
Efficiently sampling Archimedean copulas

Marius Hofert1

2009-08-16

Abstract
Efficient sampling algorithms for both exchangeable and nested Archimedean copulas
are presented. First, efficient sampling algorithms for the nested Archimedean
families of Ali-Mikhail-Haq, Frank, and Joe are introduced. Second, a general
strategy how to build a nested Archimedean copula from a given Archimedean
generator is presented. Sampling this copula involves sampling an exponentially-
tilted Stable distribution. For this task, a fast rejection algorithm is developed.
It is proven for the more general class of tilted Archimedean generators that this
algorithm reduces the complexity of the standard rejection algorithm to logarithmic
complexity. As an application it is shown that this algorithm outperforms existing
algorithms for sampling nested Clayton copulas. Third, with the additional help
of randomization of generator parameters, explicit sampling algorithms for several
nested Archimedean copulas based on different Archimedean families are found. As
all algorithms work fast for large parameter ranges and do not require numerical
inversion of Laplace transforms, they are recommendable for large-scale simulation
studies, even in large dimensions. The presented ideas may also apply in the more
general context of sampling distributions given by their Laplace-Stieltjes transforms.
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1 Introduction
Sampling strategies for copulas are interesting from both a theoretical and an empirical
perspective. Concerning the former, they often allow for a stochastic representation of the
underlying random variables which may help accessing and understanding the properties
of the underlying dependency. For practical applications, fast sampling algorithms are
crucial for large-scale simulation studies, see e.g. Hofert and Scherer (2008) in the context
of pricing financial products or Hering and Hofert (2009) in the context of goodness-of-fit
testing.

In contrast to elliptical copulas such as the Gaussian or t copula, Archimedean copulas
are given explicitly in terms of a one-place real function, called generator. All relevant
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1 Introduction

properties of Archimedean copulas can be expressed in terms of their generators. Further,
as they are not restricted to radial symmetry, Archimedean copulas are able to capture
different kinds of tail dependence, a desired feature shared by many applications.
Assuming complete monotonicity, generators of Archimedean copulas correspond to

distribution functions on the positive real line via Laplace-Stieltjes transforms. Knowing
how to sample these distributions for an Archimedean family allows to sample Archime-
dean copulas in a fast and efficient way; the corresponding algorithms were presented by
Marshall and Olkin (1988) for exchangeable and McNeil (2008) for nested Archimedean
copulas. Whenever the distributions involved in an Archimedean structure are not
explicitly known, one can compensate this shortcoming by using numerical inversion of
Laplace transforms, as suggested by Hofert (2008) and Ridout (2008). A drawback of
this approach for sampling nested Archimedean copulas is that the algorithm of McNeil
(2008) involves sampling a distribution not only depending on the copula parameters,
but additionally on a random variate obtained from an earlier step of the algorithm.
In order to ensure that a numerical procedure works accurately for any such random
variate, careful checks have to be made which are usually time-consuming. Further, if the
underlying distribution is absolutely continuous, then the corresponding random variate
almost surely changes with every vector of random variates to be generated. Numerical
inversion algorithms for Laplace transforms therefore often do not provide reliable results,
let alone within an acceptable amount of time. Moreover, direct sampling strategies do
not suffer from these drawbacks and are usually faster.
In this paper, we deal with efficient sampling algorithms for exchangeable and nested

Archimedean copulas without using numerical inversion of Laplace transforms. Special
focus is put on the more general class of nested Archimedean copulas for which other
sampling algorithms such as the conditional distribution method, see e.g. Embrechts et al.
(2001), are not nearly as practical to apply, due to the derivatives involved. We present
different ideas how the inverse Laplace-Stieltjes transforms involved in the algorithms of
Marshall and Olkin (1988) and McNeil (2008) can be accessed and sampled. As a first
result, we develop efficient sampling algorithms for the nested Archimedean families of
Ali-Mikhail-Haq, Frank, and Joe. The ideas behind the presented algorithms may also
apply to other Archimedean generators with discrete inverse Laplace-Stieltjes transforms.
As a second result, we consider a general transform of Archimedean generators such
that nested Archimedean copulas result. The inverse Laplace-Stieltjes transforms of
the generators involved are exponentially-tilted Stable distributions. Such distributions
are special cases of exponentially-tilted distributions on the positive real line, which
correspond to tilted Archimedean generators, see Hofert (2008). We develop a fast version
of the rejection algorithm for sampling exponentially-tilted distributions. Further, we
investigate this algorithm exemplarily in the case of a nested Clayton copula and compare
it with the algorithms of Rosiński (2007), Ridout (2008), and the standard rejection
algorithm for sampling exponentially-tilted distributions. Contrary to the first two
algorithms, the fast rejection algorithm is exact. We further prove that it is faster
than the standard rejection algorithm reducing the complexity of the standard rejection
algorithm to logarithmic complexity. Finally, randomization of generator parameters,
together with the fast rejection algorithm, leads to explicit sampling algorithms for the
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seven nested Archimedean copulas based on generators belonging to different families as
presented in Hofert (2008). The presented sampling strategies may also apply to other
sampling problems, see e.g. Joe and Hu (1996) or Joe (1997, p. 87) who discuss the
construction of multivariate copulas by mixture representations even more general than
nested Archimedean copulas.
This paper is organized as follows. In Section 2 we shortly recall the algorithms of

Marshall and Olkin (1988) and McNeil (2008) for sampling exchangeable and nested
Archimedean copulas. Section 3 contains the main part, starting with the algorithms for
sampling nested Ali-Mikhail-Haq, Frank, and Joe copulas in Section 3.1. In Section 3.2
we present and extend a generator transform partly discussed in Hofert (2008). To sample
the corresponding inverse Laplace-Stieltjes transform, we develop a fast version of the
rejection algorithm in the more general framework of tilted Archimedean generators. In
Section 3.3 we additionally apply the idea of randomizing generator parameters to develop
explicit sampling algorithms for all nested Archimedean copulas based on generators
belonging to different Archimedean families as presented in Hofert (2008). We consider
examples in Section 4 and draw a conclusion in Section 5.

2 Sampling algorithms for exchangeable and nested
Archimedean copulas

An Archimedean generator, shortly generator, is a continuous, decreasing function ψ :
[0,∞]→ [0, 1] which satisfies ψ(0) = 1, ψ(∞) := limt→∞ ψ(t) = 0, and which is strictly
decreasing on [0, inf{t : ψ(t) = 0}]. McNeil and Nešlehová (2009) show that a generator
defines an exchangeable Archimedean copula, given by

C(u) = C(u1, . . . , ud;ψ) = ψ(ψ−1(u1) + · · ·+ ψ−1(ud)), u ∈ [0, 1]d, (1)

for the inverse ψ−1 : [0, 1]→ [0,∞] of ψ with ψ−1(0) := inf{t : ψ(t) = 0}, if and only if
ψ is d-monotone, i.e. ψ is continuous on [0,∞], admits derivatives up to the order d− 2
satisfying (−1)k dk

dtk
ψ(t) ≥ 0 for all k ∈ {0, . . . , d−2}, t ∈ (0,∞), and (−1)d−2 dd−2

dtd−2ψ(t) is
decreasing and convex on (0,∞). Note that some authors refer to ϕ := ψ−1 as generator
of the Archimedean copula (1), see e.g. Nelsen (2007, p. 112). The reason why we prefer
to work with ψ is simply notational convenience, as we are more interested in the function
ψ than its inverse. This notation may be found e.g. in Joe (1997, p. 86) and McNeil and
Nešlehová (2009).

Throughout this work we assume ψ to be completely monotone, i.e. ψ is continuous on
[0,∞] and (−1)k dk

dtk
ψ(t) ≥ 0 for all k ∈ N0, t ∈ (0,∞), so that ψ is the Laplace-Stieltjes

transform of a distribution function F on the positive real line, i.e. ψ = LS[F ], see
Bernstein’s Theorem in Feller (1971, p. 439). The class of all such generators is denoted
by Ψ∞. If we know how to efficiently sample F = LS−1[ψ], the following algorithm
by Marshall and Olkin (1988) easily generates vectors of random variates following the
exchangeable Archimedean copula generated by ψ in all dimensions d.

Algorithm 2.1 (Marshall and Olkin (1988))
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(1) Sample V ∼ F = LS−1[ψ].
(2) Sample i.i.d. Xi ∼ U [0, 1], i ∈ {1, . . . , d}.
(3) Return (U1, . . . , Ud), where Ui = ψ((− logXi)/V ), i ∈ {1, . . . , d}.

