Prof. Dr. U. Stadtmüller C. Hering Winter 2008/2009 2.12.2008 Sheet 7

Time Series

(Due: Tu., 9.12.2008, 1:15 pm, in the exercise classes)

1. Show that for an AR(p) process (white noise variance 1) the Kalman filter algorithm $(C_t := (1, 0, ..., 0)^T)$ transfers the starting value $\hat{Z}_t := (X_t, ..., X_{t+1-p})$ into Z_{t+1} , i.e. show that $\hat{Z}_{t+1} = Z_{t+1}$.

(6 Credits)

2. Let X_t be an ARMA(2,1) process with coefficients $\alpha_1 = 0.5$, $\alpha_2 = 0.25$ and $\beta_1 = 0.75$. Moreover, assume that the white noise variance is $\sigma^2 = 1$ and assume we can only observe a disturbed process $(Y_t, t \in \mathbb{Z})$ with

$$Y_t = X_t + \tilde{\varepsilon_t} \quad \forall t \in \mathbb{Z},$$

where $(\tilde{\varepsilon}_t, t \in \mathbb{Z})$ is a white noise with variance $\tilde{\sigma}^2 = 2$, which is pairwise uncorrelated to $(\varepsilon_t, t \in \mathbb{Z})$.

- (a) Set up a "state space model" for this situation, i.e. specify how the system and observation equation look like.
- (b) Explain in words, how the Kalman filter algorithm works.
- (c) Use the Kalman filter algorithm to determine the best linear (one step ahead) forecast for the system assuming we observe the value 2.

(9 Credits)

3.* Consider a state space model with the "system equation"

$$Z_{t+1} = AZ_t + D\xi_{t+1} \quad (*),$$

where $Z_t \in \mathbb{R}^p$, $\xi_t \in \mathbb{R}^m$ are random vectors and $A \in \mathbb{R}^{p \times p}$, $B \in \mathbb{R}^{p \times m}$ are matrices which do not depend on t. Moreover $\mathbb{E}\xi_t = 0$ and $Cov(\xi_t) = Q \in \mathbb{R}^{m \times m}$. Show that if the eigenvalues $(\lambda_i)_{i=1}^p$ of A satisfy $|\lambda_i| < 1$ then the unique stationary solution to (*) is given by

$$Z_t = \sum_{k=0}^{\infty} A^k D\xi_{t-k}$$

(5 Credits)

http://www.uni-ulm.de/mawi/zawa/lehre/winter2008/ts20082009.html