useful for debugging

# (see hints below)

store.objects("public.goods.game")

# restore.objects("public.goods.game")

# Initialize matrices of players contributions

x1m = matrix(X,NROW(X),NROW(X),byrow=FALSE)

x2m = matrix(X,NROW(X),NROW(X),byrow=TRUE)

# Calculate payoff matrices for each player

g1 = (x1m+x2m)/2 - k1*x1m

g2 = (x1m+x2m)/2 - k2*x2m

# Give the game a name

name = paste("Public Goods Game k1=", k1, " k2=", k2, sep="")

# Initialize the game

m = init.game(n=2,g1=g1,g2=g2,name=name, lab.ai=X)

# Solve and plot the model

m = solve.game(m, keep.only.opt.rows=TRUE)

plot(m)

return(m)

}
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Hints on R Programming

1. Avoid loops and apply functions on vector or matrices whenever possible

R is a great language, but awfully slow when it comes to loops. You
should therefore always try to apply calculations on whole matrices or vec-
tors whenever possible (by default R carries out all arithmetic operations
element-wise). Creating some additional matrices like x1m and x2m, to
facilitate calculations on matrices goes very quick in comparison.

2. How can you follow step by step what my function does?

You might want to understand step by step how my code within the
function works. One method is to use the default debugger of R accessible
e.g. through the browser() function. Since R is an interpreter you can, al-
ternatively, simply paste the lines within the function into the R command
screen and look at each step at the variables or plot them. The only prob-
lem is that the arguments of the function call, i.e. X, k1,k2, name, will
not be properly assigned in the global environment. To solve this problem
conveniently, I call within my function store.objects(), which stores a
copy of all local objects in a global list under the provided name. The
function restore.objects can be used the stored local objects from the
last function call into the global environment. The following code explains,
how I use this in practice:

# 1. Call the function with some parameters of interest

m = public.goods.game(X=0:2,k1=0.75)

# 2. Copy and paste the function code up to the

# point of interest, starting with the

# uncommented call to restore.object

restore.objects("public.goods.game")

# Initialize matrices of players contributions

x1m= matrix(X,NROW(X),NROW(X),byrow=!TRUE)

x2m = t(x1m)

# Calculate payoff matrices for each player

g1 = (x1m+x2m)/2 - k1*x1m

g2 = (x1m+x2m)/2 - k2*x2m
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# 3. Inspect the variables of interest,e.g.

# print or plot them.

# How do x1m and x2m look like?

x1m

## [,1] [,2] [,3]

## [1,] 0 0 0

## [2,] 1 1 1

## [3,] 2 2 2

x2m

## [,1] [,2] [,3]

## [1,] 0 1 2

## [2,] 0 1 2

## [3,] 0 1 2

Of course, my method is a bit untidy in so far that I simply copy a lot
of variables into the global environment, which perhaps may override some
important global variables. However, in practice this has never been a big
problem when I developed my toolbox and I found this way of debugging
quite helpful to find where exactly something in my code went wrong.

3. A note for more advanced programmers
If the passed arguments are large, you might think that the function

store.objects must be either quite time consuming, if it makes copies
of each arguments, or flawed, if it just stores a pointer. In fact, it is not
flawed but still relatively quick, since R uses a cool lazy evaluation feature.
For the user, variables never behave like pointers, but internally R only
creates a pointer when some object is copied. R makes an actual copy of
an object only when it is changed. To understand what I mean, consider
the following example:

x = numeric(10^8) # Line 1

y=x # Line 2

y[1]=2 # Line 3

y[1]=3 # Line 4

c(x[1],y[1]) # Show start of both vectors

rm(x,y) # Removes x and y from memory

The first line creates a big vector filled with zeros and takes some time
(if the vector is large enough compared to your computing power). The
second line copies the vector to the variable y. The third and fourth line
just change the first element of y. On first thought, one would suspect
that line 3 and 4 are super fast while line 2 may take some time. In fact,
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however, line 2 and 4 are super fast, while line 3 takes some time. You
may even get an out of memory error in line 3. That is because the vector
is physically copied only in line 3.

Let us us solve the public goods game with the parametersX = {0, 1, ..., 10}
and identical production cost of both players of k1 = k2 = 3

4
:

m = public.goods.game(X=1:10,k1=0.75,k2=0.75)

m$opt.mat

## delta L Ue V v1 v2 ae a1 a2 r UV opt

## (1|1),(1|1),(1|1) 0.0 0.0 0.5 0.5 0.25 0.25 1 1 1 Inf 0.0 1

## (10|10),(1|1),(1|1) 0.5 4.5 5.0 0.5 0.25 0.25 100 1 1 1 4.5 1

We find that for all discount factors δ ≥ 1
2
, maximal contributions (10, 10) can

be sustained and for lower discount factors the only equilibrium is the Nash
equilibrium of the stage game. Since the Nash equilibrium gives every player
his min-max payoff of the stage game, it is always an optimal punishment
profile. Given this fact and the symmetric structure, one might suspect that
grim-trigger strategies can sustain full contribution for the same range of dis-
count factor. You can verify this conjecture either by doing the math in your
head or calculating the critical discount factor under grim-trigger strategies in
the way explained in Section 3.3. Below, in Exercise 1, you are asked to inves-
tigate the more interesting case that the two players have different production
costs.

4.2 Analyzing comparative statics

4.2.1 Symmetric costs

Before we come to the exercises, I want to illustrate how one can graphically
analyze the comparative statics of the equilibrium set with respect to some
parameter of the stage game, like the marginal production costs. The following
little piece of code solves the model for a grid of different marginal production
costs between 1

2
and 1 and stores the solved models in the variable m.list.

pg.games = Vectorize(public.goods.game,

vectorize.args = c("k1","k2"),SIMPLIFY=FALSE)

k.seq = seq(0.5,1,by = 0.01)

m.list = pg.games(X=0:10,k1=k.seq,k2=k.seq)
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The first line transforms the function public.goods.game so that it can
also take vector arguments for the cost parameters. It works as if you wold
manually go through a loop and repeatedly apply the function public.goods.game

for every element of the vector and store the results in a list. The next row
specifies the vector of the different production costs that we are interested in.
Here, we consider a grid with step size 0.01. The next line, calls the function
and stores the resulting solved models in the variable m.list which is of the
very flexible R type list.. To access, say the 50th solved model, simply type
m.list[[50]]. During the execution of the code, you will see a little movie
on the plot screen, since the function public.goods.game plots the payoffs for
every solved model.

You can tell R to record all plots. To do this, click on the graphic window,
then select from the menu “history” the element “Recording”. From now on
all future plots will be recorded. You can then go through the different plots
with your page-up and page-down keys and investigate comparative statics in
a flip-book fashion (try it out!).

If you paste the following line of code, you see a levelplot of maximal
joint equilibrium payoffs as a function of the discount factor and the marginal
production cost:

mat = levelplot.payoff.compstat(m.list, par = k.seq,

xvar = "k", yvar = "delta", payoff.var="Ue",

delta = seq(0,1,by=0.01), col.scheme = "grey")

The function levelplot.payoff.compstat returns a matrix with the joint
equilibrium payoffs for every combination of the specified levels of k and delta.
The resulting plot is shown in Figure 3:4

We find from the plot that the critical discount factor for which positive
contribution levels can be sustained increases linearly in the production costs.

4.2.2 Asymmetric Costs

Let us now investigate asymmetric public goods games where the players have
different production costs. Instead of immediately solving the model, you
might find it more fun to make some quick conjectures of how the solutions will
look like. For example, you could guess an answer to the following questions:

� Will players still either produce 0 or 10, or can intermediate production
levels become optimal?

� Will grim-trigger equilibria still be able to implement the maximal joint
payoffs for every discount factor or can optimal stationary equilibria with
side payments implement strictly larger joint payoffs for some discount
factors?

4The figures level plots will actually look better if you paste the code yourself. I have
not yet found out how to get rid of these annoying white lines in the plot and legend when
converting the levelplots into eps files.
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Figure 3: Comparative statics of maximal joint payoffs w.r.t. δ and symmetric
production costs k. Darker points correspond to lower joint payoffs U e.

� Does the maximal payoff only depend on the sum of production costs
k1 + k2, or only on the minimum production costs min(k1, k2), or is the
structure more complicated?

You can then check whether the computed examples are consistent with your
guesses or provide counter examples. To look at a single example, say k1 = 0.6
and k2 = 0.7, you can type:

m = public.goods.game(X=1:10,k1=0.6,k2=0.7)

m.grim = solve.game(set.to.grim.trigger(m))

m.grim$opt.mat

## delta Ue V r ae delta1 delta2 g1 g2 L1 L2 L opt

## 1|1 0.0000 0.7 0.7 Inf 1 0.0000 0.0000 0.4 0.3 0.0 0.0 1.8 1

## 8|6 0.2857 5.0 0.7 2.500 76 0.2800 0.2857 2.2 2.8 0.7 1.0 0.4 1

## 9|7 0.3000 5.7 0.7 2.333 87 0.2667 0.3000 2.6 3.1 0.8 1.2 0.2 1

## 10|7 0.3000 6.1 0.7 2.333 97 0.3000 0.2667 2.5 3.6 0.9 1.2 1.2 1

## 10|8 0.3111 6.4 0.7 2.214 98 0.2571 0.3111 3.0 3.4 0.9 1.4 0.6 1

## 10|9 0.3556 6.7 0.7 1.813 99 0.2250 0.3556 3.5 3.2 0.9 1.6 0.2 1

## 10|10 0.4000 7.0 0.7 1.500 100 0.2000 0.4000 4.0 3.0 0.9 1.8 0.0 1

m$opt.mat

## delta L Ue V v1 v2 ae a1 a2 r UV opt

## (1|1),(1|1),(1|1) 0.0000 0.0 0.7 0.7 0.4 0.3 1 1 1 Inf 0.0 1

## (10|1),(1|1),(1|1) 0.2000 0.9 4.3 0.7 0.4 0.3 91 1 1 4.000 3.6 1

## (10|2),(1|1),(1|1) 0.2200 1.1 4.6 0.7 0.4 0.3 92 1 1 3.545 3.9 1

## (10|3),(1|1),(1|1) 0.2364 1.3 4.9 0.7 0.4 0.3 93 1 1 3.231 4.2 1

## (10|4),(1|1),(1|1) 0.2500 1.5 5.2 0.7 0.4 0.3 94 1 1 3.000 4.5 1

## (10|5),(1|1),(1|1) 0.2615 1.7 5.5 0.7 0.4 0.3 95 1 1 2.824 4.8 1
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## (10|6),(1|1),(1|1) 0.2714 1.9 5.8 0.7 0.4 0.3 96 1 1 2.684 5.1 1

## (10|7),(1|1),(1|1) 0.2800 2.1 6.1 0.7 0.4 0.3 97 1 1 2.571 5.4 1

## (10|8),(1|1),(1|1) 0.2875 2.3 6.4 0.7 0.4 0.3 98 1 1 2.478 5.7 1

## (10|9),(1|1),(1|1) 0.2941 2.5 6.7 0.7 0.4 0.3 99 1 1 2.400 6.0 1

## (10|10),(1|1),(1|1) 0.3000 2.7 7.0 0.7 0.4 0.3 100 1 1 2.333 6.3 1

From the results you will already get some answers to the first two questions
above and may generally gain a better intuition of the structure of the game.
The main factors that drive the results is that, given an identical contribution
level, the low cost player has lower incentives to deviate than the high cost
player. Furthermore, under optimal equilibria with monetary transfers, the
high cost player can pay money to the low cost player in return for high
contribution levels.

We can also perform graphical comparative statics with respect to the two
cost parameters. The following code produces the levelplot shown in Figure 4:

# Generate grid of k1 and k2 combinations between 0.5 and 1

k.seq = seq(0.5,1,by = 0.02)

# (make.grid.matrix is an own function similar to expand.grid)

k.grid = make.grid.matrix(x=k.seq,n=2)

colnames(k.grid)=c("k1","k2")

# Solve the model for all combinations of k1 and k2

m.list = pg.games(X=0:10,k1=k.grid[,1],k2=k.grid[,2])

# Show level plot of payoffs for delta=0.5

delta = 0.5

levelplot.payoff.compstat(m.list, par = k.grid ,

xvar = "k1", yvar = "k2", payoff.var="Ue",

delta = delta, col.scheme = "grey")
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Figure 4: Payoff comparative statics in costs of the two players
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For low levels of production costs k1 and k2, the iso-profit curves are linear,
i.e. total payoffs only depend on the sum of production costs k1 + k2. This
result makes perfect sense, since if both production costs are low, players do
not have strong incentives to deviate and optimally choose full contribution
x1 = x2 = 10.

For larger production costs, iso-profit curves are no longer linear and the
cost of the low cost player is more decisive for total profits. This makes intuitive
sense in so far that it is optimal to shift public good provision to the low cost
player who may receive a monetary reimbursement from the high cost player.
If production costs become too large that they fall into the black area on the
top right, no contributions can be sustained.