Fully-nested Archimedean copulas can be recursively defined via

C(u1, . . . , ud;ψ0, . . . , ψd−2) = ψ0(ψ−1
0 (u1) + ψ−1

0 (C(u2, . . . , ud;ψ1, . . . , ψd−2))) (2)

for all d ≥ 3, ui ∈ [0, 1], i ∈ {1, . . . , d}. For d = 3, this corresponds to

C(u1, C(u2, u3;ψ1);ψ0) = ψ0(ψ−1
0 (u1) + ψ−1

0 (ψ1(ψ−1
1 (u2) + ψ−1

1 (u3)))). (3)

Partially-nested Archimedean copulas combine structures (1) and (2) and the resulting
structures are naturally motivated by applications involving different levels of depen-
dence. Fully- and partially-nested Archimedean copulas are summarized as nested (or
hierarchical) Archimedean copulas. Note that the trivariate copula (3) first appeared
in Joe (1997, p. 87), although Joe and Hu (1996) already deal with even more general
mixture distributions.
According to McNeil (2008), a sufficient condition for a nested Archimedean copula

being indeed a proper copula is that all nodes of the form ψ−1
i ◦ ψj for all i, j appearing

in the Archimedean structure have completely monotone derivatives, e.g. for (2) see the
following result.

Theorem 2.2 (McNeil (2008))
Let ψi ∈ Ψ∞ for i ∈ {0, . . . , d − 2} such that ψ−1

k ◦ ψk+1 have completely monotone
derivatives for all k ∈ {0, . . . , d− 3}, then C(u1, . . . , ud;ψ0, . . . , ψd−2) is a copula.

The algorithms for sampling nested Archimedean copulas as presented by McNeil (2008)
are similar to the algorithm of Marshall and Olkin (1988) for sampling exchangeable
Archimedean copulas. However, in addition to sampling the distribution corresponding
to the outermost generator, they also involve sampling the distributions corresponding
to generators of the form ψi,j(t;V ) = exp(−V ψ−1

i ◦ ψj(t)), where V is a given random
variate of the distribution function F from an earlier step, or outer structure, and i and
j refer to the node under consideration. This is due to the mixture representation for
these copulas, see McNeil (2008) for more details. The recursive algorithm for sampling
(2) is given as follows. Note that sampling a partially-nested Archimedean copula works
similarly, see McNeil (2008).

Algorithm 2.3 (McNeil (2008))
(1) Sample V0 ∼ F0 = LS−1[ψ0].
(2) Sample X1 ∼ U [0, 1].
(3) Sample (X2, . . . , Xd) ∼ C(u2, . . . , ud;ψ0,1(·;V0), . . . , ψ0,d−2(·;V0)).
(4) Return (U1, . . . , Ud), where Ui = ψ0((− logXi)/V0), i ∈ {1, . . . , d}.

As the principles underlying our sampling strategies already become clear by considering
fully-nested Archimedean copulas of type (3), we exemplarily study this subclass of copulas
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in the sequel and particularly develop efficient sampling algorithms for the distributions
corresponding to a generic node of the form

ψ0,1(t;V0) = exp(−V0ψ
−1
0 ◦ ψ1(t)), t ∈ [0,∞]. (4)

However, we specifically emphasize that all presented ideas are applicable to different
kinds of nested Archimedean copulas, involving several levels of nesting, even in large
dimensions. For an example involving three levels of nesting, see Section 4.5. Note that
V0 almost surely takes values in (0,∞) since V0 = 0 with positive probability would imply
ψ0(∞) > 0 and V0 =∞ with positive probability would imply ψ0(0) < 1.
Table 1 lists commonly used generators and conditions on the parameters involved

such that nested Archimedean copulas result, including those which generate nested
Ali-Mikhail-Haq (A), Clayton (C), Frank (F), Gumbel (G), and Joe (J) copulas, see
Nelsen (2007, pp. 116).

Family ϑi ψi(t) (ψ−1
0 ◦ ψ1)′ c.m.

A [0, 1) (1− ϑi)/(exp(t)− ϑi) ϑ0, ϑ1 ∈ [0, 1) : ϑ0 ≤ ϑ1
C (0,∞) (1 + t)−1/ϑi ϑ0, ϑ1 ∈ (0,∞) : ϑ0 ≤ ϑ1
F (0,∞) −(log(e−t(e−ϑi − 1) + 1))/ϑi ϑ0, ϑ1 ∈ [1,∞) : ϑ0 ≤ ϑ1
G [1,∞) exp(−t1/ϑi) ϑ0, ϑ1 ∈ (0,∞) : ϑ0 ≤ ϑ1
J [1,∞) 1− (1− exp(−t))1/ϑi ϑ0, ϑ1 ∈ [1,∞) : ϑ0 ≤ ϑ1
12 [1,∞) (1 + t1/ϑi)−1 ϑ0, ϑ1 ∈ [1,∞) : ϑ0 ≤ ϑ1
13 [1,∞) exp(1− (1 + t)1/ϑi) ϑ0, ϑ1 ∈ [1,∞) : ϑ0 ≤ ϑ1
14 [1,∞) (1 + t1/ϑi)−ϑi ϑ0, ϑ1 ∈ [1,∞) : ϑ0, ϑ1/ϑ0 ∈ N
19 (0,∞) ϑi/ log(t+ exp(ϑi)) ϑ0, ϑ1 ∈ (0,∞) : ϑ0 ≤ ϑ1
20 (0,∞) (log(t+ e))−1/ϑi ϑ0, ϑ1 ∈ (0,∞) : ϑ0 ≤ ϑ1

Table 1 Completely monotone Archimedean generators of Nelsen (2007, pp. 116) with
corresponding parameter ranges.

Note that the class of distributions of type F0,1 = LS−1[ψ0,1(·;V0)] precisely coincides
with the class of infinitely divisible distributions, see Feller (1971, p. 450). Approximate
sampling methods for such distributions when the Lévy measure associated with the
Laplace-Stieltjes transform is known were already presented in Bondesson (1982) and
Damien et al. (1995). In our case, we aim for fast and exact algorithms. The sampling
problems we consider possibly extend to related sampling problems for Archimedean
generators not discussed here or for other distributions known by their Laplace-Stieltjes
transforms in general.

The main problem in sampling distributions of type F0,1 is that they depend on V0, a
random variate following F0. At first glance, V0 can be seen as an additional parameter
of F0,1. However, it usually changes for every vector of random variates to be drawn
from the copula. For this reason, efficiently sampling F0,1 is usually considerably more
complicated than sampling F0. In the remaining part of the paper, we illustrate and solve
this problem by developing sampling algorithms which isolate F0,1 from the influence of
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V0. This will be the main key to efficient sampling strategies for nested Archimedean
copulas.

3 Efficiently sampling Archimedean copulas
3.1 The nested Archimedean families of Ali-Mikhail-Haq, Frank, and Joe
Assuming F0 and F0,1 to be discrete, e.g. as for the families of Ali-Mikhail-Haq, Frank,
and Joe, one might be tempted to precalculate and store values of F0,1 for different
choices of V0, see Hofert (2008). However, this procedure can not be recommended for all
families involving discrete distributions as it depends on the number of different values
V0 is expected to take. If E[V0] =∞, which is the case e.g. for the Archimedean family
of Joe, one therefore has to expect different and rather large random variates V0 in a
computational implementation. Further, it may be numerically challenging to evaluate
the jump heights of F0,1 as they depend on V0. For example, the jump heights of F0,1 for
a nested Joe copula are given by sums of numerically challenging products of binomial
coefficients, see Hofert (2008). One can show that the first jump of F0,1 occurs at V0
with height yV0 := αV0 , α := ϑ0/ϑ1, and numerical experiments further indicate that the
computation of the jump heights becomes especially demanding if V0 is large or α is
small. To significantly reduce this problem, consider the following result, see Devroye
(1986, p. 487).

Lemma 3.1
Let g, g0, and g1 be generating functions such that g(t) = g0(g1(t)). Then

∑N
i=1Xi ∼ g,

where N ∼ g0 and Xi are i.i.d. according to g1, i ∈ {1, . . . , N}.

Lemma 3.1 allows to decompose F0,1 into a part which can be precalculated and a
sum where each summand is sampled according to the precalculated distribution. The
following theorem relies on this idea and presents sampling strategies for the nested
Archimedean families of Ali-Mikhail-Haq, Frank, and Joe. It is important to note that a
random variate V0 of F0 only determines the number of summands to sample; however,
the precalculated distribution does not depend on V0 anymore. For the family of Ali-
Mikhail-Haq, this distribution is a Geometric distribution and therefore does not even
have to be precalculated and stored for efficient sampling.

Theorem 3.2
(1) For the family of Ali-Mikhail-Haq, F0 is a Geo(1− ϑ0), i.e. a Geometric, distribution

on N. Further, F0,1 is also discrete and can be sampled via the following algorithm,
where V0 denotes a random variate drawn from F0.