To generate a flip-book of these plots for different levels of δ, turn on the
graphic recording in R, paste the code below and finally click on the plot
window and go for- and backward with the arrow keys:

for (delta in seq(0,1,by=0.1)) {

levelplot.payoff.compstat(m.list, par = k.grid,

xvar = "k1", yvar = "k2", payoff.var="Ue",

delta = delta, col.scheme = "grey")

}

4.3 Analyzing n-player games

While so far we only investigated games with n = 2 players, the toolbox
can also analyze repeated games with more players. While for 2 players it
is convenient to specify the stage game payoffs by simply passing the payoff
matrix of both players to the function init.model, there is a different way to
specify payoffs for general n-player games. Let us first look at an example:

# Creates a n-player public goods game

# n is the number of players.

# X is the set of different contribution levels

# k is a n x 1 vector with production costs for every player

pg.game = function(n,X,k=rep(((1+1/n)/2),n)) {

# A function that returns a payoff matrix

# given a action matrix x.mat, of which

# every row corresponds to one action profile

g.fun = function(x.mat) {

g = matrix(0,NROW(x.mat),n)

xsum = rowSums(x.mat)

for (i in 1:n) {

g[,i] = xsum / n - k[i]*x.mat[,i]

}

g
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}

name=paste(n,"Player Public Goods Game")

m = init.game(n=n,g.fun=g.fun,action.val = X,

name=name, lab.ai=round(X,2))

m=solve.game(m)

plot(m)

m

}

# Solve a 3 player public goods game with

# asymmetric production costs

m = pg.game(n=3,X=0:10,k=c(0.4,0.6,0.8))

Instead of passing payoff matrices to the function init.game, we pass a
user defined function g.fun and a vector (or list of vectors for every player)
action.val. The parameter action.val simply associates to every action
of a player some number. Here it will simply be the contribution level. The
function g.fun takes a vector of action profiles (i.e. a matrix of action values,
where every row corresponds to an action profile) and returns a corresponding
matrix of stage game payoffs.

Advanced Programming Hint:

When I define the function g.fun within the function pg.game, I use in
the function body of g.fun the local variables n and k from pg.game. R
saves information in which environment the function g.fun was created
and when g.fun is called somewhere later, it will look up its variables
from that original environment. The local environment information will
be retained even after the function pg.game is exited. To see how it works,
consider the following code example:
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make.f = function(i,j) {

f = function() {

i

}

i=j

return(f)

}

f = make.f(i=1,j=2)

g = function() {

i=3

return(f())

}

i=4

# What will be the output of the following call?

g()

## [1] 2

Any guess what the call g() will return? It will be 2. The function
f looks up in in the local environment associated with the call to make.f

where f was created. In that local environment i took the value of j, i.e.
2, before we exited make.f.

Note that the number of action profiles grows exponentially with the num-
ber of players. While the software should handle perfect monitoring games up
to a million action profiles well and quickly on normal PCs, a too large number
of action profiles can lead to problems, like running out of memory or excessive
computation time. For approximating continuous stage games or games with
a large number of players, you should use the approach presented in Sections
5 and 6.

Before concluding this subsection, let us have a look at the joint equilibrium
payoffs as function of total liquidity:

plot(m,xvar="L",identify=TRUE)

We can see in Figure 5, that Ū e(L) is a concave piece-wise linear function in
L. You probably have some conjecture why we have these kinks in Ū e(L). You
can strengthen your intuition by using left-clicks to interactively explore the
plot.

4.4 Exercises

The two exercises below ask you to explore some variations of repeated public
goods games by modifying the examples described above.
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Figure 5: Public goods game (3 players with asymmetric costs)

Exercise 4.1. More Comparative Statics for Public Goods Games In
the experimental literature, linear public goods game are often parametrized in
a different way than presented above. Cost of contributing one unit is typically
normalized to one and key parameters are the marginal per capita return and
the marginal total return of one contributed unit. Isaak & Walker (1988) and
others found the following stylized facts from economic experiments on finitely
repeated public goods games:

� Ceteris-paribus, the level of contributions increases in the marginal per
capita return. In other words, keeping the marginal total return constant,
average contribution levels typically fall in the number of subjects.

� There is also weaker evidence that average contributions increase if the
marginal per capita return is kept constant, but the number of subjects
and with it the total return of contributions increase.

Reparametrize the public goods game using marginal per capita return, num-
ber of players and marginal total return as possible parameters (of course only
2 of them will be actually passed to the function). Analyze the comparative
statics of contribution levels (or critical discount factors) with respect to the
different parameters. Are they roughly in line with the experimental stylized
facts from finitely repeated public goods games? Compare your comparative
statics with those of your most favorite model of social preferences. If you
should not yet have chosen a most favorite social preference model, have a
look at Kranz (2010)! :)

Exercise 4.2. Public Goods Games with a Costly Punishment Tech-
nology Write a new function that allows to solve repeated public goods games,
in which players can assign costly reduction points to the other player to reduce
his payoffs. Stage game payoffs shall be given by

gi(x, r) =
x1 + x2

2
− kixi − rj − γiri (2)

where ri is the number reduction points that player i assigns to player j and
γi > 0 shall be a parameter that measures the cost of assigning one reduction
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point. Reduction points ri and contribution levels xi must be chosen from
some finite set. (Hint: The action space becomes simpler, if you assume that
in a given period players can either contribute to the public good or assign
reduction points, but cannot do both at the same time.).

In economic experiments on finitely repeated (or one shot) public goods
games, it often turns out that augmenting the public goods game by a pun-
ishment technology substantially increase average contribution levels

Answer the following questions: Can the inclusion of such a punishment
technology also increase the maximal sustainable contribution levels in in-
finitely repeated games? What if we would not calculate optimal equilibria,
but only restricted attention to grim-trigger strategies?

Also perform some comparative statics with respect to the different param-
eters of the game.

As extension, analyze public goods games with three player and compare
punishment technologies that can target reduction points on specific play-
ers with anonymous punishment technologies that always distribute reduction
points equally.

5 Approximating Continuous Cournot Mod-

els

In this Section I want to illustrate, how for the case of perfect monitoring
the toolbox can handle fine approximations of stage games with continuous
action spaces. In Subsection 5.3, I will also illustrate, how one can handle
games where some players have a multidimensional action spaces (e.g. selling
multiple products).

5.1 Approximating a Cournot oligopoly with the known
methods

The stage game shall be a symmetric linear Cournot model with n firms, who
face an inverse linear demand function of the form

P (Q) = A−BQ.

All firms shall have identical constant marginal costs MC.
One way to approximate this game is simply to specify a grid of action

profiles and use the method illustrated in Section 4.3. The following code
initializes and solves a two player Cournot game of this class with A = 100,
B = 1 and MC = 10:

init.cournot = function(n=2,q.seq, A, B, MC) {

P.fun = function(Q) {A-B*Q}

cost.fun = function(q) {MC*q}

g.fun = function(qm) {
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Qm = rowSums(qm)

Pm = P.fun(Qm)

Pm[Pm<0]=0

g = matrix(NA,NROW(qm),n)

for (i in 1:n) {

g[,i] = Pm*qm[,i]-cost.fun(qm[,i])

}

g

}

name=paste(n,"Cournot Game (g.fun)")

m = init.game(n=2,g.fun=g.fun,action.val = q.seq,

name=name, lab.ai=round(q.seq,2))

return(m)

}

# Parameters of the model

n=2; A=100; B=1; MC=10;

q.seq = seq(0,100,by=1); # Grid of possible quantities

m = init.cournot(n=n,q.seq=q.seq,A=A,B=B,MC=MC)

m = solve.game(m)

plot(m,legend.pos = "right")

The models is solved very quickly and you see the resulting payoffs for
shown in Figure 6.
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Figure 6: Payoffs for discretized Cournot Duopoly

We find that firms can perfectly collude already for very low discount fac-
tors. (Section 8, shows how monitoring imperfections make collusion much
harder...).

Now let us analyze what happens if there are more firms in the market. Set
the parameter n = 4, init and solve the model. Does your program run with-
out error and in reasonable time? Then congratulations to your computer’s
memory... on my computer the program refuses to run and throws an out of
memory error.
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Basically, with 4 firms and 100 actions per firm, the discretized version of
the stage game has 1004 = 100 million action profiles. My computer cannot
solve it, because the underlying algorithm used for solving the game is not
very memory efficient. It generates a matrix of all possible action profiles and
manipulates it.

Besides the issue of practical computation there is also a small theoretical
issue. The algorithm used above calculates cheating payoffs by considering only
the action profiles from the specified grid, cheating payoffs in the continuous
version of the stage game might be higher, however. As result, it is not clear
whether the resulting payoff set of the discretized game is a lower or upper
approximation of the payoff set of the continuous game.

5.2 Alternative ways to solve models with continuous
action spaces

The toolbox contains alternative procedures for games with perfect monitoring,
which facilitate the analysis fine discretizations of multidimensional continuous
stage games and guarantee that the computed payoff sets are always a lower
approximation of the payoff sets of the continuous game. These procedures
can be recognized by the prefix pmx.

The procedures require that in addition to the stage game payoffs g(a), you
also have to manually provide functions that calculate cheating payoffs c(a)
for any possibly relevant5 action profile of the continuous stage game a ∈ A.6

In the Cournot game above, we know that firm i’s best-reply function is
given by

q∗i (Q−i) = max

{
A−MC

2B
− 1

2
Q−i, 0

}
The corresponding cheating payoffs are given by

c(q) =

{
(A−MC−BQ−i)

2

4B
if A−MC −BQ−i > 0

0 otherwise

Generally, knowing the payoff function g(a) and cheating payoff function
c(a), we can calculate the liquidity requirement L(a), joint payoffs G(a) and
player i’s cheating payoffs for any sampled action profile a. To compute inner
approximations of the sets of SPE payoffs, we can draw a finite random sample
of action profiles in order to calculate lower bounds of the functions Ū e(L) and
v̄i(L) for the continuous game. As the sample size grows large, these lower
bounds converge in probability to the true functions and the corresponding
payoff sets converge from the inside to the true payoff sets of the continuous
stage game.

5If on theoretical grounds, we can rule out some action profiles as candidates for optimal
action profiles, we also do not have to provide cheating payoffs (see Section 6, for an example)

6In principle, one could obtain an approximation of the general function c(a) by telling
R to perform numeric optimization using the stage game payoff function g(a). However, I
fear that this would be quite slow, i.e. closed form solutions to c(a) are preferable.
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The practical issue is to sample action profiles in a way that achieves rel-
atively quick convergence for most stage games. I implemented so far two
approaches that can each be parametrized in different ways. The first ap-
proach is a very simple adaptive grid refinement method that does not rely
heavily on random sampling, the second approach uses more random sampling.

Before discussing some more details of the algorithms, let me show how
to use them. Using the alternative methods requires to initialize the stage
game with the function pmx.init.game, instead of using init.game. The
following code initializes and solves the Cournot game for 4 players using the
new methods:

pmx.init.cournot = function(n=2, q.range, A, B, MC) {

# First part

store.objects("pmx.init.cournot")

#restore.objects("pmx.init.cournot")

# Stage game payoffs

gx.fun = function(q) {

Q = rowSums(q)

P = A-B*Q

P[P<0]=0

g = matrix(NA,NROW(q),n)

for (i in 1:n) {

g[,i] = (P-MC)*q[,i]

}

g

}

# Stage game cheating payoffs

cx.fun = function(q) {

Q = rowSums(q)

c.mat = matrix(NA,NROW(q),n)

for (i in 1:n) {

Q_i = Q-q[,i]

c.mat[,i] = (A-MC-B*(Q-q[,i]))^2 / (4*B)

c.mat[A-MC-B*(Q-q[,i])<0,i] = 0

}

c.mat

}

# Second part

name=paste("Cournot Game (",n," firms)",sep="")

m = pmx.init.game(n=n,nx=n,x.range=q.range,symmetric=TRUE,

gx.fun=gx.fun,cx.fun=cx.fun,

name=name, names.x=paste("q",1:n,sep=""))

return(m)
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}

# Parameters of the model

n=4; A=100; B=1; MC=10;

q.max = A / (n-1) # maximal output a firm can choose

m = pmx.init.cournot(n=n,q.range=c(0,q.max),A=A,B=B,MC=MC)

Take a look at the line m = pmx.init.game(...). The parameter n denotes, as
usual, the number of players. We have a new parameter nx, which denotes the
number of “activities”. An activity is some real number that influences stage
game payoffs and a players’ action may consist of one or several activities.
In the Cournot example every player decides only on a single activity: the
output in the market. This means actions and activities are identical. Below,
we will explore a model of multi-market collusion, where every firm’s action
can consist of several activities. The parameter x.range specifies the intervals
of the real line out of which activities have to be selected. If can either by a
nx×2 matrix, where each row specifies separate ranges for every activity, or if
every activity shall have the same range, the x.range can be given by a simple
tuple (x.min,x.max). Here the minimal output of each firm shall be 0 and the
maximal output A/(n−1). This means n−1 firms are able to produce a total
output that yields to a market price of zero. You can choose a larger bound if
you like.

The parameter gx.fun specifies a function that returns a T ×n dimensional
matrix of payoffs given an T × nx matrix of activities, in which each row
corresponds to one activity profile. Similarly, the function cx.fun must return a
matrix of cheating payoffs for every player given a matrix of activities. Finally,
the parameter names.x is a vector that specifies a label for each activity.

The following code solves the model using the adaptive grid refinement
method:

# Solve with adaptive grid refinement

cnt = list(method="grid",

num.step.start = 8, num.step.end = 128 ,

step.size.factor = 4, grid.size = 100000)

m.grid = solve.game(m,cnt=cnt)

Solving the model takes, some time but we considered a relatively fine
approximation. The solution method and corresponding control parameters
are specified in a list cnt. The adaptive grid refinement method and the
meaning of the parameters is explained in the box below (a slightly different
parametrization is given in Section 6).

The adaptive grid refinement method
The algorithm performs the following procedure for every state k =

e, 1, ...n, to approximate the functions Ū e(L) and v̄i(L). I will explain it
for the equilibrium state. Basically, the algorithm starts with a coarse grid
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of action profiles and notes which action profiles are optimal on that coarse
grid. The parameter num.step.start = 8, specifies that the initial grid
shall consists of 8 levels per activity, i.e. the initial grid contains 84 = 4096
different activity profiles. For all of them, we calculate G(a) and L(a) and
keep those profiles Â that are optimal in the sense that for no â ∈ Â there is
some other profile a on the coarse grid with L(a) ≤ L(â) and G(a) ≥ G(â)
with one of the inequalities holding strictly. These action profiles can be
used to generate a first approximation to the function Ū e(L).

In the next step, we refine the grid by dividing the step size by the
specified parameter step.size.factor. Instead of examining every activity
profile in the global grid over the whole activity range, we examine local
grids around those points that were optimal in the coarse grid. So basically,
I take every point that was optimal and examine a nx dimensional local
grid with that point in the center. The maximum size of the local grid
is given by the parameter grid.size. For the given maximal grid.size of
100000 and a 4 dimensional activity space, the local grid extends

floor

[
1

2

(
log(100000)

log(4)
− 1

)]
= 3

steps in every direction. Points in the local grid that are optimal, will
be added to Â and those that cease to be optimal will be removed. If we
find an optimal point at the boundary of a local grid, we will also explore
a local grid around that point.

The algorithm proceeds in this fashion until the number of grid points
per activity rises above the parameter num.step.end.

One can also set a flag use.random.start.points = TRUE. One then
uses a variant of the algorithm in which the initial grid is not fully explored,
but a random sample of points (by default 50000) is drawn and the algo-
rithm proceeds with the optimal points from this sample. The advantage
is that one can start with finer initial grids.

To give the user a feeling of the convergence process, I plot the actual
approximations to the functions Ū e(L) and v̄i(L) during the solution process.

Let us solve the model again using the random sampling algorithm:

# Solve with random sampling

cnt = list(method="random", step.size=0.1,

size.draw = 1000,num.draws = 200,

local.abs.width=4, prob.draw.global = 0.3)

m.ran = solve.game(m,cnt=cnt)

plot(m.ran)

The basic idea of the algorithm is explained in the box below.
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About the random sampling method
Basically, we could simple sample activity profiles by drawing activities

independent from each other and calculate the resulting approximations
for Ū e(L) and v̄i(L) from the drawn activity profiles. If we draw sufficient
many profiles, we will converge in probability towards the true functions.
There are several ways to improve small sample performance, however.

My algorithm does the following:
The algorithm still uses a combination of local and global grid search.

With probability prob.draw.global a random sample of activity profiles is
drawn from the global grid and with probability 1-prob.draw.global from a
local grid around some optimal point (each edge of the local hypercube of
size local.abs.width). Each random sample has size size.draw and a total
of num.draws samples is drawn.

The crucial factor of the algorithm is that the separate activities that
form an action profile are not always independently drawn from each other.
For a small number of activities this would not matter much, but below I
will apply the algorithm also on a Cournot model with 100 firms. If the
number of activities nx grows large, we have the problem that by a law
of large numbers, the drawn activity profiles are very likely to look quite
similar in some dimensions. For example, the average output across 100
firms would be unlikely to deviate much from the mean of the specified
range. e.g. with respect to the average activity level within the profile. So
it is helpful to draw from distributions that allow for positive or negative
correlations between subsets of activities. I implemented a very simple
procedure that does this job, which you can look up in the source code of
the function pmx.draw.x.mat.

Another issue is how to select the points, around which the local grid
shall be extended. Simply choosing randomly from all optimal points,
might have the effect that the grid gets refined only at some particular
location, where in each refinement step a lot of new optimal points are
selected. To draw more evenly, I give precedence to those optimal points
that were drawn from the global grid.7

A more even search is also facilitated by the fact that I still draw from
a finite grid, with size given by the parameter step.size. I never draw a
local grid twice from some optimal point when there are still some optimal
points left, from which I have not yet drawn a local grid.

Again you get a graphical illustration of the convergence process. The fol-
lowing code compares the approximated Ū e(L) from the two solution methods:

# Compare the two models graphically

plot.compare.models(m.grid,m.ran, xvar="delta", yvar="Ue",

m1.name="grid", m2.name="random",

identify = TRUE, legend.pos="right")
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Figure 7: Comparing solutions of the two methods

The resulting plot is shown in Figure 7 below
We find that the two methods yield almost the same solutions, which is

quite encouraging. The grid refinement method becomes quickly infeasible as
the dimensionality of the action space increases, while the random sampling
mechanism still tends to do a good job. Using the function call

m = refine.solution(m, cnt = cnt)

you can apply a different solution method described in cnt on a game in
order to refine a previous solution. You can refine a solution as often as you
like.

To test the toolbox for n = 100 firms, call:

# A hundred 100 firms

# Parameters of the model

n=100; A=100; B=1; MC=10;

q.max = A / (n-1) # maximal output a firm can choose

m = pmx.init.cournot(n=n,q.range=c(0,q.max),A=A,B=B,MC=MC)

cnt.e = list(method="random", step.size=0.05,

local.abs.width = 0.5, prob.draw.global = 0.3,

size.draw = 1000,num.draws = 100)

cnt.i = cnt.e

cnt.i$num.draws = 400

m.ran.100 = solve.game(m,cnt=cnt.e, cnt.i=cnt.i)

plot(m.ran.100)

I chose to pick more samples for the characterization of the punishment
state (cnt.i), since the graphical representation suggested that convergence
for the punishment state went slower. Below, we will check how well our
approximation for the 100 firms Cournot game worked.
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5.3 Finding and imposing restrictions on the structure
of optimal action profiles

If for a problem at hand, we have some theoretical results about the structure
of optimal action profiles, computational complexity may be substantially re-
duced. In particular, knowledge that w.l.o.g. we can impose some symmetry
constraints can be very helpful. By analyzing different examples with the
toolbox you can derive strong conjectures about whether some theoretical re-
strictions hold.

Ideally, the toolbox would allow you to study repeated games with the
scientific method of empirical falsification approach to game theory: as long
as you don’t find a counter-example against your hypothesis you can put a
stronger belief that its true. I must say only “ideally”, since approximation and
discretization errors (or programming errors) may sometimes seem to falsify
a hypothesis even if it holds in the continuous version of the game.8 So one
needs some experience and game theoretic intuition to correctly interpret the
results. And in the end... as game theorists, we finally should go proving our
conjectures!

Since the stage game is symmetric there are two natural conjectures:

1. For the equilibrium state, we can restrict attention w.l.o.g. to symmetric
action profiles as candidates for optimal profiles.

2. For the punishment state of player i, we can restrict attention w.l.o.g. to
action profiles where all punishing players j 6= i choose the same output.

There are two ways to use the toolbox get insights into these hypothesis. First,
we can look whether the optimal action profiles that we found by solving the
unrestricted problem satisfy the postulated restrictions. If this holds, I would
strengthen my belief that we can impose those restrictions w.l.o.g. If it does
not hold, it does not necessarily prove that the conjectures are wrong, since
there may be multiple optimal action profiles and the algorithm may have
selected some that do not satisfy the condition.

The second way is to solve a restricted model that imposes the postulated
restriction and to check whether the resulting payoff sets are the same than
for the unrestricted problem. If the implementable payoff sets are smaller in
the restricted problem (to a degree that seems not likely to be explained by
approximation errors), it suggests that the conjecture was wrong.9

8Approximation and discretization errors, will be more of an issue for large stage games
with imperfect public monitoring (see, e.g. Section 8) since computation time and memory
restrictions but much stronger limits on the maximal grid sizes. I have no clue, how to
develop a local grid refinement method for general games with imperfect monitoring. The
problem is that alternative action profiles appear in the action constraints of the linear
programs that calculate liquidity requirements and implementable payoffs. For games with
perfect monitoring that problem can be circumvented, since our theoretical paper has shown
that liquidity requirements only depend on stage game payoffs and stage game best-reply
payoffs.

9Alternatively, a programming error took place. Like a mathematical proof, you should
always check, whether there is a mistake somewhere in the code. Like in a mathematical
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Let us start with the first method. The following code, plots (for the
previously solved model m.grid) the outputs of players 2 and 3 against the
output of player 1 in the equilibrium state and player 1’s punishment state:

# Equilibrium state

plot(m.grid,xvar="e.q1",yvar=c("e.q2","e.q3"),col=c("blue","red"),

main="Opt. equilibrium profiles")

abline(a=0,b=1)

# Punishment state

plot(m.grid,xvar="1.q1",yvar=c("1.q2","1.q3"),col=c("blue","red"),

main="Opt. punishment profiles", legend.pos="topright")

The resulting plots are shown in Figure 8.
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Figure 8: Plotting firms’ optimal outputs in equilibrium state and punishment
state against each other

The plot on the left hand side suggests that perhaps w.l.o.g., we could
restrict attention to symmetric equilibrium action profiles. The command
abline(a=0,b=1) simply did draw the black diagonal line with slope 1 in the
left hand side. You can check whether these strange spikes begin to vanish,
when you evaluate a finer grid. Similarly, the right hand side plot indicates
that in firm i’s punishment state it is optimal that the punishing firms chose
the same output, while the punished firm chooses a different output.

Let us now solve a restricted model that imposes these symmetry con-
straints. Below you find the essential parts of the code, that you have to
combine yourself with the code from the previous function to make it run.

proof, you may not always find every mistake however. Helpful for the search for bugs is
that the program may throw an error or delivers strange outputs. Actually, debugging in R
is quite fun, and I typically learn most about a problem after I have debugged my code. I
give some hints on debugging in Appendix A.
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pmx.init.cournot.sym = function(n=2, q.range, A, B, MC) {

# First part

#... insert code from first part of pmx.init.cournot

# Second part: Code that specifies symmetry constraints

# In equilibrium state only player 1 chooses freely his

# action other firms are assumed to choose symmetric actions

x.free.e = 1

link.fun.e = function(xf.mat,k=NULL) {

# xf.mat will only have one column, which

# contains the actions of firm 1

# return a matrix with n cols that are all identical to

xf.mat

return(matrix(as.vector(xf.mat),NROW(xf.mat),n))

}

# In the punishment states only the punished player and one

other player

# (here either player 1 or 2) can freely decide on their

actions

x.free.i = lapply(1:n, function(i) c(1,i))

x.free.i[[1]] = c(1,2)

link.fun.i = function(xf.mat,k) {

if (k == 1) {

mat = matrix(as.vector(xf.mat[,2]),NROW(xf.mat),n)

mat[,1] = xf.mat[,1]

} else {

mat = matrix(as.vector(xf.mat[,1]),NROW(xf.mat),n)

mat[,k] = xf.mat[,k]

}

return(mat)

}

m = pmx.init.game(n=n,nx=n,gx.fun=gx.fun,cx.fun=cx.fun,

x.range=q.range, symmetric=TRUE,

x.free.e = x.free.e, link.fun.e=link.fun.e,

x.free.i = x.free.i,link.fun.i = link.fun.i,

name=paste("Cournot Game (",n," firms)",sep=""),

names.x=paste("q",1:n,sep=""))

return(m)

}

# Parameters of the model

n=100; A=100; B=1; MC=10;

m = pmx.init.cournot(n=n,q.range=c(0,A / (n-1)),A=A,B=B,MC=MC)
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The basic philosophy is that you can specify for each state a set of free
actions and a link function that specifies the remaining actions of an action
profile as function of the free actions. Under restriction to symmetric action
profiles on the equilibrium state, we only need one free action profile. The line
x.free.e=1 says that player 1’s action shall be free. The function link.fun.e

must be a function that takes (besides the state k) as argument a matrix
xf.mat that specifies the free actions. Since only one action is free, the matrix
will only have one column and each row will correspond to a different action
of player 1 (the function will be repeatedly called with different actions as the
algorithm unfolds). The function must return a matrix that specifies for each
row of xf.mat the complete action profile. Here, simply every player chooses
the same action profile than player 1.

For the punishment state of player i we specify to free actions: the action
of player i and some other player (the other player is 1 unless i = 1). The link
function link.fun.i returns a matrix in which all punishing players choose
the same outputs.

If you run the model, you can indeed verify that the resulting optimal
payoffs are the same than for the unrestricted model. To compare the mod-
els, store the solved unrestricted and restricted models in variables m.u and
m.r. One way to compare the payoffs, is to tell R to record the plotting his-
tory, then to plot the two models after each other and compare the graphs
by switching between the plots. (There is also a more convenient function
plot.compare.models, but I have not yet implemented it for perfect moni-
toring games).

The restricted model can be easily solved for a much larger number of
firms, since the number of free actions remains constant. Try solving it for
n = 100. The only slight annoyance you might encounter is that the option
use.random.start.points = TRUE leads to slight inaccuracies in the calcu-
lation of punishment profiles if the number of firms is large.