(1.1) Sample i.i.d. V0,1,i ∼ Geo((1− ϑ1)/(1− ϑ0)), i ∈ {1, . . . , V0}.
(1.2) Return V0,1 =

∑V0
i=1 V0,1,i.

(2) For the family of Frank, F0 is a Log(1− exp(−ϑ0)), i.e. a Logarithmic, distribution.
Further, F0,1 is also discrete and can be sampled via the following algorithm, where
V0 again denotes a random variate drawn from F0.
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(2.1) Sample i.i.d. V0,1,i, i ∈ {1, . . . , V0}, with discrete probability density given by
yk =

(ϑ0/ϑ1
k

)
(−1)k−1(1− exp(−ϑ1))k/(1− exp(−ϑ0)) at k ∈ N.

(2.2) Return V0,1 =
∑V0
i=1 V0,1,i.

(3) For the family of Joe, F0 has discrete probability density given by yk =
(1/ϑ0

k

)
(−1)k−1

at k ∈ N. Further, F0,1 is also discrete and can be sampled via the following algorithm,
where V0 denotes a random variate drawn from F0 as before.

(3.1) Sample i.i.d. V0,1,i, i ∈ {1, . . . , V0}, with discrete probability density given by
yk =

(ϑ0/ϑ1
k

)
(−1)k−1 at k ∈ N.

(3.2) Return V0,1 =
∑V0
i=1 V0,1,i.

Proof
First consider Part (1). For the statement about F0, see Hofert (2008). For the part
concerning F0,1, we compute the generating function g of F0,1 and show that it can be
written as a composition of two generating functions g0 and g1. The result will then
follow from Lemma 3.1. Hofert (2008) showed that F0,1 =

∑∞
k=V0 yk1[xk,∞)(x) with

xk = k, yk = ck−V0
1
ck0

(
k − 1
k − V0

)
, k ∈ N\{1, . . . , V0 − 1},

where c0 = (1 − ϑ0)/(1 − ϑ1) and c1 = (ϑ1 − ϑ0)/(1 − ϑ1). Applying the identity(k+V0−1
k

)
=
(−V0
k

)
(−1)k and the Binomial Series Theorem therefore leads to the corre-

sponding generating function g, given by

g(t) =
∞∑

k=V0

ck−V0
1
ck0

(
k − 1
k − V0

)
tk =

(
t

c0

)V0 ∞∑
k=0

(
k + V0 − 1

k

)(
c1
c0
t

)k

=
(
t

c0

)V0 ∞∑
k=0

(
−V0
k

)(
−c1
c0
t

)k
=
(
t

c0

)V0 (
1− c1

c0
t

)−V0

=
(

t

c0 − c1t

)V0

.

Hence, g(t) = g0(g1(t)) with g0(t) = tV0 and g1(t) = t/(c0 − c1t). As g1 corresponds to a
Geo((1−ϑ1)/(1−ϑ0)) distribution, the result follows from Lemma 3.1. For the statements
about F0 for Part (2) and (3), see Joe (1997, p. 375). The results about F0,1 can be
obtained similarly as before by choosing g1(t) = (1− (1− c1x)α)/c0, ci = 1− exp(−ϑi),
i ∈ {1, 2}, and g1(t) = 1− (1− x)α for the families of Frank and Joe, respectively.

Remark 3.3
(1) Sampling a random variate X ∼ Geo(p), as required for the Archimedean family

of Ali-Mikhail-Haq, can be achieved by sampling X ∼ Exp(− log(1 − p)), i.e. an
Exponential distribution, and returning dXe, where d·e denotes the ceil function, see
Devroye (1986, p. 499).

(2) For sampling the discrete distributions for the families of Frank and Joe, one can
precalculate and store the sums of the jump heights (yk) of the distributions that do
not depend on V0 anymore up to 1− ε for some sufficiently small ε > 0. For most
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parameter choices the corresponding algorithms are very fast even if a large number
of summands has to be sampled to obtain a random variate V0,1. For finding the
U -quantile of a U ∼ U [0, 1] with U > 1− ε, one may either use truncation, see Hofert
(2008), or asymptotics in the tail, see Feller (1971, pp. 442). Note that for a specific
parameter choice, the behavior of the precomputed distribution function involved
can now be studied independent of V0.

3.2 Exponential tilting and a general nesting result
Starting with any generator ψ ∈ Ψ∞ with F = LS−1[ψ] and given any h ∈ [0,∞),
the function ψ̃(t) = ψ(t+ h)/ψ(h) also defines an Archimedean generator in Ψ∞. The
inverse Laplace-Stieltjes transform F̃ of the tilted Archimedean generator ψ̃ is addressed
in Hofert (2008). If F admits a density f , then F̃ admits the exponentially-tilted den-
sity f̃(x) = exp(−hx)f(x)/ψ(h), x ∈ [0,∞). If F is a Stable distribution of type
S(1/ϑ, 1, cosϑ(π/(2ϑ)), 0; 1) with Laplace-Stieltjes transform ψ(t) = exp(−t1/ϑ), see Nolan
(2009, p. 8) for the parametrization, we denote the corresponding exponentially-tilted
Stable distribution by S̃(1/ϑ, 1, cosϑ(π/(2ϑ)), 0, h; 1), where h is the tilt involved.

Starting with any generator ψ ∈ Ψ∞ and building ψi(t) = ψ((cϑi+t)1/ϑi−c), ϑi ∈ [1,∞),
i ∈ {0, 1}, and c ∈ [0,∞), Hofert (2008) showed that ψ0 and ψ1 are generators in Ψ∞
which, if ϑ0 ≤ ϑ1, can also be mixed to build nested Archimedean copulas. Further, the
corresponding distribution function F0,1 is an exponentially-tilted Stable distribution.
The following result shows how the corresponding distribution F0 may be sampled.

Theorem 3.4
Let ψ ∈ Ψ∞. If ψ̃(t) = ψ((cϑ + t)1/ϑ− c), t ∈ [0,∞], with ϑ ∈ [1,∞) and c ∈ [0,∞), then

Ṽ = S̃V ϑ ∼ F̃ = LS−1[ψ̃],

where V ∼ F = LS−1[ψ] and S̃ ∼ S̃(1/ϑ, 1, cosϑ(π/(2ϑ)), 0, (cV )ϑ; 1).

Proof
We show that the Laplace-Stieltjes transform of the distribution function FS̃V ϑ of S̃V ϑ

equals ψ̃. Let fS denote the density of a S(1/ϑ, 1, cosϑ(π/(2ϑ)), 0; 1) distribution with
Laplace-Stieltjes transform ψS(t) = exp(−t1/ϑ) and fS̃|V the conditional density of S̃
given V = v which is fS̃|V (x|v) = exp(−hx)fS(x)/ψS(h) with h = (cv)ϑ. Then

LS[FS̃V ϑ ](t) =
∫ ∞

0

∫ ∞
0

exp(−txvϑ)fS̃|V (x|v) dx dF (v)

=
∫ ∞

0
exp(cv)

∫ ∞
0

exp(−txvϑ) exp(−(cv)ϑx)fS(x) dx dF (v).

Using exp(−txvϑ) exp(−(cv)ϑx) = exp(−xvϑ(cϑ+t)) and
∫∞

0 exp(−xvϑ(cϑ+t))fS(x) dx =
ψS(vϑ(cϑ + t)), we obtain

LS[FS̃V ϑ ](t) =
∫ ∞

0
exp(cv) exp(−(vϑ(cϑ + t))1/ϑ) dF (v)

=
∫ ∞

0
exp(−v((cϑ + t)1/ϑ − c)) dF (v) = ψ((cϑ + t)1/ϑ − c) = ψ̃(t)
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for all t ∈ [0,∞], hence Ṽ ∼ F̃ .
Theorem 3.4 and Theorem 8 in Hofert (2008) allow to start from any Archimedean

generator ψ ∈ Ψ∞ and build a nested Archimedean copula based on the generator
ψ((cϑ + t)1/ϑ − c). Further, if we know how to sample F = LS−1[ψ], we do so for
the resulting nested Archimedean copula. The recursive algorithm for sampling the
fully-nested Archimedean copula (2) is given as follows. Note that e.g. all outer power
Archimedean copulas, see Hofert (2008), easily follow from this result by taking c = 0.
Moreover, nested Clayton copulas arise by taking ψ(t) = (1 + t)−1 and c = 1.