Exercise 5.1. Check different specifications of the parameters of cnt when
solving the symmetric model for a large number of firms and find a robust
one that is considerably quick. Also try out the method refine.solution for
refining a solution with different solution methods. Perform some graphical
comparative statics of the payoff sets with respect to the number of firms and
other parameters that might interest you.

In Section 8, we will compare repeated Cournot oligopolies with perfect
and imperfect monitoring. Some more exercises will be given there.

6 Hotelling Competition and Multi Market Con-

tact

This Section studies collusion in one or several markets that each are described
by a Hotelling model. It exemplifies how one can model stage games where
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players can have multi-dimensional activity spaces. This Section also illustrates
methods that help to check whether one correctly specified the cheating payoffs
of the stage game.

6.1 The Hotelling Stage Game

Consider 2 (or more) firms that compete with each other in 1, 2 or more
different markets. In each market only two firms are active. Demand in each
market is independent from prices in other markets and described by a linear
Hotelling model.

More specifically, let us assume that in any given market, consumers are
uniformly distributed over the unit interval [0, 1] and that the two active firms
are located at the end points of the interval. For the following illustration,
assume firm 1 is located at position 0 and firm 2 at position 1. A consumer
at position x ∈ [0, 1] gets a net benefit of w − p1 − xτ and w − p2 − (1− x)τ
when buying a good from firm 1 or 2 at prices p1 and p2, respectively. The
parameter w measures the consumers’ gross valuation for a good and τ is a
measure of transportation costs. Each consumer has unit demand and buys
at most from one firm and the mass of total consumers shall be given by a
market size parameter S.

In an interior equilibrium, where both firms sell positive amounts and every
consumer buys a product, firm i’s demand is given by

qci (pi, pj) =

(
1

2
+
pj=pi

2τ

)
S

If consumers’ valuation w is too low, compared to the competitor’s price,
the monopolistic demand

qm(pi) =

(
w − pi
τ

)
S

becomes instead relevant for firm i. We also have to account for the bound-
ary conditions that demand cannot be negative and cannot exceed S. We thus
find that firm i’s demand in the market is given by

qi(pi, pj) = max {min {qci (pi, pj), qmi (pi), 1} , 0}S.

Firm i has constant marginal costs of production ci. We assume that prices
are restricted to 0 ≤ pi ≤ w.

6.2 Finding errors in the best-reply functions

When Hotelling models are studied in one-shot games, it is usually assumed
that the customers’ gross value w is relatively large compared to the Nash
equilibrium prices and that both firms have identical cost. In that case, the
relevant best-reply functions can be found under the assumptions that all con-
sumers buy from one of the two firms and that there is an interior consumer
x̂ ∈ (0, 1) who is indifferent between buying from either of the two firms. Then



6 HOTELLING COMPETITION AND MULTI MARKET CONTACT 39

using the first order conditions, one finds that firm i’s best-reply price is given
by

p̂ci(pj) =
1

2
(pj + ci + τ)

If we want to study repeated games the actual value of w becomes relevant
for collusive prices and we may have to account for the fact that best-reply
functions have a more complicated form. Nevertheless, to illustrate some de-
bugging facilities, let us believe for the moment that the function above indeed
specifies the best reply functions of the stage game. Then the code below ini-
tializes a Hotelling model with a single market and solves the repeated game.

init.hotelling = function(ms,symmetric=FALSE) {

colnames(ms) = c("market","firm1","firm2",

"MC1","MC2","tau","size","w")

n = max(ms[,c("firm1","firm2")])

store.objects()

#restore.objects("init.hotelling")

# Stage game payoffs

gx.fun = function(p) {

store.objects("gx.fun")

#restore.objects("gx.fun")

g.mat = matrix(0,NROW(p),n)

for (ma in 1:NROW(ms)) {

tau = ms[ma,"tau"];size = ms[ma,"size"]; w = ms[ma,"w"];

p1 = p[,ma*2-1];p2 = p[,ma*2];

q1 = pmax(0,pmin((w-p1)/tau,

pmin(1,(1/2+(p2-p1)/(2*tau)))))*size

q2 = pmax(0,pmin((w-p2)/tau,

pmin(1,(1/2+(p1-p2)/(2*tau)))))*size

g.mat[,1] = g.mat[,1]+q1*(p1-ms[ma,"MC1"])

g.mat[,2] = g.mat[,2]+q2*(p2-ms[ma,"MC2"])

}

g.mat

}

# Stage game cheating payoffs.

#Assuming FOC specfies best reply prices

cx.fun = function(p) {

store.objects("cx.fun")

#restore.objects("cx.fun");

#restore.objects("init.hotelling")

c.mat = matrix(0,NROW(p),n)

ma = 1
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while(ma <= NROW(ms)) {

tau = ms[ma,"tau"];size = ms[ma,"size"];w = ms[ma,"w"];

MC1 = ms[ma,"MC1"]; MC2 = ms[ma,"MC2"];

p1 = p[,ma*2-1];p2 = p[,ma*2];

p1.br = (1/2)*(p2+MC1+tau)

p2.br = (1/2)*(p1+MC2+tau)

q1 = pmax(0,pmin((w-p1.br)/tau,

pmin(1,(1/2+(p2-p1.br)/(2*tau)))))*size

q2 = pmax(0,pmin((w-p2.br)/tau,

pmin(1,(1/2+(p1-p2.br)/(2*tau)))))*size

c.mat[,1] = c.mat[,1]+q1*(p1.br-MC1)

c.mat[,2] = c.mat[,2]+q2*(p2.br-MC2)

ma = ma+1

}

c.mat

}

name=paste("Hotelling (markets: ",NROW(ms),")", sep="")

nx = NROW(ms)*2

name.grid = make.grid.matrix(x=list(1:NROW(ms),1:2))

names.x = paste("m",name.grid[,1],".p",name.grid[,2],sep="")

x.range = cbind(0,rep(ms[,"w"],each=2))

m =

pmx.init.game(n=n,nx=nx,x.range=x.range,symmetric=symmetric,

gx.fun=gx.fun,cx.fun=cx.fun,

name=name, names.x=names.x)

return(m)

}

ms = matrix(c(

#market firm1, firm2, MC1, MC2, tau, size, w,

1, 1, 2, 10, 10, 100, 100, 200

),ncol=8,byrow=TRUE)

m = init.hotelling(ms=ms,symmetric=TRUE)

cnt = list(method="grid", step.size.start=10,

step.size.end = 0.5, num.refinements = 1)

m = solve.game(m,cnt=cnt)

plot(m)

m.unsure = m

Each row in the matrix ms specifies the structure of one particular market.
Here, we specified that there is only one market.

The function solve.game runs on my computer without that the toolbox
throws any error and I would say that the plot of equilibrium payoffs looks
reasonable... Does that mean, we specified the correct best-reply function?
Not necessarily. The following code allows to search for errors in the best
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reply-function:

mat = check.cx.fun(m,num=30,method="grid",num.grid.steps=10000)

The function check.cx.fun randomly samples num action profiles and cal-
culates for those action profiles the cheating payoffs for randomly selected
players applying a numerical optimization procedure using the specified payoff
function m$gx.fun (by default it performs a grid search over the actions of
the selected player). Then it compares these numerical results with the cheat-
ing payoffs specified by m$cx.fun. Information about the selected points and
cheating payoffs is returned in a matrix. For example, type

round(mat[,"diff"],3)

## [1] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

## [9] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

## [17] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

## [25] 0.0 0.0 -361.6 -2255.2 -2330.2 -2277.7

to see the vector of differences of the cheating payoffs specified by cx.fun

and the cheating payoffs from the grid search. The function check.cx.fun also
creates a plot that allows you compare the differences in calculated cheating
payoffs graphically.
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Cheating Payoffs: Analytical vs Numerical

Figure 9: Checking specified cheating payoff functions

The black circles are the analytical cheating payoffs and the blue crosses
the corresponding numerical results. If the blue crosses lie on the black circles
(or slightly below, to a degree that depends on the coarseness of your grid
search) everything is fine. If this is not the case everywhere (like on the right
hand side of the shown plot), you misspecified the cheating payoffs.

Does this result mean that the calculated set of equilibrium payoffs is in-
correct? Not necessarily, the plot indicates that at least for some subset of
action profiles, we specified cheating payoffs correctly. By calling
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mat = check.cx.fun(m,x.sample="opt.mat",

method="grid",num.grid.steps=10000)

round(mat[,"diff"],5)

you can verify that the cheating payoffs were correctly calculated for the
optimal action profiles. That means that there indeed exist equilibria that can
implement the calculated optimal payoffs. However, we might have found a
larger payoff set, if we would have specified a cheating payoff function that is
correct for all action profiles.

6.3 Specifying cheating payoff functions that use nu-
merical optimization

You might wonder, why you have to specify a closed-form solutions for cheat-
ing payoffs if cheating payoffs can also be calculated by a grid search or some
other numerical optimization procedure.... Actually, it is possible to specify
a function that calculates cheating payoffs by numerical optimization or grid
search. The drawbacks are that solving the game can take considerably more
time and there is no guarantee that the resulting payoff sets are inner approxi-
mations to the payoff sets of the continuous game if you only use a coarse grid
search. The lines

m.num = init.hotelling(ms=ms,symmetric=TRUE)

m.num$cx.fun = make.numerical.cx.fun(m.num,num.grid.steps=10000)

tell the model to use a cx.fun that calculates cheating payoffs using a grid
search over gx.fun. So far, the function only works using a grid search and I
only implemented it for games where each player has a single activity.

You will find that it takes considerably longer to solve the repeated game
than for the case that closed-form solution for stage game cheating payoffs are
provided. If you have two player games and don’t know the cheating payoffs,
you may rather prefer to use the methods explained in Sections 3, 4 and 5.1
to solve the game.

6.4 Specifying correct best-reply functions

Let us now specify a correct closed-form function for stage game cheating
payoffs. For simplicity, let us allow firms to set only prices that satisfy p1, p2 ≤
w. Then given a price pj of the competitor, firm i has several candidates for a
best-reply:

1. Set the monopoly price pmi = w+ci
2

. This is optimal when given prices pj
and firm i’s monopoly price, not the whole market would be covered, i.e.
if qm(pmi ) + qm(pj) ≤ S. This condition is equivalent to

pj ≥
3

2
w − τ − 1

2
ci
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2. Chose that price that gives firm i exactly a market share of S − qm(pj).
This price is given by

p̂ki = 2w − τ − pj
Note that firm i’s demand function has a kink at p̂ki .

3. Choose the interior best-reply price, which we already specified above

p̂ci(pj) =
1

2
(pj + ci + τ)

4. Choose the highest price with which firm i can steal the whole market
from firm j:

p̂si = pj − τ

The following modified cheating payoff function accounts for all four cases:

# Stage game cheating payoffs. Assuming FOC specifies best reply

prices

cx.fun = function(p) {

store.objects("cx.fun")

#restore.objects("cx.fun");

#restore.objects("init.multimarket.hotelling")

c.mat = matrix(0,NROW(p),n)

ma = 1

while(ma <= NROW(ms)) {

tau = ms[ma,"tau"];size = ms[ma,"size"];w = ms[ma,"w"];

for (i in 1:2) {

j = 3-i

# Not very elegant but who cares...

if (i == 1) {

MC.i = ms[ma,"MC1"]; MC.j = ms[ma,"MC2"];

p.i = p[,ma*2-1];p.j = p[,ma*2];

} else {

MC.j = ms[ma,"MC1"]; MC.i = ms[ma,"MC2"];

p.j = p[,ma*2-1];p.i = p[,ma*2];

}

# Try out the different best replies

# kink

p.i.br = 2*w-tau-p.j

qi = pmax(0,pmin((w-p.i.br)/tau,

pmin(1,(1/2+(p.j-p.i.br)/(2*tau)))))*size

pi.k = qi*(p.i.br-MC.i)

# interior
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p.i.br = ((tau+MC.i+p.j)/2)

qi = pmax(0,pmin((w-p.i.br)/tau,

pmin(1,(1/2+(p.j-p.i.br)/(2*tau)))))*size

pi.c = qi*(p.i.br-MC.i)

# steal the whole market from the other player

p.i.br = p.j-tau

qi = pmax(0,pmin((w-p.i.br)/tau,

pmin(1,(1/2+(p.j-p.i.br)/(2*tau)))))*size

pi.s = qi*(p.i.br-MC.i)

# Set monopoly price in those rows where pj is very high

pi.m = rep(0,NROW(p))

rows = (p.j >= (3/2)*w-tau-(1/2)*MC.i)

p.i.br = (w+MC.i)/2

qi = pmax(0,pmin((w-p.i.br)/tau,

pmin(1,(1/2+(p.j-p.i.br)/(2*tau)))))*size

pi.m[rows] = (qi*(p.i.br-MC.i))[rows]

# Take that best-reply that yields highest profits

c.mat[,i] =

c.mat[,i]+pmax(pi.k,pmax(pi.c,pmax(pi.s,pi.m)))

}

ma = ma +1

}

return(c.mat)

}

Exercise 6.1. Include the corrected function from above in the function
init.hotelling. Check whether you can find any mistake in the cheating pay-
off function by using check.cx.fun. Using the function plot.compare.model,
compare the payoff sets using the wrong specification of cheating payoffs, the
cheating payoff function generated by make.numerical.cx.fun and the cor-
rect specification of cheating payoffs (try the comparison for different values
of w, for low values of w you should not be able to solve the model with the
wrongly specified cheating payoffs). Using the correctly specified cheating pay-
offs, perform comparative statics of the payoff set w.r.t. transportation cost
(are maximal payoffs monotone in τ?) and other variables of the model.

6.5 Multi-market Collusion

The code below solves two models that differ by their transportation costs τ :

cnt = list(method="grid", step.size.start=10,step.size.end =

0.5)
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ms = matrix(c(

#market firm1, firm2, MC1, MC2, tau, size, w,

1, 1, 2, 10, 10, 100, 100, 400

),ncol=8,byrow=TRUE)

m = init.hotelling(ms=ms,symmetric=TRUE)

m.high = solve.game(m,cnt=cnt)

ms = matrix(c(

#market firm1, firm2, MC1, MC2, tau, size, w,

1, 1, 2, 10, 10, 10, 100, 400

),ncol=8,byrow=TRUE)

m = init.hotelling(ms=ms,symmetric=TRUE)

m.low = solve.game(m,cnt=cnt)

plot.compare.models(m.high,m.low,xvar="delta",yvar="Ue",

m1.name="high tau",m2.name="low tau",

legend.pos = "bottomright")

The resulting payoff comparison is shown in Figure 10:
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Figure 10: Maximal Collusive Payoffs under high vs low transportation costs

High transportation costs are preferable for firms under low discount factors
as they facilitate high prices. However, as the discount factor grows large,
firms’ profits are higher under lower transportation costs since more surplus
can then be extracted from consumers.

The code below solves a model where the same pair of firms is active in
both market and can simultaneously collude in both markets.

# Parameters of the model

ms = matrix(c(

#market firm1, firm2, MC1, MC2, tau, size, w,

1, 1, 2, 10, 10, 100, 100, 400,

1, 1, 2, 10, 10, 10, 100, 400

),ncol=8,byrow=TRUE)
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m = init.hotelling(ms=ms,symmetric=TRUE)

cnt = list(method="grid", step.size.start=5,step.size.end = 2,

num.refinements = 1,use.random.start.points = TRUE,

num.random.start.points=10000)

m = solve.game(m,cnt=cnt)

m.mult = m

plot(m.mult)

We solved the model using a grid search. You can always try to refine a
solution, e.g. by using a different solution methods or different parameters.
The following code tries out whether the a few random samples find better
action profiles:

# As a check, try to refine the solution with random sampling

cnt = list(method="random", step.size=0.1,

size.draw = 100,num.draws = 50,

local.abs.width=4, prob.draw.global = 1)

m.mult = refine.solution(m.mult,cnt)

Most likely you won’t see any relevant improvement in the graphical rep-
resentation of the solution. The grid search seems to have worked fine. The
following lines test our specification of the cheating payoffs:

mat = check.cx.fun(m.mult,num=30,

i.of.x = c(1,2,1,2), use.i = c(1,2),

method="grid",num.grid.steps=300)

You can repeat the function call above several times. The resulting plots
should indicate that everything is fine.

To see whether multi-market contact facilitates collusion, it would be nice
to compare the sum of payoffs from single market collusion with the maximal
payoffs in the multi-market collusion model. The code below generates such a
plot (shown in Figure 11):

# Generate matrices for same delta.sequence

delta = seq(0,1,by=0.01)

mat1 = get.mat.of.delta(m.high,delta =

delta,add.crit.delta=FALSE)

mat2 = get.mat.of.delta(m.low,delta =

delta,add.crit.delta=FALSE)

mat.b = get.mat.of.delta(m.mult,delta =

delta,add.crit.delta=FALSE)

mat.s = mat1

mat.s[,"Ue"]= mat1[,"Ue"]+mat2[,"Ue"]

# Draw the different matrices

ylim = range(c(mat.s[,"Ue"],mat.b[,"Ue"]))
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plot(mat.b[,"delta"],mat.b[,"Ue"],col="blue",type="l",

main="Single Market vs Multi Market Collusion",

xlab="delta",ylab="Ue",ylim=ylim)

lines(mat.s[,"delta"],mat.s[,"Ue"],col="red",lty=1)

lines(mat.b[,"delta"],mat.b[,"Ue"],col="blue",lty=2)

lines(mat1[,"delta"],mat1[,"Ue"],col="green",lty=2)

lines(mat2[,"delta"],mat2[,"Ue"],col="lightgreen",lty=2)

We find that even though we already have side payments, multi-market contact
can still increase collusive profits. This is the case for those discount factors
for which in the single market with high transportation costs perfect collusion
can be achieved but not in the single market with low transportation costs.
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Figure 11: Added collusive profits in the two separate markets vs profits under
multi-market collusion
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Part II

Imperfect Public Monitoring
This part illustrates how the toolbox can be used to solve infinitely repeated
games with imperfect public monitoring and monetary transfers. So far, I have
only implemented our algorithm that characterize the payoff set for the case
that money burning is possible, but not yet the algorithm described in Section
6 of Goldluecke & Kranz (2010) that deals with the case of no money burning.

7 A Noisy Prisoners’ Dilemma Game

To illustrate how the package repgame can solve repeated games with imperfect
public monitoring, let us first consider the noisy prisoners’ dilemma game that
has been analytically solved in Goldluecke & Kranz (2010). There are two
players who can choose in each period to either cooperate (C) or defect (D).
Expected payoffs in the stage game are given by the following normalized payoff
matrix:

C D

C 1,1 -s,1+d
D 1+d,-s 0,0

with d, s > 0 and d− s < 1. Players do not publicly observe the played
action profile, but only a signal y that can take 4 different values: yC ,yD,y1
and y2. The probability distribution of the signal φ(y|a) depends on the
played action profile and is described in the following table

φ(y|a) (C,C) (C,D) (D,C) (D,D)

yC 1− l− 2a 1− l− m− 2a− b 1− l− m− 2a− b 1− ψ
yD l l + m l + m ψ
y1 a a a + b 0
y2 a a + b a 0

with 0 < l ≤ l+m and 0 < a ≤ a+b and 1−l−m−2a−b ≥ 0. To interpret
the signal structure, assume mutual cooperation (C,C) shall be implemented
in the static problem. The signal yD is an anonymous indicator for defection:
yD becomes more likely if some player unilaterally defects but its probability
distribution does not depend on the identity of the deviator. The parameter
λ can be interpreted as the probability of a type-one error, i.e. the probability
that yD is observed even if no player defected. The parameter µ measures by
how much the likelihood of yD increases if some player unilaterally deviates.
The signal yi is an indicator for unilateral defection by player i. Like λ, the
parameter α can be interpreted as the probability of a type-one error, i.e. the
probability to wrongly get a signal for unilateral defection of player i. Similar
to µ, the parameter β measures by how much the likelihood of yi increases if
player i unilaterally deviates from mutual cooperation.
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The following function initializes such a Noisy PD game:

init.noisy.pd.game = function(d,s,lambda,mu,alpha,beta,psi) {

store.objects("init.noisy.pd.game")

# restore.objects("init.noisy.pd.game")

# Payoff matrix of player 1 (that of player 2 is symmetric)

g1 = matrix(c(

1, -s,

1+d, 0),2,2,byrow=TRUE)

lab.ai = c("C","D")

# Create phi.mat, which stores the signal distributions

prob.yC = c(1-2*alpha-lambda, 1-2*alpha-lambda-mu-beta,

1-2*alpha-lambda-mu-beta, 1-psi)

phi.mat = matrix(c(

#CC CD DC DD

prob.yC, #yC

lambda, lambda+mu, lambda+mu , psi, #yD

alpha, alpha, alpha+beta, 0, #y1

alpha, alpha+beta, alpha , 0 #y2

), 4,4,byrow=TRUE)

lab.y = c("yC","yD","y1","y2")

m=init.game(g1=g1,phi.mat=phi.mat, symmetric=TRUE,

lab.ai = lab.ai,lab.y=lab.y, name="Noisy PD")

m

}

The matrix phi.mat has as many rows as signals and as many columns
as action profiles. So phi.mat[y,a] denotes the probability that signal y is
realized if action profile a is played. The following code initializes one noisy
PD game, solves the model and draws two different plots of the solution.

d=1;s=1.5;lambda=0.1;mu=0.2;alpha=0.1;beta=0.2;psi = 1

m = init.noisy.pd.game(d,s,lambda,mu,alpha,beta,psi)

m = solve.game(m)

## [1] "solve.lp get.L.and.B get.L(B=0) a=C|C"

## [1] "solve.lp get.L.and.B: get.L a=C|C"

## [1] "solve.lp get.L.and.B get.B(L.min) a=C|C L.min = 5"

## [1] "solve.lp get.L.and.B get.L(B=0) a=C|D"

## [1] "solve.lp get.L.and.B: get.L a=C|D"

## [1] "solve.lp get.L.and.B get.L(B=0) a=D|C"



7 A NOISY PRISONERS’ DILEMMA GAME 50

## [1] "solve.lp get.L.and.B: get.L a=D|C"

plot(m,xvar="L",yvar=c("Ue","V"),lwd=2)

plot(m,xvar="delta",delta.seq=seq(0.5,1,by=0.001),

yvar=c("Ue","V"),lwd=2)

The first plot shows the joint equilibrium and punishment payoffs as func-
tion of the totally available liquidity L, the second plot as function of the
discount factor δ (see Figure 12).

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

Noisy PD

Liquidity L

Ue
V

0.6 0.7 0.8 0.9 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

Noisy PD

Discount Factor

Ue
V

Figure 12: Payoffs of the repeated Noisy PD Game

For readers who are familiar with our theoretical paper, let me explain
more on the structure of optimal equilibria. Information about optimal action
plans is stored in m$opt.mat. Let us look at some of its columns:

m$opt.mat[,c("L","delta","Ue","V","v1","v2","opt","helper")]

## L delta Ue V v1 v2 opt helper

## (D|D),(D|D) 0.000 0.0000 0.0 0 0 0 1 0

## --- 2.143 1.0000 0.0 0 0 0 0 1

## (C|D),(D|D) 2.143 0.8108 0.5 0 0 0 0 0

## --- 5.000 0.9091 0.5 0 0 0 0 1

## (C|C),(D|D) 5.000 0.7692 1.5 0 0 0 1 0

## (C|C),(D|D) 10.000 0.8333 2.0 0 0 0 1 0

The row names indicate the optimal action plan. Since the game is symmetric,
only the optimal equilibrium action profile ae and the punishment profile for
player 1 a1 are shown. A row with name “—” corresponds to a helper point
that describes the end of a horizontal line in Figure 12 (left). This means
that the action plan remains optimal in the corresponding liquidity range and
joint equilibrium payoffs and punishment payoffs remain constant (i.e. there
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is no money burning). After row 5 there is no helper point, which indicates
that there is a segment between L=5 and L=10, in which U e linearly increases
in L. Payoffs increase because less money burning is required in the static
problem if more joint liquidity becomes available. In the optimal stationary
equilibrium corresponding to row 5, mutual cooperation (C,C) will be played
on the equilibrium path, but in expectation 2− 1.5 = 0.5 units of money will
be burned every round. Row 6 corresponds to an optimal equilibrium with the
same action plan but no money burning.

The column opt indicates whether the action plan that is optimal for the
given liquidity L is indeed an optimal action plan for some discount factor δ.
In our example, row 3 with ae = (C,D) is not optimal for any discount factor,
since it has a higher critical discount factor δ∗ = 0.81 than row 6 with δ = 0.77.
Thus, if you look at the right hand side plot of Figure 12, you will find that
the joint payoff of 0.5 associated with the third row does not appear.

Exercise 7.1. Perform some graphical comparative statics with respect to the
different parameters of the model (see Section 4.2) and compare the optimal
equilibria with the analytical closed-form solutions in Goldluecke & Kranz
(2010).

8 Collusion without observing sales

The classical paper by Green and Porter (1984) used repeated games to model
collusion between quantity setting firms that cannot observe other firms sales
but only publicly observe the realized market prices. The realized market price
is only a noisy signal of total output, since it also depends on an unobservable
demand shock. Optimal equilibria in this set-up have already been studied by
Abreu, Pearce and Stachhetti (1986), who exploit the fact that price signals
are completely uninformative with respect to which firm deviated.

While the analysis in this Section may therefore not yield many new eco-
nomic insights, I think this class of models is well suited to illustrate how to
use my toolbox for analyzing discrete approximations of games with imperfect
monitoring and continuous action spaces.

8.1 Simple initial example

In the following exercise you can first explore a very simple variant of a model
of collusion without observing sales.

Exercise 8.1. Consider two firms that can in each period either choose low,
medium or high output levels. Expected payoffs are as in Section 3 given by:

Firm 2
qL qM qH

qL 10,10 3,15 0,7
Firm 1 qM 15,3 7,7 -4,5

qH 7,0 5,-4 -15,-15
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Firms cannot observe other firms’ past output level, but only observe a publicly
realized market price. Assume the realized price can take only two levels
p ∈ {pL, pH}. Assume qL = 1, qM = 2, and qH = 3 and let the probability of
a low price be given by

Pr(p = pL|(q1, q2)) = (q1 + q2)∆

where ∆ is a parameter with 0 < ∆ < 6∆ < 1. Write a function that
initializes the model. Solve the model and investigate the comparative statics
w.r.t. ∆. Using the results in our theoretical paper, try to find analytical
solutions for L(a), U e(L|a) and vi(L|a). Compare them with the results from
the computer program.