Algorithm 3.5
Let ψ ∈ Ψ∞, c ∈ [0,∞), ψi(t) = ψ((cϑi + t)1/ϑi − c), i ∈ {0, . . . , d− 2}, d ∈ N\{1}, with
1 ≤ ϑ0 ≤ · · · ≤ ϑd−2 <∞.
(1) Sample V0 ∼ F0 = LS−1[ψ0] via V0 = S̃V ϑ0 , where V ∼ F = LS−1[ψ], S̃ ∼

S̃(1/ϑ0, 1, cosϑ0(π/(2ϑ0)), 0, (cV )ϑ0 ; 1).
(2) Sample X1 ∼ U [0, 1].
(3) Sample (X2, . . . , Xd) ∼ C(u2, . . . , ud;ψ0,1(·;V0), . . . , ψ0,d−2(·;V0)), where for i ∈
{1, . . . , d− 2}, ψ0,i(t;V0) = exp(−V0((hi + t)αi − hαii )) with hi = cϑi and αi = ϑ0/ϑi
corresponds to an S̃(αi, 1, (cos(παi/2)V0)1/αi , 0, hi; 1) distribution.

(4) Return (U1, . . . , Ud), where Ui = ψ0((− logXi)/V0), i ∈ {1, . . . , d}.

Sampling an exponentially-tilted density f̃(x) = exp(−hx)f(x)/ψ(h) is straightforward
in certain cases, e.g. when f is a Gamma density. However, if f is the density of a Stable
distribution, it is quite difficult. A general algorithm for sampling the density f̃ might be
the following rejection algorithm, see Devroye (1986, pp. 40), with f(x)/ψ(h) as envelope
if f is easy to sample.

Algorithm 3.6 (Standard rejection)
Repeatedly sample Ṽ ∼ f and U ∼ U [0, 1] until U ≤ exp(−hṼ ), then return Ṽ .

The expected number of iterations in the standard rejection algorithm is 1/ψ(h), see
Devroye (1986, p. 42), i.e. the algorithm has complexity O(1/ψ(h)) assuming constant
complexity for sampling f . This may slow down the algorithm considerably, making it
inapplicable for certain parameter ranges.
To reduce the complexity of the rejection algorithm, note that a product of Laplace-

Stieltjes transforms corresponds to a convolution of the underlying distributions. We
therefore aim at writing ψ̃(t) = ψ(t+h)/ψ(h) as an m-fold product of its 1/m-th powers,
which can then be sampled as a sum of i.i.d. random variables. By choosing this product
in such a way that the complexity of the corresponding sampling algorithm is minimized,
we obtain the following result.

Theorem 3.7
Let ψ ∈ Ψ∞ such that ψ1/m ∈ Ψ∞ for all m ∈ N and let ψ̃(t) = ψ(t+h)/ψ(h), h ∈ [0,∞).
(1) Ṽ ∼ F̃ = LS−1[ψ̃] can be sampled as Ṽ =

∑m
i=1 Ṽi, with i.i.d. Ṽi ∼ F̃m = LS−1[ψ̃1/m],

i ∈ {1, . . . ,m}, and m ∈ N.

9
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(2) Let b·c and d·e denote the floor and ceil function, respectively, and let c := 1/ψ(h).
By choosing

m =


1 if log c ≤ 1
blog cc if log c > 1, blog ccc1/blog cc ≤ dlog cec1/dlog ce

dlog ce if log c > 1, blog ccc1/blog cc > dlog cec1/dlog ce
(5)

in Part (1) and applying the standard rejection algorithm for sampling each Ṽi,
i ∈ {1, . . . ,m}, the resulting expected number of iterations for sampling Ṽ is less
than or equal to 1/ψ(h). Further, if log c > 1, this strategy for sampling F̃ has
complexity O(log(1/ψ(h))).

Proof
Part (1) is clear. For Part (2), note that sampling m-times F̃m via the standard rejection
algorithm takes expected number of iterations mc1/m. For determining the choice of
m ∈ N that minimizes this number, consider the function g(x) = xc1/x on (0,∞). Since
g has its global minimum at log c and is convex, the optimal m ∈ N is either m = blog cc
or m = dlog ce, chosen such that the expected number of iterations is minimized, with
m = 1 if log c ≤ 1. If log c ≤ 1, the resulting expected number of iterations is simply
c = 1/ψ(h), as for the standard rejection algorithm. If log c > 1, i.e. c ∈ (e,∞), it is
min{blog ccc1/blog cc, dlog cec1/dlog ce} and therefore less than or equal to blog ccc1/blog cc.
If c ∈ (e, e2), this equals c = 1/ψ(h) and if c ∈ [e2,∞), this is less than or equal to√
c log c < c = 1/ψ(h); hence, the expected number of iterations for sampling Ṽ is less

than or equal to 1/ψ(h). Further, if c ∈ (e,∞), the upper bound blog ccc1/blog cc for
the expected number of iterations of the fast rejection algorithm is bounded above by
c1/blog cc log c. With c1/blog cc = exp((log c)/blog cc) ≤ exp((blog cc + 1)/blog cc) ≤ e2 it
follows that the expected number of iterations of the fast rejection algorithm is bounded
above by e2 log c, hence the complexity O(log(1/ψ(h))) is proven.

Note that ψ1/m being in Ψ∞ for all m ∈ N is equivalent to F = LS−1[ψ] being infinitely
divisible, see Feller (1971, p. 450). This is a rather weak assumption, e.g. all generators
listed in Table 1 share this property. The fast rejection algorithm for sampling the
distribution F̃ = LS−1[ψ̃] as in Theorem 3.7 is given as follows. Note that the complexity
O(1/ψ(h)) of the standard rejection algorithm is reduced to O(log(1/ψ(h))) for any ψ
and h such that − logψ(h) > 1.

Algorithm 3.8 (Fast rejection)
Let ψ ∈ Ψ∞ such that ψ1/m ∈ Ψ∞ for all m ∈ N and let ψ̃(t) = ψ(t+h)/ψ(h), h ∈ [0,∞).
For m as in Equation (5), sample i.i.d. Ṽi ∼ F̃m = LS−1[ψ̃1/m], i ∈ {1, . . . ,m}, via the
standard rejection algorithm and return Ṽ =

∑m
i=1 Ṽi.

In the following, we exemplarily consider generating random variates of an exponentially-
tilted Stable distributed random variable S̃ ∼ S̃(α, 1, (cos(πα/2)V0)1/α, 0, h; 1) with
corresponding Laplace-Stieltjes transform ψ̃(t) = exp(−V0((h+ t)α−hα)). Sampling such
random variates is required e.g. in Step (1) and Step (3) of Algorithm 3.5 for sampling a
nested Archimedean copula based on the generators addressed in Theorem 3.4.

10
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Exponentially-tilted Stable distributions first appeared in Tweedie (1984) and Hougaard
(1986). They are also considered by Brix (1999). For applications, see e.g. McCulloch
(2003) and McCulloch and Lee (2007) in the context of option pricing. For a more recent
treatment, see Barndorff-Nielson and Shephard (2001), who also deal with sampling
algorithms for these distributions. Their proposed method originates from Rosiński
(2001). This algorithm is also presented in Schoutens (2003). Rosiński (2007) dedicated
a whole paper to exponentially-tilted Stable distributions. Ridout (2008) examines
sampling algorithms based on numerical inversion of Laplace transforms and also considers
exponentially-tilted Stable distributions. His study includes the algorithm of Rosiński
(2007). In what follows, we shortly recall the known approaches for sampling exponentially-
tilted Stable distributions. In Section 4 we compare these algorithms with the rejection
and the fast rejection algorithm for sampling nested Clayton copulas.
Rosiński (2007) considers series representations of Lévy processes, including those

with exponentially-tilted Stable distributed increments, and derives approximations
for simulations. For sampling S̃′ ∼ S̃(α, 1, (cos(πα/2)V0)1/αh, 0, 1; 1) with correspond-
ing Laplace-Stieltjes transform exp(−V0h

α((1 + t)α − 1)), Rosiński (2007) derives the
representation

S̃′ =
∞∑
j=1

min
{( V0

Γ(1− α)γj

)1/α
h, eju

1/α
j

}
, (6)

where (uj) is a sequence of i.i.d. U [0, 1] random variables, (ej), (ẽj) are sequences of i.i.d.
Exp(1) random variables (all sequences are assumed to be independent), and γj =

∑j
i=1 ẽi,

j ∈ N. The random variable S̃ = S̃′/h is then S̃(α, 1, (cos(πα/2)V0)1/α, 0, h; 1) distributed.
Rosiński (2007) also obtains a representation for a Lévy process (S̃′t)t∈[0,T ], T > 0, with
exponentially-tilted Stable distributed increments, given by

S̃′t =
∞∑
j=1

min
{( TV0

Γ(1− α)γj

)1/α
h, eju

1/α
j

}
1(0,t/T ](ũj), (7)

where (ũj) is a sequence of i.i.d. U [0, 1] random variables, independent of the other
sequences of random variables. Increments of unit length are then i.i.d. according to
S̃(α, 1, (cos(πα/2)V0)1/αh, 0, 1; 1). The resulting algorithm for sampling n approximately
S̃(α, 1, (cos(πα/2)V0)1/α, 0, h; 1) distributed random variates is given as follows, see also
Ridout (2008).