8.2 Initializing duopolies with larger action and signal
spaces

We now illustrate the analysis of repeated games with larger action and signal
spaces. Consider 2 symmetric firms that produce a homogeneous good. Pro-
duction costs are given by a convex, increasing function c(qi) and each firm
has the same capacity limit qmax. The market demand function shall be given
by

D(P ) = esD0(P ).

D0(P ) is a deterministic component of the demand function and s is a
random variable that measures the market size and follows some distribution
with c.d.f. Fs(s). We assume that D(P ) is strictly decreasing. The inverse
demand function, which depends on the totally produced quantity Q = q1 + q2
and the realized market size s, is then given by

P (Q, s) = D−10

(
e−sQ

)
.

In the action stage, firms simultaneously choose quantities they bring to
the market without knowing the realization of the total market demand s. The
distribution of market prices given total production Q is given by

Fp(p|Q) = Pr {P (Q, s) ≤ p}
= Pr

{
e−sQ ≤ D0(p)

}
= Fs

(
log

(
Q

D0(p)

))
If we do not allow for negative demand and negative market prices, the

formula gets adapted as follows:

Fp(p|Q) =


1 if p ≥ Pmax

Fs

(
log
(

Q
D0(p)

))
if 0 ≤ p ≤ Pmax

0 if p < 0

(3)

where Pmax is the choke price at which demand gets zero, i.e. D0(Pmax) = 0.
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Example. For example assume the deterministic component of the demand
function is linear:

D0(P ) = max {0, α− βP}

The choke price is then given by Pmax = α
β

and the distribution of market

prices is given by formula (3).

The toolbox cannot directly solve repeated games that have continuous
action or signal space. We therefore have to discretize both. To discretize
each firm’s action space, we can simply choose some finite grid of quantities
between 0 and qmax. There are different methods to discretized a continuous
signal distribution.

The toolbox contains a function that performs discretization according
to the following method. First, we specify a finite grid of M price signals
{y1, ..., yM} with 0 = y1 < ... < yM . If a choke price Pmax exists, we set
yM = Pmax. The probability weight on each price signal ym as function of
total produced output Q shall be given by

φ(ym|Q) =


Fp(ym) + Fp(ym+1)−Fp(ym)

2
if m = 1

Fp(ym)−Fp(ym−1)

2
+ Fp(ym+1)−Fp(ym)

2
if 1 < m < M

Fp(ym)−Fp(ym−1)

2
+ 1− Fp(ym) if m = M

Basically, the probability mass between two adjacent signals is divided
equally between the two signals.

The following code initializes and solves a repeated game in this class.

# Require global parameters to be set

# D0.fun, p.max, F.s = F.s, cost.fun = cost.fun,q.max = q.max

# Either nq=nq or q.seq=NULL

init.payoffs.green.porter = function(make.q.seq=TRUE) {

#store.objects()

# restore.objects("init.payoffs.green.porter")

# Generate the distribution function for prices F.p

# The assignment <<- stores F.p in the global environment

F.p <<- function(p,Q) {

x = F.s(log(Q / D0.fun(p)))

x[p >= p.max] == 0

x

}

# Action space of each firm (we assume firms are symmetric)

if (make.q.seq) {

q.seq <<- seq(0,q.max,length=nq)

}
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# Generate function that calculates expected payoffs for

# each action profile

# The function performs a very fine discretization of

# the distribution F.p to approximate expected payoffs

g.fun = function(qm) {

store.objects("g.fun")

#restore.objects("g.fun")

Q = rowSums(qm)

g = matrix(0,NROW(qm),2)

# Calculate expected profits for every action profile

# The loop takes some time, since calculation of an expected

price

# uses numerical integration for every level of Q

for (r in 1:NROW(qm)) {

Ep = calc.mean.from.F.fun(F.p,Q=Q[r],x.min=0,x.max=p.max)

g[r,] = Ep * qm[r,] - cost.fun(qm[r,])

}

# Manually correct the case that no firm produces anything

if (Q[1]==0) {

g[1,] = c(0,0)

}

g

}

m = init.game(g.fun=g.fun, action.val = q.seq, symmetric=TRUE,

name="Green-Porter with Optimal Penal Codes")

return(m)

}

init.signals.green.porter = function(m=m) {

qm = m$action.val.mat

Q=rowSums(qm)

y.val <<- seq(0,p.max,length=ny)

# Calculate the F.p at every signal y

# mapply and apply work similar than Vecorize

F.y = mapply(F.p,Q=Q,MoreArgs=list(p=y.val))

# Assign probability weight according to the

# discretization procedure explained in the tutorial

phi.mat = apply(F.y,2,discretize.given.F.vec)

# We have to manually correct the price distribution if
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# no firm produces anything

phi.mat[,Q==0] = c(rep(0,ny-1),1)

# Initialize the signal distribution for the model m

m = set.phi.mat(m,phi.mat,lab.y = paste("y",y.val,sep=""))

m$y.val = y.val

return(m)

}

# Initialize parameters

# Deterministic part of demand function

alpha = 100; beta = 1;

D0.fun = function(P) {alpha-beta*P}

p.max = alpha / beta

q.max = alpha

# Distribution of market size

mean.s = 0; sigma.s = 0.2

F.s = function(x) {pnorm(x,mean.s,sigma.s)}

# Cost function

MC = 10

cost.fun = function(q) {MC*q}

# Number of actions per firm and number of signals

nq = 51;

ny = 21;

# Initialize model with perfect monitoring

m.pm = init.payoffs.green.porter()

m.pm$name = "Cournot with Payments & Optimal Penal Codes"

# Transform into a model with imperfect monitoring

m = init.signals.green.porter(m.pm)

m$name = "Green-Porter with Payments & Optimal Penal Codes"

Depending on your reference point, it may look like a lot of code, but I
hope together with the comments it is quite intuitive what is going on.

8.3 Solving the model and analysing the solution

To solve the model above, we can simply type.

# Solve the models for perfect and imperfect monitoring

m.pm = solve.game(m.pm)
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m = solve.game(m, ignore.ae = m$action.val[,1]>m$action.val[,2])

The last line solves the model with imperfect monitoring. The parameter
ignore.ae of the function solve.model can be used to ignore certain action
profiles as candidates for optimal equilibrium action profiles.10 Since the stage
game is symmetric, we can assume w.l.o.g. that player 1 produces the same
amount or weakly more than player 2 on the equilibrium path. Ignoring the
action profiles where player 2 produces more, speeds up calculation. Still, it
takes some seconds to solve the model.

The graphical illustration of the solution process

During the process the toolbox shows you some dynamic graphical repre-
sentation of the solution process. A screen-shot is shown below:
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The title first shows the actual state that is solved: v1 stands for player
1’s punishment state. In brackets we find the total number of action pro-
files that have to be checked (the second number are all action profiles, the
first number is the number of action profiles who have a best-reply payoff
below some Nash equilibrium of the stage game). The grey box on the
top-right corner shows how many action profiles have already been inves-
tigated (205), and for how many of those action profiles one or more linear
programs had to be solved (here 132). The remaining 205-132=72 action
profiles had been quickly dismissed as candidates for optimal punishment
profiles by using the methods described in the appendix of our theoretical
paper. The red points and line show the lower envelope of player 1’s pun-
ishment payoffs v1(L) from the 205 action profiles that have already been
solved. The green line shows the relevant part of the function v1(L|a) from

10For games with imperfect public monitoring, the parameters ignore.ae or ignore.ai can
play similar roles than the link functions link.fun.ae and link.fun.ai used in the analyze
of repeated games with perfect monitoring with large action spaces (see Sections 5 and
6). The difference in the two approaches is due to the fact that for games with imperfect
monitoring, we always have to specify the whole grid of action profiles while for games with
perfect monitoring we can use an algorithm that locally refines grids.
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the last action profile a that possible could improve the envelope. The
yellow and orange dots indicate action profiles a′ that were inspected after
a and could be dismissed before v1(L|a′) had to be calculated.11 Towards
the end of the computation, you will see large clouds of orange dots, which
indicate that many action profiles can be dismissed quickly. Admittedly,
these plots are not very artful, but I felt that some visualization is helpful
to get a feeling of what is going on.

If during the solution you click on the text window, you can see reports
from the linear programming solver. You may also get some warnings that
some of the many conducted linear optimization problems was plaqued by
numerically instability of no solution could be found. The program then
tries a different method (like dual simplex) and the message should tell you
whether that worked. If the warning persist, you have to decide whether
you can ignore the warning or not (the description of the actual linear
optimization problem where the warning occured can be found above the
warning). For example, it can well be the case that you have a stage game
where some action profiles can never be implemented.

To compare the equilibrium payoffs under imperfect and perfect monitor-
ing, we can type

plot.compare.models(m.pm,m,xvar="delta",yvar="Ue",

m1.name = "Cournot",m2.name="Green-Porter Style",

legend.pos ="bottomright")

The resulting plot is shown in Figure 13.
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Figure 13: Joint equilibrium and punishment payoffs of the modified Green-
Porter model and the case with perfect monitoring
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We see how much cooperation can be facilitated if firms can perfectly mon-
itor each others actions. It is thus not-surprising that in reality effective mon-
itoring technologies are crucial for the stability and profitability of cartels.

For the case of imperfect monitoring, the joint monopoly profit cannot be
achieved by the cartel even as the discount factor δ approaches 1, This is
a well known result. Formally, the folk theorem does not hold because the
full dimensionality criterion of Fudenberg, Levine and Maskin (1994) is not
satisfied if firms only observe price signals. A rough intuition is that market
prices contain no information about which firm potentially deviated from the
agreement. Realizations of low market prices therefore have to be punished
with jointly inefficient continuation play.

If you type m$opt.mat, you see the structure of optimal action plans for all
discount factors. The list is quite long and therefore not easy to comprehend.
To get some graphical representation type:

ret = levelplot.rep(m=m,z=m$G,main="G and opt. action plan",

focus=2,cuts=100, xlab="q1",ylab="q2", identify=NULL,

col.nash="purple",col.br1 = "green", col.br2 = "greenyellow",

col.ae = "blue", col.a1 = "red")

Which draws a levelplot of maximal stage game payoffs and adds some
information about the optimal action plans. The resulting plot is shown in
Figure 14.
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Figure 14: Levelplot of joint stage game payoffs and information about optimal
action plans

The green line show player 1 and 2’s best reply functions in the stage game
and the purple dot the Nash equilibrium of the stage game. The blue dots
show the optimal equilibrium action profiles for different discount factor and
the red dots depict optimal punishment profiles. The order of the profiles
can be somewhat disentangled by the lines that connect the different optimal
profiles. The nearer a profile is to the stage game Nash equilibrium, the lower
is the discount factor for which the action profile is optimal.
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8.4 Optimal equilibrium state action profiles

Let us investigate in more detail the optimal equilibrium state action profiles.
To get a zoomed picture of the relevant range of actions, paste the following
code:

ret = levelplot.rep(m=m,z=m$G,main="G and opt. ae",

focus=2,cuts=100,xlab="q1",ylab="q2", identify="Ue",

xlim=c(-1,35),ylim=c(20,56), zlim=c(500,2000),

col.nash="purple",col.br1 = NA, col.br2 = NA,

col.ae = "blue", col.a1 = NA)

The parameters xlim and ylim specify the range of player 1 and player 2’s
action levels for which the plot shall be drawn. The parameter zlim can be
used to reduce the range of over which the grey scale for G will be defined.
By setting col.br1 = NA, the stage game best replies of player 1 will not
be drawn (similar for the other parameters). The parameter identify="Ue",
allows you to interactively click on the levelplot to select specific action profiles
and compare the form of the function U e(L|a) for the different selected points.
Clicking once on a point opens a new graphic window that shows this plot
(the new graphic window may open below the actual window, you may have
to move the current window to see the new one). Note that the R prompt
does not take any commands while in the point selection mode. To leave this
mode, press the right mouse button on the levelplot and say stop or press the
red stop button in your R Gui. Figure 15 illustrates the level plot and the
function U e(L|a) for 4 selected points:
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Figure 15: Investigating the structure of optimal equilibrium action profiles ae

While the fourth point selected point has a joint output of 26 + 28 =
54, the first 3 selected points lie on a line that have the same joint output
q1 + q2 = 56 and thus also the same joint stage game payoff G(a). The right
hand side of Figure 15 confirms that they also have the same functional form
for U e(L|a) with the exception that the more symmetric action profiles have a
lower liquidity requirement. (It is easier to see this if you click yourself!).
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You probably asked yourself the following question: What is the reason
that the equilibrium points wiggle around like they do and why are so often
asymmetric action profiles optimal? I below I suggest a list of possible answers
(the plot in the right hand side of Figure 15 may already suggest which ones
are more likely to be true):

1. There is an error either in the way the model is set-up or in the toolbox.
(While the toolbox already went through quite some debugging, it is still
in development stage and errors are well possible.)

2. For a given discount factor, several action profiles can be optimal. The
algorithm does not necessarily pick the most symmetric ones for every
discount factor and the wiggling around may simply be due to indiffer-
ence.

3. The reason for the wiggling around is connected to the fact that we
consider a finite approximation of the originally continuous stage game.
It could be the case that in the continuous game, fully symmetric action
profiles are optimal but not in the finite approximation. For example
there can exist some asymmetric profiles that correspond to certain level
of average outputs q1+q2

2
, but on the finite grid no symmetric profile with

the same average output exists.

4. Even in the continuous version of the game, it is an inherent characteristic
that asymmetric action profiles are optimal on the equilibrium path. For
example, one might think that perhaps the asymmetric incentives to
deviate under an asymmetric equilibrium profile might allow for more
efficient asymmetric punishments if low prices are observed.

In the end one has to resolve the question whether asymmetric equilibrium
action profiles can be optimal by a theoretical proof, but the toolbox can be
helpful in making sensible conjectures and get intuition which result might be
more likely to be true and why that would be the case. The plots in Figure 15,
are so far still suggesting that in a continuous version of the game, symmetric
profiles might always be optimal (in particular, since they have a lower liquidity
requirement).

To get more insight you can click around a bit more or paste the following
code:

ai.mat = get.ai.mat(m)

ignore.ae = !(ai.mat[,1]==ai.mat[,2] |

ai.mat[,1] == (ai.mat[,2]-1) )

m.sym.ae = solve.game(m,ignore.ae=ignore.ae)

This code solves the model with the restriction that only symmetric action
profiles (and profiles that are one action unit left of the main diagonal)12 are

12We add these shifted profiles to account for the effect described under point 3: off-
diagonal elements can have total contribution levels that in the discretized game are not
obtained by any fully symmetric profile.
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considered for equilibrium action profiles. The matrix ai.mat simply returns
the index of each players actions (in comparison to m$action.val.mat, which
returns the action value, i.e. the quantity). You can investigate payoffs and op-
timal action plans of the restricted solved model using the methods described
above. The following command allows direct comparison of the maximal equi-
librium payoffs of the restricted and unrestricted models:

plot.compare.models(m,m.sym.ae,xvar="L",yvar="Ue",

m1.name = "unrestricted", m2.name = "sym. ae",

legend.pos = "bottomright",identify="Ue")

The resulting plot is shown in Figure 16. One can almost see no difference
in the maximal joint payoffs for the restricted and unrestricted case.
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Figure 16: Comparison of equilibrium payoffs solution with symmetric equi-
librium actions and unrestricted solution

Small differences can be due to inaccuracies in calculations with finite pre-
cision floating point numbers.13

The example thus supports the following conjecture:

Conjecture. In the symmetric Green-Porter style model with side-payments
and continuous action and signal spaces, every pure strategy PPE payoff can be
implemented with stationary equilibria that use symmetric equilibrium action
profiles.

I admit that this conjecture is not very surprising, in particular given the
results from Abreu, Pearce, Stacchetti (1986)... but I wanted to illustrate how
the toolbox can help you to form quite educated guesses.

13My implementation of the algorithm to calculate upper envelopes only guarantees to
calculate the upper envelope within some tolerance interval. I introduced the tolerance level
to make the calculations more robustness with respect to inaccuracies of calculations with
floating point numbers.
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8.5 Punishment States

Let us now have a closer look at the structure of optimal punishment profiles.
In Abreu, Pearce & Stacchetti (1986) optimal punishment profiles will be sym-
metric, but this won’t be the case in our set-up where we allow for observable
monetary transfers and money burning. This means we can use asymmetric
punishments in case a player defects from a required payment. The following
code generates the zoomed levelplot shown in Figure 17 (left):

# Level plots for the punishment state

ret = levelplot.rep(m=m,z=m$c[,1],main="c1 and opt.a1",

focus=0,cuts=100,

xlab="q1",ylab="q2", identify="v1",

xlim=c(-1,35),ylim=c(25,100),

col.nash="purple",col.br1 = "green", col.br2 = "greenyellow",

col.ae = NA, col.a1 = "red")

Let us interpret the resulting levelplot. Unless discount factors are so low
that the optimal punishment profile a1 is the Nash equilibrium of the stage
game, firm 2 chooses an output level above the Nash equilibrium output and
above its best-reply output. This makes perfectly sense, since firm 1 is more
severely punished if firm 2 chooses a high output, or more precisely, firm 1’s
best-reply payoff is the lower the higher is firm 2’s output. Firm 1 always
chooses an output weakly below his Nash equilibrium output. For intermediate
discount factors firm 1’s output is below its stage game best-reply output.
However, there is a critical discount factor so that for higher discount factors,
firm 1 plays a best-reply in its punishment profile.
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Figure 17: Analyzing the optimal punishment profiles for player 1 in the Green-
Porter Style Model

One may wonder whether this structural break is indeed an inherent char-
acteristic of optimal punishment profiles or whether similar to the equilibrium
action profiles there is a broad range of optimal punishment profiles for every
discount factor and the algorithm just by chance turned out to have selected
a path with this peculiar structural break. By clicking with the left mouse
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button on the level plot I selected two action profiles marked with 1 and 2
in the level plot. In both action profiles player 2 chooses an output of 48: in
the first action profile player 1 plays a stage game best-reply to 48 and the
second action profile is an optimal punishment profile for player 1. The right
hand side of Figure 17 shows the opened plot in which the function v1(L|a) are
drawn for the two selected points. We find that the second profile (the optimal
action profile) has a lower liquidity requirement but the first profile (player 1
plays a stage game best-reply) can implement lower punishment payoffs.

The latter observation illustrates Lemma 2 in our theoretical paper: player
1’s cheating payoff c1(a

1) is the lowest punishment payoff that can ever be
implemented with a given punishment profile a1. This punishment payoff can
always be attained if player 1 plays a stage-game best reply. Generically,
punishment payoffs are strictly above c1(a

1) if player 1 does not play a stage
game best-reply in his punishment profile.

That the first action profile has a higher liquidity requirement than the sec-
ond action profile may be explained by the following intuition: Since quantities
are strategic substitutes, a high output of firm 2 can be easier sustained if the
punished firm 1 chooses a low output. There seems to be some convexity in the
total liquidity requirement in the sense that larger absolute deviations from a
firms’ best reply are increasingly expensive and that therefore points somewhat
centered between the two best-reply functions can achieve an optimal trade-
off between liquidity requirement and reducing player 1’s punishment payoff.
The following code generates the plot in Figure 18 that shows graphically how
liquidity requirements are lower between the two best reply-functions (levels
shown in blue correspond to action plans for which the liquidity requirement
has not been calculated when the model has been solved).

# Show liquidity requirements

ret = levelplot.rep(m=m,z=m$L,main="L",focus=-3,cuts=100,

xlab="q1",ylab="q2", identify="v1",

xlim=c(-1,35),ylim=c(25,100),

col.nash="purple",col.br1 = "green", col.br2 = "greenyellow",

col.ae = NA, col.a1 = NA)

When the structural break occurs, firm 1 already produces an output of 1
(lower outputs are forbidden by the non-negativity constraints). For larger dis-
count factors lower punishment payoffs seem to be more easily implementable
in a regime where player 1 plays a best-reply. I think this makes intuitive
sense. The following code can be used to generate Figure 19, which verifies
that restricting player 1 to play a best-reply in his punishment would indeed
yield lower punishment payoffs:
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Figure 18: Liquidity requirements

ignore.a1 = (m$g[,1] != m$c[,1])

m.a1.br1 = solve.game(m,ignore.a1=ignore.a1)

plot.compare.models(m,m.a1.br1,xvar="L",yvar="v1", x.max=4000,

m1.name="m", m2.name="m1.a1.br1")
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Figure 19: Punishment payoffs in optimal model and under restriction that
firm 1 plays a stage game best reply.

For intermediate levels of liquidity, strictly lower punishment payoffs can
be implemented if the set of player 1’s punishment profiles is not restricted to
action profiles where player 1 plays a best reply.

8.6 Exercises

Exercise 8.2. (Optimal punishment profiles if production costs are very low)
Solve a variant of the studied oligopoly in Section 6.2 where firms have no
production costs. Draw a levelplot to illustrate the structure of optimal pun-
ishment profiles. Explain the result intuitively. Now study the structure of
optimal equilibria for a sequence of games where -ceteris paribus- you slightly
increase the constant marginal production costs. Perform the same analysis
for the case of perfect monitoring.
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Exercise 8.3. (Symmetric punishment profiles) Solve the model under the
restriction that only symmetric punishment profiles with qi1 = qi2 can be used
(use the ignore.ai parameter). Why would you think that the resulting pay-
off set is the same than under optimal contracts without monetary transfers
studied by Abreu, Pearce and Stachetti (1986)?

Also solve the case of perfect monitoring with a restriction to symmetric
punishment profiles (you can use the parameter ignore.ai in a similar fashion as
for games with imperfect monitoring or use the framework with link functions
described in Section 5.3) Why is the resulting equilibrium set larger still larger
than in Abreu’s (1986) analysis of optimal strongly symmetric equilibria in
repeated Cournot games with perfect monitoring?

Exercise 8.4. Harrington & Skrzypacz (2007) study a collusion model where
firms can make observable monetary transfers. The structure of the model is
inspired by actual behavior of revealed cartels, most notably the Lysine and
Citric Acids Cartels.14 Harrington & Skrzypacz do not consider optimal pun-
ishments, but assume that if a firm fails to make required monetary transfers
the punishment is that all firms revert to infinite repetition of the stage game
Nash equilibrium.

Solve our model with the restriction that only the stage game Nash equi-
librium is allowed as punishment profile. Note that the resulting punishment
paths are not equal to an infinite repetition of the stage game Nash equilibrium:
they have a stick and carrot structure where the stage game Nash equilibrium
is played only for one period and one reverts back to the equilibrium state if all
required payments are made after this punishment period. Why are the result-
ing punishment payoffs nevertheless the same as if one would use a grim-trigger
punishment á la Harrington & Skrzypacz?

Actually, Harrington & Skrzypacz did not consider a framework with quan-
tity setting, but price setting firms and stochastic shocks to realized market
shares. Implement (a discrete approximation) of their game using the toolbox
and analyze the structure of optimal equilibria and resulting payoff sets.

Exercise 8.5. (Sensitivity analysis of discrete approximations) Analyze how
sensitive the resulting payoff sets are to the chosen discrete approximations of
the action and signal space. Perform comparative statics with respect to the
number of actions and signals that are used to approximate the continuous
game.

9 Auditing

This Section just contains some first results on an idea I am currently working
on. It shall illustrate how our theoretical results and the toolbox can be used
to compare in more detail different monitoring technologies that players may
use to structure their relationship.

14Even if you are not an expert on collusion, you might have heard some details from
the Lysine Cartel from the movie The Informant. The movie is based on Kurt Eichenwald’s
great book with the same name that documents the FBI investigations on that case.
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In a repeated oligopoly with perfect monitoring firms can publicly observe
each others sales. Such public signals could, for example, be created by pub-
licly verifiable reports on a firm’s sales from an external auditor. Indeed, we
now from the FBI tapes of the Lysine Cartel that the conspiring firms, where
indeed considering to use external auditors to verify sales reports across the
cartel members. Auditing may not only be relevant for collusion, but also in
joint team production where under normal circumstances only the resulting
success or failure of the project is observable, one may use audits to get a
public signal about each players effort choices. Such audit reports may not be
evidence enough to base court-enforceable contracts upon them, but they may
be relevant for the selected continuation equilibrium. As auditing is expen-
sive, one may not want to audit every period, but rather rely on infrequent,
randomly triggered auditing.

Here I want to present a first simple framework that allows to augment
any repeated game with imperfect public monitoring by a simple auditing
structure. There shall be an external auditor that performs after each period
with a fixed probability π an audit on all players. An audit shall perfectly
reveal the chosen actions of all players an make it commonly known among
the players.

There is no conceptual difficulty to extend any game with imperfect mon-
itoring by such an auditing scheme. We simply have to extend the old signal
space Y to a new signal space Ỹ = Y × A ∪ {Ø}. A new signal is given by
ỹ = (y, α) where y indicates the normal signal and α ∈ A is the action profile
reported by the audit and α = Ø indicates that no audit took place. The
distribution of the new signals is then simply given by

φ̃(y, α|a) =


φ(y|a) ∗ (1− π) if α=Ø

φ(y|a) ∗ π if α=a

0 otherwise

(4)

The only practical drawback is that the signal space can now become very
large if the original game already had a large signal space. Computation time
may substantially increase.