Algorithm 3.9 (Rosiński (2007))
(1) Choose a truncation point J ∈ N for the sum in (7) and the number n of random

variates to be generated.
(2) Generate independent sequences (uj)Jj=1, (ũj)Jj=1, (ej)Jj=1, and (ẽj)Jj=1, with i.i.d.

uj , ũj ∼ U [0, 1] and ej , ẽj ∼ Exp(1) for all j ∈ {1, . . . , J}.
(3) For t ∈ {0, . . . , n}, compute S̃′t as in (7), where the sum is truncated at J and S̃′0 = 0.
(4) Return (S1, . . . , Sn), where St = (S̃′t − S̃′t−1)/h, t ∈ {1, . . . , n}.
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Ridout (2008) considers numerical inversion of Laplace transforms for sampling pur-
poses, including exponentially-tilted Stable distributions. For efficiently finding quantiles,
he first sorts the generated uniform random variates. He compares his numerical algo-
rithm, called rlaptrans, implemented in the statistical software R, to the algorithm of
Rosiński (2007) for the parameters (α, V0, h) ∈ {(0.5, 1/

√
2, 0.5), (0.75, 43/4/3, 0.25)}, in-

vestigating also different choices of truncation points J ∈ {10 000, 25 000, 50 000, 100 000}.
Ridout (2008) notes that the algorithm of Rosiński (2007) turns out to be slower (even for
J = 10 000) and biased (even for J = 100 000) in comparison to his algorithm rlaptrans.
He additionally investigates another numerical sampling algorithm, called rtweedie,
based on a combination of a series representation and a Fourier inversion technique for
the exponentially-tilted Stable density. Moreover, Ridout (2008) considers the rejection
algorithm rdevroye based on an envelope found by using characteristic functions, see
Devroye (1986, p. 696), adapted to the setup of nonnegative random variables. According
to run time, Ridout (2008) notes that these methods can not compete with rlaptrans
for the examined parameter choices.
The problem of sampling an exponentially-tilted Stable distribution is even more

demanding in the case of sampling a generator ψ0,1 involved in a nested Archimedean
copula. The reason for this is that V0 acts as an additional parameter on the exponentially-
tilted Stable distribution which possibly changes with every vector of random variates to
be generated. Hence, one has to sample vectors of random variates from possibly different
distributions rather than from a distribution with fixed parameters. For example, for a
nested Clayton copula, V0 is a Gamma distributed random variable and hence almost
surely changes for every vector of random variates to be generated. Algorithms requiring
numerically demanding setup steps for sampling F0,1 may therefore be inadequate for
applications in large-scale simulation studies.

To summarize, all known algorithms for sampling exponentially-tilted Stable distribu-
tions appearing in nested Archimedean copulas are either inefficient or the numerical
errors due to approximations are hard to control. However, the fast rejection algorithm
solves this problem for a large range of parameters. Being originally of complexity
O(exp(V0h

α)), the standard rejection algorithm is outperformed by the fast rejection
algorithm with complexity O(V0h

α), i.e. linear in V0h
α instead of exponential, as long

as V0h
α > 1. Further, the fast rejection algorithm is exact and does not require time-

consuming setup steps. In Section 4.3, we exemplarily compare the performance of the
presented algorithms for sampling nested Clayton copulas.

Let us close this section with the remark that a similar result as the fast rejection algo-
rithm can be obtained by writing ψ̃(t) = exp(−V0((h+t)α−hα)) as ψ̃(t) = ψ2(t)ψbV0hαc

3 (t)
with ψ2(t) = expV0hα−bV0hαc(−((1 + t/h)α − 1)) and ψ3(t) = exp(−((1 + t/h)α − 1)).
One can therefore sample a random variable S̃ ∼ S̃(α, 1, (cos(πα/2)V0)1/α, 0, h; 1) as
S̃ = S̃2 +

∑bV0hαc
i=1 S̃3,i, where S̃2 is a random variable with distribution corresponding to

ψ2, independent of S̃3,i, i ∈ {1, . . . , bV0h
αc}, which are i.i.d. random variables following the

distribution with Laplace-Stieltjes transform ψ3. Note that the generators ψi, i ∈ {2, 3},
are of type ψ̃i(t/h). Therefore, the distribution corresponding to ψi can be sampled by
sampling the one corresponding to ψ̃i(t) and dividing the generated random variates by

12
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h. If we apply the standard rejection algorithm to sample the random variates involved,
the complexity of this sampling strategy is given by exp(V0h

α − bV0h
αc) + bV0h

αce.
By writing x for V0h

α, we may investigate the performance of this algorithm for all
V0 ∈ (0,∞) and h ∈ [0,∞) by investigating the function exp(x − bxc) + bxce for all
x ∈ [0,∞). Recall that the complexity of the fast rejection algorithm for sampling the
distribution corresponding to ψ̃ in terms of x = V0h

α is given by exp(x) if x ∈ [0, 1] and
min{bxc exp(x/bxc), dxe exp(x/dxe)} if x ∈ (1,∞). Comparing these two complexities
as functions of x ∈ [0,∞) leads to a slightly worse complexity for the algorithm based
on ψ2 and ψ3. However, ψ3 is now independent of V0. By considering ψ̃3, it is even
independent of h. Therefore, fast algorithms requiring setup steps for efficiently sampling
the distribution corresponding to ψ̃3 might be useful. Further, numerical inversion of
Laplace transforms is another option since numerical inversion of ψ̃3 is considerably less
critical than that of ψ̃. This is due to the fact that the former only depends on the
parameter α but neither on V0 nor h. Hence, careful checks can be made to find optimal
parameters for the numerical inversion procedure under consideration beforehand.

3.3 Randomizing generator parameters and mixing different Archimedean
families

Not every combination of generators ψ0, ψ1 ∈ Ψ∞ is known to lead to a valid nested
Archimedean copula as the sufficient nesting condition in Theorem 2.2 does not always
hold, see Hofert (2008). However, by choosing ψ1 as

ψ1(t) := ψ0(− logψ(t)) (8)

for some generator ψ such that ψα ∈ Ψ∞ for all α ∈ (0,∞), ψ0 and ψ1 do always
fulfill the sufficient nesting condition addressed in Theorem 2.2. To see that ψ1 ∈ Ψ∞
and ψ−1

0 ◦ ψ1 has completely monotone derivative, it suffices to show that − logψ has
completely monotone derivative, see Feller (1971, p. 441), which in fact holds if and only
if ψα ∈ Ψ∞ for all α ∈ (0,∞), see Joe (1997, p. 374). Note that all generators listed in
Table 1 share this property.

The choice (8) for ψ1 implies that (4) takes the form

ψ0,1(t;V0) = ψV0(t),

which means that ψ1 is chosen such that ψ0,1(t;V0) is simply a power in ψ. Starting
with a generator ψ such that ψα ∈ Ψ∞ for all α ∈ (0,∞) and whose powers correspond
to distributions that are easy to sample, one may thus build and easily sample the
corresponding nested Archimedean copula. Further, by writing ψ1(t) = ψ0(− logψ(t)) as

ψ1(t) =
∫ ∞

0
ψx(t) dF0(x),

where F0 = LS−1[ψ0], we see that ψ1 is simply the generator ψ with randomized
parameter x according to the mixing distribution F0.
The following algorithm uses this construction principle to sample the distribution

corresponding to ψ1.
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Algorithm 3.10
(1) Sample V0 ∼ F0 = LS−1[ψ0].
(2) Sample and return V1 ∼ LS−1[ψV0 ].

By a similar reasoning one also sees that ψ1(t) := ψ0(ψ̃−1(ψ(t))) is a proper Archi-
medean generator for any two generators ψ, ψ̃ ∈ Ψ∞ that can be mixed according to
Theorem 2.2. Further note that ψ1 defined this way also makes sense for all generators
ψ ∈ Ψ∞ as long as ψ0 ◦ ψ̃−1 is absolutely monotone on [0, 1], i.e. continuous on [0, 1] and
differentiable of all orders with all derivatives greater than or equal to zero on (0, 1), see
Feller (1971, p. 223).
Unfortunately, there is no general strategy known for sampling Step (2) of Algorithm

3.10 when the distribution corresponding to ψ is easy to sample. However, using the
specific form of a given generator ψ, one usually finds an algorithm for sampling the
distribution corresponding to ψV0 .
The idea of randomizing parameters will be applied in the sequel to sample nested

Archimedean copulas constructed via generators belonging to different Archimedean
families. We originally applied a numerical inversion procedure for Laplace transforms to
sample a fully-nested (A,C) copula, i.e. an Ali-Mikhail-Haq copula and a Clayton copula
for the outer and inner Archimedean copula, respectively, see Hofert (2008). With the
help of tilted Archimedean generators and randomized parameters we are able to find
explicit sampling algorithms for all family combinations listed in Table 2.

Family combination ϑ0 ϑ1 (ψ−1
0 ◦ ψ1)′(t) c.m.

(A,C) [0, 1) (0,∞) ϑ1 ∈ [1,∞)
(A,19) [0, 1) (0,∞) any ϑ0, ϑ1
(A,20) [0, 1) (0,∞) ϑ1 ∈ [1,∞)
(C,12) (0,∞) [1,∞) ϑ0 ∈ (0, 1]
(C,14) (0,∞) [1,∞) ϑ0ϑ1 ∈ (0, 1]
(C,19) (0,∞) (0,∞) ϑ0 ∈ (0, 1]
(C,20) (0,∞) (0,∞) ϑ0 ≤ ϑ1

Table 2 Proper family combinations and corresponding parame-
ter ranges for the Archimedean families of Nelsen (2007,
pp. 116).

Theorem 3.11
(1) For the family combination (A,C), F0 is a Geo(1− ϑ0) distribution. Further, V0,1 ∼

F0,1 can be sampled as V0,1 = S̃V ϑ1 , where V ∼ Γ(V0, 1/(1 − ϑ0)), i.e. a Gamma
distribution with density 1/(1− ϑ0)V0xV0−1 exp(−x/(1− ϑ0))/Γ(V0), x ∈ [0,∞), and
S̃ ∼ S̃(1/ϑ1, 1, cosϑ1(π/(2ϑ1)), 0, V ϑ1 ; 1), which can be sampled via the fast rejection
algorithm.

(2) For the family combination (A,19), F0 is a Geo(1 − ϑ0) distribution. Further,
V0,1 ∼ F0,1 can be sampled via the fast rejection algorithm, since ψ0,1(t) is of the form
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ψ(t + h)/ψ(h), where h = exp(ϑ1) − 1, ψ(t) = ψ2(− logψ3(t)), ψ2(t) = (1 + t)−V0 ,
and ψ3(t) = (1 + t)−(1−ϑ0)/(ϑ0ϑ1). The distribution corresponding to ψ can be
sampled via Algorithm 3.10, where ψ2 corresponds to a Γ(V0, 1) and ψV2

3 to a Γ((1−
ϑ0)V2/(ϑ0ϑ1), 1) distribution. Similarly for the family combination (A,20), where
h = e− 1, ψ2(t) = (1 + t1/ϑ1)−V0 , and ψ3(t) = (1 + t)−((1−ϑ0)/ϑ0)ϑ1 . Note that V2 ∼
LS−1[ψ2] can be sampled via V2 = SV ϑ1 , with S ∼ S(1/ϑ1, 1, cosϑ1(π/(2ϑ1)), 0; 1)
and V ∼ Γ(V0, 1), and ψ3 corresponds to a Γ(((1− ϑ0)/ϑ0)ϑ1 , 1) distribution.

(3) For the family combination (C,12), F0 is a Γ(1/ϑ0, 1) distribution. Further, V0,1 ∼ F0,1
can be sampled as V0,1 = SS̃ϑ1 , where S ∼ S(1/ϑ1, 1, cosϑ1(π/(2ϑ1)), 0; 1) and
S̃ ∼ S̃(ϑ0, 1, (cos(πϑ0/2)V0)1/ϑ0 , 0, 1; 1), which can be sampled via the fast rejection
algorithm. For the family combination (C,14) use the procedure for (C,12) where for
V0,1, ϑ0 is replaced by ϑ0ϑ1.

(4) For the family combination (C,19), F0 is a Γ(1/ϑ0, 1) distribution. Further, V0,1 ∼ F0,1
can be sampled via the fast rejection algorithm, since ψ0,1(t) is of the form ψ(t +
h)/ψ(h), where h = exp(ϑ1)− 1, ψ(t) = ψ2(− logψ3(t)), ψ2(t) = exp(−V0(t/ϑ1)ϑ0),
and ψ3(t) = (1 + t)−1. The distribution corresponding to ψ can be sampled via
Algorithm 3.10, where ψ2 corresponds to a S(ϑ0, 1, (cos(πϑ0/2)V0)1/ϑ0/ϑ1, 0; 1) and
ψV2

3 to a Γ(V2, 1) distribution. For the family combination (C,20) use the procedure
for (C,19) with ϑ0 replaced by ϑ0/ϑ1 and ϑ1 replaced by 1.

Proof
For the statements about F0, see Joe (1997, p. 375) and Hofert (2008). For Part (1),
note that ψ0,1(t;V0) = ψ((1 + t)1/ϑ1 − 1), where ψ(t) = (1 + (1− ϑ0)t)−V0 corresponds
to a Γ(V0, 1/(1 − ϑ0)) distribution. Hence, an application of Theorem 3.4 leads to
the result as stated. For Part (2) and family combination (A,19), ψ0,1(t;V0) = (((1 −
ϑ0)/ϑ1) log(exp(ϑ1) + t) + ϑ0)−V0 , which is of the form as stated. The result therefore
follows from the fast rejection algorithm and Algorithm 3.10. Similarly, for the family
combination (A,20), ψ0,1(t) = (log1/ϑ1((e+ t)(1−ϑ0)ϑ1 ) + ϑ0)−V0 , which is of the form as
stated. The result again follows from the fast rejection algorithm and Algorithm 3.10.
The statement about V2 follows from Theorem 3.4. For Part (3) and family combination
(C,12), ψ0,1(t;V0) = exp(−V0((1 + t1/ϑ1)ϑ0 − 1)), which is of type ψ̃(t1/ϑ1) based on
ψ̃(t) = exp(−V0((1+t)ϑ0−1)), i.e. an outer power family. The statement therefore follows
from Theorem 3.4. The statement for the family combination (C,14) is clear. For Part (4)
and family combination (C,19), ψ0,1(t;V0) = exp(−V0(ϑ−ϑ0

1 logϑ0(exp(ϑ1)+t)−1)), which
is of the form as stated. The result therefore follows from the fast rejection algorithm
and Algorithm 3.10. The statement for the family combination (C,20) is clear.

4 Examples
In this section we consider several examples. First, we start with investigating two
different stategies for finding quantiles of F = LS−1[ψ] for sampling the bivariate
Archimedean families of Frank and Joe. We also present precision and run-time results
for the fully-nested Archimedean copulas of type (3) based on these two families, see
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Theorem 3.2. Second, we compare the algorithms of Rosiński (2007), Ridout (2008),
the rejection algorithm proposed by McNeil (2008), and the fast rejection algorithm
for generating vectors of random variates from three-dimensional fully-nested Clayton
copulas with different parameters. Third, we present precision and run-time results for
various fully-nested Archimedean copulas. The three-dimensional case is again chosen
exemplarily. To demonstrate that all algorithms apply to more than two hierarchies
and may involve different Archimedean families, we finally sample a four-dimensional
fully-nested Archimedean copula with three levels of nesting involving three different
Archimedean families.

As an indicator of precision, we use the bivariate measure of dependence Kendall’s tau,
see Nelsen (2007, p. 158). Its population and sample versions are denoted by τi,j and τ̂i,j ,
respectively, where the indices correspond to the components i and j under consideration.
Further, κ is used to denote run time measured in seconds.

4.1 A word concerning the implementation
All algorithms are implemented in C/C++ and compiled using the GCC 3.3.3 (SuSE
Linux) with option -O2 for code optimization. The algorithms are run on a node
containing two AMD Opteron 252 processors with 2.6 GHz and 8 GB RAM as part of a
Linux cluster. The command gettimeofday is used to measure run time as wall-clock
time. For generating uniform random variates an implementation of the Mersenne Twister
by Wagner (2003) is used.

4.2 The families of Frank and Joe
We first investigate two different approaches for finding quantiles for the discrete distri-
butions involved in sampling two-dimensional Frank and Joe copulas with the algorithm
of Marshall and Olkin (1988). The direct approach uses a bisection procedure, the second
approach first sorts the uniform random variates and then searches monotonically through
the positive integers to locate all quantiles, see Ridout (2008). At a first glance, each
approach can be advantageous towards the other depending on the number n of random
variates to be drawn from F and the number of precomputed values for the quantiles.
Table 3 therefore contains the number of precomputed values, with 500 000 as upper
limit, and different choices of n. For all investigated dependencies we choose the copula
parameters such that Kendall’s tau ranges from 0.1 to 0.6, which we feel is adequate for
most applications. Note that for all investigated sample sizes n there is no improvement
in speed by using sorted uniform random variates.