However, there are simply methods to reduce computational complexity.
Let me explain some of them. Since, we have assumed that auditing is perfect
and always fully reveals the played action profile, the audit report is a sufficient
statistic for actual behavior, i.e. one can ignore the signal y if an audit took
place. This means that the modified game with signal space Ŷ = Y ∪ A and
signal distribution

φ̂(ŷ|a) =


φ(ŷ|a) ∗ (1− π) if ŷ ∈ Y
π if ŷ = a

0 otherwise

(5)

has the same payoff sets than the game specified by Ỹ and φ̃but considerably
less signals.
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We can reduce computational complexity even further. Since an audit is
perfect, it only matters whether some deviation took place or not. It is always
optimal that a player that was caught to have deviated is required to pay the
maximum amount he can be induced to be paid δ

1−δ (ui − vi), independent to
which action he did deviate. In the static problems that we use to character-
ize the repeated game, we can correspondingly require player i to make the
maximum payment λiL if he was found to have unilaterally deviated from the
required action profile. This can be incorporated by a simple modification of
the action constraints in the static problem. The new action constraints with
auditing become:

gi(a)− (1− π)Ey[pi|a] ≥ gi(âi, a−i)− (1− π)Ey[pi|âi, a−i]− πλiL (6)

My toolbox allows to directly implement stochastic auditing by modifying
audit probabilities in the way shown above. To analyze a model m with audit
probability of say 20%, simply enter the following line

m = set.audit.prob(m,0.2)

after you have initialized the model, but before you solve it. Here is an
example that compares the effects of auditing in Green-Porter Style models:

# Initialize models

m.pm = init.payoffs.green.porter()

m.imp = init.signals.green.porter(m.pm)

m.10 = set.audit.prob(m.imp,0.1)

m.imp$name = "Green-Porter (no audits)"

m.pm$name = "Green-Porter (permanent audits)"

m.10$name = "Green-Porter (10% audits)"

# Solve models using symmetric action profiles on the

# equilibrium path

ai.mat = get.ai.mat(m)

ignore.ae = !(ai.mat[,1]==ai.mat[,2] |

ai.mat[,1] == (ai.mat[,2]-1))

m.10 = solve.game(m.10 ,ignore.ae=ignore.ae)

m.pm = solve.game(m.pm ,ignore.ae=ignore.ae)

m.imp = solve.game(m.imp,ignore.ae=ignore.ae)

# Compare the models graphically

plot.compare.models(m.10,m.imp,xvar="delta",yvar="Ue",

m1.name = "10% audit", m2.name = "no audits",

legend.pos ="bottomright")

plot.compare.models(m.10,m.pm,xvar="delta",yvar="Ue",

m1.name = "10% audit", m2.name = "100% audits",

legend.pos ="bottomright")
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Figure 20: Collusion with different auditing probabilities

The resulting graphs are shown in Figure 20:
We find that an audit in 10% of periods can already substantially increase

the scope for collusion. Thus having a perfect, incorruptible auditor can be
very valuable. The following exercise invites you to study more of the effects
of auditing:

Exercise 9.1. Pick one game with imperfect public monitoring, e.g. the Noisy
Prisoners’ Dilemma game or some Green-Porter model. Also pick a finite
grid of auditing probabilities and perform graphical comparative statics of
maximum equilibrium payoffs with respect to the auditing probability π (see
Section 4.2 for how to perform such comparative statics). Assume that auditing
all firms in one period involves costs of M > 0, so that expected equilibrium
payoffs that account for auditing costs are U−πM . Find the optimal auditing
probability (from your grid) for every discount factor.

What I explained above, is just a very simple framework. I am working
on a more extended set-up that allows to condition audit probabilities on the
realized signals and explicitly gives players the opportunity to refuse to be
audited or refuse to pay any auditing costs.

Part III

Appendices

10 Some Hints for Debugging

When I want to study a new class of games, it only seldom happens that the
code runs on the first try without any errors. At least when I constructed some
new example there always was some mistake in the beginning. Furthermore,
the toolbox itself is in a very early stage and may still contain errors. Also
the toolbox is not very user friendly when you initialize a game with some
incompatible parameter constellation. Most likely, you will get some quite
incomprehensible error message.
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In this Appendix, I want to illustrate, how to find and correct an error.
Consider the following flawed version of the function from Section 4.3 that
shall initialize and solve an n-player public goods game:

pg.game = function(n,X,k=rep(((1+1/n)/2),n)) {

store.objects("pg.game")

#restore.objects("pg.game")

g.fun = function(x.mat) {

store.objects("g.fun")

#restore.objects("g.fun")

g = matrix(0,NROW(x.mat),n)

xsum = rowSums(x.mat)

for (i in 1:n) {

g[,i] = xsum / n - k[i]*x.mat[,i]

}

g

}

name=paste(n,"Player Public Goods Game")

m = init.game(n=2,g.fun=g.fun,action.val = X,

name=name, lab.ai=round(X,2))

m=solve.game(m)

plot(m)

m

}

When I call the function, I get an error:

m = pg.game(n = 3, X = 0:10, k = c(0.4, 0.6, 0.8))

## Error: subscript out of bounds

The error message is probably not very informative for you. To get more
insights, were the error occurred, we can make the following function call:

traceback()

## 3: g.fun(val.mat)

## 2: init.game(n = 2, g.fun = g.fun, action.val = X, name = name,

## lab.ai = round(X, 2))

## 1: pg.game(n = 3, X = 0:10, k = c(0.4, 0.6, 0.8))

At the top of the resulting list, you see the function where the error has
occurred, below you find the remaining call stack, i.e. the functions from
which that function has been called. (Probably, you already saw the error,
but please pretend not to, so that I can explain how a blind me would proceed
debugging.)
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From the traceback, we know that the error occurred somewhere in the
function g.fun, but where exactly? R offers several methods for debugging
that allow to execute the commands in a function step by step. These de-
bugging facilities are explained, e.g. in http://cran.r-project.org/doc/

manuals/R-exts.pdf (Section 4) or in http://cran.r-project.org/doc/

Rnews/Rnews_2003-3.pdf.
Personally, I prefer a slightly different approach that I already briefly dis-

cussed in the hints on R programming in Section 4. At the beginning of almost
all functions that I create, I add the lines

store.objects("function.name")

#restore.objects(’function.name’)

The first line stores all the local variables of the function in a global variable
container.15 The second line is commented, i.e. it will not be run. However,
if you want to debug the function, you can paste that line and all stored
parameters from the last time the function was called, will be copied in the
global environment. You can then simple paste the remaining code of the
function and see where the error occurred. Let us apply this procedure with
g.fun:

restore.objects("g.fun")

restore.objects("pg.game")

g = matrix(0, NROW(x.mat), n)

xsum = rowSums(x.mat)

for (i in 1:n) {

g[, i] = xsum/n - k[i] * x.mat[, i]

}

## Error: subscript out of bounds

Ah... we get an error in the for loop. Practically, the integer i will keep
the value it had when the error was thrown... This means we can simple paste
the interior of the for loop (or parts of the commands) to investigate further
where the error has occured. Let us thus proceed the investigation by typing
the following sequence of commands:

i

## [1] 3

g[, i] = xsum/n - k[i] * x.mat[, i]

## Error: subscript out of bounds

n

## [1] 3

15All variables means all local variables that are known when store.objects is called. If,
as I usually do, store.objects is called at the beginning of a function only the arguments
of the function call are stored.

http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
http://cran.r-project.org/doc/Rnews/Rnews_2003-3.pdf
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What does that mean? n=100 ??? That does not make any sense at all...
OK, the reason for this apparently strange result is connected to the Advanced
Programming Hints, I gave in Section 4.3 and illustrates one weakness in my
approach to debugging. The function g.fun uses the variable n from its parent
function pg.game. As n was not an argument of g.fun, the function call
store.objects("g.fun") did not store the variable n, i.e. the variable n

was not restored properly by restore.objects("g.fun") and it just kept the
value it had from some previous assignment. To solve the problem, we also
have to call

restore.objects("pg.game")

in order to restore the local variables of the last call to pg.game (this
assumes that pg.game has not changed the parameter n in its function body,
which is the case).

Having done this, let us paste again the inner code of the function and then
continue the search for the reason of the error:

n

## [1] 3

g[, i]

## [1] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [36] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [71] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

## [106] 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

k[i]

## [1] 0.8

x.mat[, i]

## Error: subscript out of bounds

dim(x.mat)

## [1] 121 2

i

## [1] 3

Aah, the culprit is the matrix of action values argument x.mat! The matrix
of action values has only two columns, even though I have told the function
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pg.game that it shall set n=3, i.e. it shall initialize a three player game. So let
us investigate the function that calls g.fun. Recall the traceback:

3: g.fun(val.mat)

2: init.game(n = 2, g.fun = g.fun, action.val = X, name = name,

lab.ai = round(X, 2))

1: pg.game(n = 3, X = 0:10, k = c(0.4, 0.6, 0.8))

This means it was init.game that called g.fun. But init.game is a function
of the toolbox, not a user defined function. This is no problem, as there
are different ways how you can access the source code of a function of my
toolbox. One way is to simply type the function name (without any brackets
or arguments) in the R prompt:

init.game

# Output ommitted in the PDF file

The whole code of function will then be displayed in your console. You can
simply copy and paste it into your text editor and from there past the desired
pieces into your code. The drawback is that in the version you see, all com-
ments have been removed (inclusive the commented line #restore.objects("init.game")
)An alternative way is to find the function directly from the source files of the
toolbox that you can find on my homepage. These source files still contain all
comments.16

Most of my own functions start with a call to store.objects, i.e. you can
debug them in the way described above. Let us do so, i.e. we paste the code
from restore.objects up to the call to g.fun:

## Error: could not find function "repgames.startup"

## Error: subscript out of bounds

restore.objects("init.game")

m = list()

class(m)=c("repgame","list")

#[... a lot of more code, omitted here...]

# Initialize ai.dim

if (gtype=="g.mat") {

m$g = g

16My source code is distributed across different .r files. If you use the Crimson Editor,
the feature “Find in files...” in the menu “Search” is helpful to find in which file a certain
function is defined.
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} else if (gtype=="g.fun") {

val.mat = make.grid.matrix(x=action.val.list)

m$g = g.fun(val.mat)

} else if (gtype=="g1") {

m$g1 = g1

m$g2 = g2

# Table that contains all payoffs nA rows and n columns

m$g = cbind(as.vector(t(g1)),as.vector(t(g2)))

}

## Error: subscript out of bounds

The error took place in this if structure.... Let us dissect it further:

gtype

## [1] "g.fun"

val.mat = make.grid.matrix(x=action.val.list)

m$g = g.fun(val.mat)

## Error: subscript out of bounds

val.mat[1:3,]

## [,1] [,2]

## [1,] 0 0

## [2,] 0 1

## [3,] 0 2

action.val.list

## [[1]]

## [1] 0 1 2 3 4 5 6 7 8 9 10

##

## [[2]]

## [1] 0 1 2 3 4 5 6 7 8 9 10

##

OK... the matrix val.mat has only 2 columns, and the list action.val.list
only 2 vector elements. But I did initialize a three player game, or didn’t I.
Let’s check...

n

## [1] 2
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In the function init.game the number of players n is set to 2. Why is
that... Let us look where we call init.game in pg.game.

m = init.game(n=2,g.fun=g.fun,action.val = X,

name=name, lab.ai=round(X,2))

## Error: subscript out of bounds

Finally, the mistake is detected! We wrongly set n=2 when calling init.game.
Such mistakes can easily happen if one builds code by copy-and-pasting it from
different examples. Correcting the bug is quickly done, by changing the line
in pg.game to:

m = init.game(n=n,g.fun=g.fun,action.val = X,

name=name, lab.ai=round(X,2))

Now everything should work fine.
It looks like of a lot of effort to find a small typo, but that is just the

way it often is. Personally, I think that with a bit of experience debugging
can be quite fun: it is a bit like an interactive detective story between you
and the computer. Furthermore, bugs are a good commitment device that
force you to understand in detail how some piece of code works. The word
“Interactively” in the title of this paper can well be referred to the interactive
process of debugging the code that specifies your repeated game. It is a bit as
if you had somebody that reads a proof of your paper and gives you a cryptic
error message if something is wrong and step by step you have to encrypt what
went wrong (who knows, maybe programming the computer implementation
of your game may indeed help you to find a mistake in some proof).

Unfortunately, not every mistake reveals itself through an error message. So
you also have to check whether the results of the solved model look sensible.
Ideally, you know the solution for some special case and can first test the
program on that case. I would definitely recommend to extensively check
whether the functions that describe stage game payoffs and cheating payoffs
work correctly. Remember the tools to check cheating payoffs described in
Section 6.2. Also note that plotting is often a very powerful tool for debugging.

Modifying the source code of the toolbox
As the toolbox is very young, it is very likely that it still contains

several bugs. Above I briefly discussed, how you can trace through the
source code of my package. If you find an error in my toolbox, please send
me an email (skranz@uni-bonn.de). I will try to correct the error, but I
cannot guarantee that I will be able to do it quickly.

So maybe you prefer to correct the error yourself. To do this, you have
to download the source code from my homepage and change it appropri-
ately. Building an R package from the changed source code is quite an
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endeavor, however. I rather suggest the following method (described for
windows): Create a link of the R program that uses as working folder the
folder that contains the source code. Then open R via this link. Instead of
calling library(repgames), paste the content of the file rep loadfiles.r

into your console. This will manually load the actual version of the sources.
Any modifications that you made to the source files will be included.

Debugging warnings
Sometimes the toolbox does not throw an error that terminates the

execution, but only a warning that sounds uncomfortable. Paste

options(warn=2)

to tell R that it shall stop after any warning, i.e. warnings are treated like
errors. You can then debug in the way explained above. To reset to the
normal mode, call

options(warn=0)

If you want R to stop only after some specific warning, you have to locate
the function that throws the warning in my source code and add after the
line that throws the warning a line stop() and reload the modified source
code in the way explained in the previous box.
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