Table 4 contains pairwise sample versions of Kendall’s tau and run times for generating
100 000 vectors of random variates from fully-nested three-dimensional Frank and Joe
copulas with parameters chosen such that pairwise Kendall’s taus listed in the first two
columns result; τ1,2;3 stands for τ1,2 = τ1,3. For Joe’s family, the number of summands
to be sampled according to Theorem 3.2 becomes large as the dependence increases,
therefore run time increases accordingly. However, for a wide range of dependencies,
both algorithms are fast.
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n = 1 000 n = 10 000 n = 100 000

Family τ # prec. val. direct sort direct sort direct sort

F 0.1 30 0.0004 0.0005 0.0044 0.0051 0.0436 0.0531
0.2 89 0.0004 0.0005 0.0044 0.0051 0.0441 0.0527
0.3 263 0.0005 0.0005 0.0045 0.0051 0.0453 0.0529
0.4 908 0.0005 0.0005 0.0046 0.0052 0.0461 0.0530
0.5 4323 0.0007 0.0007 0.0049 0.0054 0.0470 0.0535
0.6 37 969 0.0024 0.0024 0.0067 0.0070 0.0496 0.0546

J 0.1 500 000 0.1214 0.1219 0.1288 0.1307 0.1956 0.2015
0.2 500 000 0.1215 0.1214 0.1278 0.1308 0.1956 0.2053
0.3 500 000 0.1219 0.1245 0.1278 0.1304 0.1991 0.2044
0.4 500 000 0.1224 0.1240 0.1284 0.1310 0.1961 0.2038
0.5 500 000 0.1215 0.1244 0.1284 0.1309 0.1969 0.2039
0.6 500 000 0.1213 0.1254 0.1280 0.1309 0.1976 0.2036

Table 3 Comparison of run times, measured in seconds, for sampling two-dimensional
Frank and Joe copulas with two different algorithms for finding quantiles.

Frank Joe

τ1,2;3 τ2,3 τ̂1,2 τ̂1,3 τ̂2,3 κ τ̂1,2 τ̂1,3 τ̂2,3 κ

0.1 0.2 0.1011 0.0960 0.1994 0.1808 0.0971 0.0968 0.1993 0.4906
0.1 0.3 0.1013 0.0966 0.2992 0.1820 0.0967 0.0966 0.2991 0.4907
0.1 0.4 0.1013 0.0971 0.3993 0.1835 0.0968 0.0966 0.3990 0.4965
0.1 0.5 0.1012 0.0975 0.4997 0.1858 0.0966 0.0967 0.4987 0.4976
0.1 0.6 0.1011 0.0980 0.6002 0.1954 0.0967 0.0968 0.5978 0.5046
0.2 0.3 0.1998 0.1991 0.3001 0.1976 0.2001 0.2039 0.2997 0.8158
0.2 0.4 0.2001 0.1993 0.4001 0.1997 0.2007 0.2039 0.4002 0.8374
0.2 0.5 0.2003 0.1994 0.4999 0.2029 0.2011 0.2037 0.5004 0.8651
0.2 0.6 0.2003 0.1994 0.5997 0.2127 0.2013 0.2034 0.5994 0.9097
0.3 0.4 0.2979 0.2974 0.4003 0.2206 0.2950 0.2955 0.3959 2.5268
0.3 0.5 0.2975 0.2973 0.4998 0.2235 0.2948 0.2952 0.4961 2.6435
0.3 0.6 0.2970 0.2969 0.5995 0.2388 0.2945 0.2949 0.5961 2.8593
0.4 0.5 0.4018 0.4010 0.5015 0.2719 0.3978 0.3986 0.4971 9.7040
0.4 0.6 0.4011 0.4003 0.6009 0.2924 0.3984 0.3988 0.5972 10.4476
0.5 0.6 0.5002 0.5016 0.6005 0.4940 0.4998 0.5003 0.5988 34.9849

Table 4 Comparison of precision and run times, measured in seconds, for fully-nested
three-dimensional Frank and Joe copulas based on 100 000 vectors of random
variates.
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4.3 Comparison of algorithms for nested Clayton copulas
Sampling exponentially-tilted Stable distributions, involved e.g. in a nested Clayton
copula, is not an easy task. In this section we investigate the performance of the
algorithms of Rosiński (2007), Ridout (2008), the standard rejection algorithm, and our
proposed fast rejection algorithm for sampling three-dimensional nested Clayton copulas.
This sampling problem is especially complicated, since we do not have to sample random
variates from the same distribution with fixed parameters, but almost surely changing
parameters for every random variate to be generated, due to the dependence of F0,1 on
V0 ∼ Γ(1/ϑ0, 1). For this reason, an algorithm which works fast for sampling a large
amount of exponentially-tilted Stable distributed random variates but which requires
complicated setup steps depending on the parameters of the distribution may not be
adequate for sampling a nested Clayton copula; this is essentially what we see in Table 5
for 100 000 generated vectors of random variates.
First consider the procedure of Rosiński (2007). Since V0 almost surely changes for

every random variate V0,1 to be generated, Algorithm 3.9 can not be efficiently used.
Instead, we have to use representation (6) for sampling V0,1, which requires generating
3J random variates for each random variate V0,1 to be drawn. For the computations
in Table 5 we choose J = 10 000. Although this choice is known to be rather fast than
unbiased, see Ridout (2008), the algorithm of Rosiński (2007) turns out to be slow. Note
that this can be different if a large amount of exponentially-tilted Stable distributed
random variates with fixed parameters is required.
Similarly, the algorithm of Ridout (2008) requires some setup steps, which change

with any V0 from Step (1) of Algorithm 2.3. This, together with the fact that finding
the quantile of a uniform random variate with a modified Newton-Raphson method
can be time-consuming, causes the algorithm to be slow, too. Further, the numbers
in parentheses in Table 5 show the number of warnings we obtained with the default
parameter choices of this algorithm. These warnings indicate that the default accuracy
for solving F0,1(x) = u with respect to x for a uniform random variate u could not
be achieved after the default number of iterations of the modified Newton-Raphson
method; after 1 000 iterations |F0,1(x)− u| is still larger than 10−7. Further, for larger
dependencies, measured with Kendall’s tau, it was not possible to locate a quantile
for at least one of the random variates, see the error message “Cannot locate upper
quantile” of the implementation of the algorithm of Ridout (2008) for details. These
cases are indicated by a dash.
The standard rejection algorithm proposed by McNeil (2008) is an exact algorithm.

It neither requires approximations nor numerically complicated steps. Only the fact
that speed becomes an issue if there is little dependence is a severe problem, due to the
exponential complexity of this algorithm in V0. For some parameter setups it was not
possible to generate 100 000 vectors of random variates in less than 555 hours, indicated
by a plus sign.
For the case where τ1,2;3 = 0.025 and τ2,3 = 0.6, a star indicates a problem we found

for the standard and also the fast rejection algorithm. Due to the resulting small choice
α = ϑ0/ϑ1 = 2/117, the implementation of the function gsl_ran_levy_skew of the GSL
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library for generating Stable distributed random variates did not always return proper
positive real numbers (nan was returned in some cases) and the run time for the standard
rejection algorithm in this case is not reliable. For the fast rejection algorithm, this
only occurred for three generated vectors of random variates. Note that this is only a
technical problem, however, we feel obliged to address such problems as both researchers
and practitioners often do not seem to be aware of such.
The principle underlying the fast rejection algorithm to reduce the complexity from

exponential to linear in V0 significantly decreases run time. As Theorem 3.7 implies,
for every random variate V0 > 1, the algorithm is uniformly faster than the standard
rejection algorithm over all dependencies. Further, the linear complexity in V0 causes this
algorithm to be efficient over the whole range of investigated parameters and complicated
setup steps are also not required. Moreover, this algorithm is exact. Therefore, the fast
rejection algorithm is highly recommendable, e.g. for sampling nested Clayton copulas.

4.4 Overall precision and run-time comparison
Table 6 contains pairwise sample versions of Kendall’s tau and run times for different
three-dimensional fully-nested Archimedean copulas based on the families of Ali-Mikhail-
Haq, Clayton, Frank, Gumbel, and Joe, as well as an outer power Clayton copula
(opC), see Hofert (2008), and the family combinations addressed in Theorem 3.11. As
benchmark, we include a Gauss copula (Ga) and a t-copula with four degrees of freedom
(t4), see McNeil et al. (2005). For all examples, reasonable parameters are chosen such
that pairwise Kendall’s taus as given in columns four and five of Table 6 result. The last
four columns indicate that all presented algorithms are accurate and fast enough to be
applied in large-scale simulation studies.

4.5 A mixed fully-nested Archimedean copula with three hierarchies
The presented algorithms are also applicable to more than two hierarchies. We exemplarily
sample a four-dimensional fully-nested Archimedean copula based on the families of
Ali-Mikhail-Haq, Clayton, and the family numbered 20 in Nelsen (2007, pp. 118) on the
first, second, and third level, respectively. To fulfill the parameter restrictions listed
in Table 2, the corresponding parameters are chosen to match pairwise Kendall’s tau
of 0.2, 0.4, and 0.8. The plot on the left side of Figure 1 shows a scatter plot matrix
of 1 000 generated vectors of random variates from this copula. Note that there is
a singular component which should not be present. This is again due to a technical
problem we found. For sampling this copula with the algorithm of McNeil (2008), the
random variables V0 ∼ Geo(1 − ϑ0), V0,1 = S̃V ϑ1 with V ∼ Γ(V0, 1/(1 − ϑ0)) and
S̃ ∼ S̃(1/ϑ1, 1, cosϑ1(π/(2ϑ1)), 0, V ϑ1 ; 1), and V1,2 with corresponding Laplace-Stieltjes
transform ψ1,2(t;V0,1) := ψ(t+ h)/ψ(h) with h = e− 1, ψ(t) = ψ3(− logψ4(t)), ψ3(t) =
exp(−V0,1t

α), α = ϑ1/ϑ2, and ψ4(t) = (1 + t)−1 are involved. Due to ψ4, this requires
sampling a Γ(V3, 1) distribution, where V3 is a random variate following the distribution
corresponding to ψ3, a S(α, 1, (cos(πα/2)V0,1)1/α, 0; 1) distribution, see Algorithm 3.10.
For this task, we used the function gsl_ran_gamma of the GSL library. As the random
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τ1,2;3 τ2,3 Rosiński Ridout Standard rejection Fast rejection

0.025 0.05 657.45 25.95 + 6.03
0.025 0.1 655.95 21.09 + 5.76
0.025 0.2 656.01 15.75 (34) + 5.70
0.025 0.3 633.28 15.72 (1) + 5.69
0.025 0.4 635.48 24.73 (38) + 5.61
0.025 0.5 637.52 58.91 (291) + 5.81
0.025 0.6 633.87 57.46 (146) 112716.80∗ 5.63∗

0.05 0.1 660.30 21.56 659649.15 3.17
0.05 0.2 659.39 16.50 (13) 611434.81 3.01
0.05 0.3 659.29 16.45 (4) 690703.44 3.19
0.05 0.4 637.69 23.05 (36) 697543.63 2.95
0.05 0.5 634.46 46.42 (163) 727002.83 2.89
0.05 0.6 633.52 59.99 (229) 650025.72 2.91
0.1 0.2 660.02 18.24 (1) 1181.88 1.66
0.1 0.3 655.29 16.82 (15) 1047.89 1.56
0.1 0.4 660.19 20.29 (10) 1286.70 1.58
0.1 0.5 660.05 34.64 (93) 1717.43 1.58
0.1 0.6 633.00 55.03 (194) 1719.67 1.57
0.2 0.3 658.12 21.11 (3) 15.47 0.90
0.2 0.4 654.78 19.52 (4) 11.28 0.87
0.2 0.5 656.11 24.02 (18) 14.66 0.85
0.2 0.6 659.33 38.76 (102) 23.49 0.86
0.3 0.4 662.11 25.25 (1) 2.42 0.65
0.3 0.5 658.06 23.51 (6) 2.59 0.64
0.3 0.6 657.26 − 2.38 0.63
0.4 0.5 661.35 − 2.27 0.55
0.4 0.6 657.59 − 1.72 0.54
0.5 0.6 659.01 − 1.28 0.50

Table 5 Comparison of run times, measured in seconds, for generating 100 000 vectors
of random variates from fully-nested three-dimensional Clayton copulas with
different parameters.
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Copula ϑ0 ϑ1 τ1,2;3 τ2,3 τ̂1,2 τ̂1,3 τ̂2,3 κ

A 0.4015 0.9430 0.1 0.3 0.0956 0.0989 0.2990 0.4113
C 0.5 2 0.2 0.5 0.2008 0.1974 0.4987 1.1998
F 1.8609 5.7363 0.2 0.5 0.2000 0.1977 0.5003 0.5033
G 1.25 2 0.2 0.5 0.2017 0.2012 0.4981 0.7300
J 1.4438 2.8562 0.2 0.5 0.2006 0.2010 0.4992 1.0500

opC 1.1364 1.8182 0.2 0.5 0.1988 0.2026 0.5011 0.8502
(A,C) 0.7135 2 0.2 0.5 0.2030 0.2022 0.4992 0.7957
(A,19) 0.7135 0.4462 0.2 0.5 0.1972 0.1985 0.5005 0.6251
(A,20) 0.7135 1.0243 0.2 0.61 0.2012 0.2005 0.6115 1.2237
(C,12) 0.5 1.3333 0.2 0.5 0.2006 0.2004 0.4994 1.2123
(C,14) 0.5 1.5 0.2 0.5 0.2012 0.2007 0.5012 1.4839
(C,19) 0.5 0.4462 0.2 0.5 0.2011 0.2029 0.5009 1.1116
(C,20) 0.5 0.7250 0.2 0.5 0.2016 0.1980 0.4987 1.4005
Ga 0.3090 0.7071 0.2 0.5 0.1963 0.1981 0.4992 0.3822
t4 0.3090 0.7071 0.2 0.5 0.1997 0.2038 0.4974 0.6174

Table 6 Precision and run time results, measured in seconds, for different three-
dimensional copulas based on 100 000 generated vectors of random variates.

variates V3 tend to be small for the chosen parameters, the Gamma random variate
generator returned 0 instead of some almost surely positive number. The Gamma random
variate generator rgamma used in the statistical software R also shows this problem. The
implementation g05ffc of the NAG library does not show this problem, see the plot on
the right side of Figure 1, however, this routine increases the run time for generating
100 000 vectors of random v ariates from 1.22s for the GSL implementation to 16.42s for
the one of NAG.

5 Conclusion
We presented sampling strategies applicable to all commonly used exchangeable and
nested Archimedean copulas. Sampling nested Archimedean copulas with the elegant
algorithm of McNeil (2008) is particularly challenging, as the distribution F0,1 related to
the nodes of the copula depends on the parameter V0 ∼ F0, a random variate obtained
from an earlier step of the algorithm. Therefore, it almost surely changes for every vector
of random variates to be generated if F0 is absolutely continuous, or at least possibly
quite often if F0 is discrete. The main idea behind our efficient algorithms is to reduce
the influence of V0 on F0,1. For the presented algorithms for sampling nested Frank and
Joe copulas this means precomputing a distribution not depending on V0 and sampling
this distribution V0-times to obtain a random variate V0,1. This procedure only requires
finding quantiles from a fixed precomputed distribution instead of a distribution which
changes for different random variates V0. For sampling nested Ali-Mikhail-Haq copulas,
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τ̂1,2 = 0.1884 τ̂1,3 = 0.1799 τ̂1,4 = 0.1794

τ̂2,3 = 0.3990 τ̂2,4 = 0.3949

τ̂3,4 = 0.8009
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Figure 1 1 000 vectors of random variates from a fully-nested Archimedean copula with
three levels; the Gamma distribution involved is sampled via GSL (left) and
NAG (right).

the distribution not depending on V0 is simply a Geometric distribution and therefore
does not even have to be precalculated.

Theorem 3.4 addressed a general result how to build a nested Archimedean copula from
a given Archimedean generator. For sampling the exponentially-tilted Stable distribution
involved, we examined the algorithms of Rosiński (2007), Ridout (2008), and the standard
rejection algorithm. As the first two methods are inaccurate and rather slow, and the
standard rejection algorithm often turns out to be too slow, we proposed a new algorithm
designed for sampling tilted Archimedean generators in general. Our fast rejection
algorithm is exact and only of logarithmic complexity in comparison to the standard
rejection algorithm. For sampling nested Clayton copulas for example, the complexity of
the fast rejection algorithm is only linear in V0, which again significantly reduced the
influence of V0 on the run time of the algorithm, see Table 5.
By using the fast rejection algorithm in conjunction with a result on randomized

generator parameters we were able to find explicit algorithms for sampling all seven
nested Archimedean copulas based on generators belonging to different Archimedean
families as presented in Hofert (2008).

Our algorithms are promising and the underlying ideas may also serve as strategies for
sampling Archimedean copulas not addressed in this paper or even other distributions
given by their Laplace-Stieltjes transforms in a more general context. Further, our findings
encourage the use of the flexible class of nested Archimedean copulas in large-scale
multidimensional simulation studies as an alternative to standard elliptical distributions,
which are often appreciated for their simple sampling algorithms, yet are restricted to
radial symmetry.
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