UNIVERSITÄT ULM

Institut für Zahlentheorie und Wahrscheinlichkeitstheorie

Übungen zu Grundlagen und Einzelfragen der Mathematik

Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 24 Punkte

Übungsblatt 7

Abgabe: Dienstag, 8. Dezember 2009, vor den Übungen

- 1. Ein beliebter Ansatz zur Untersuchung eines Ringes $(R, +, \cdot)$ ist es, eine Kongruenzrelation \equiv auf R zu definieren und den (meist viel einfacheren) Ring $(\overline{R}, +, \cdot)$ der Kongruenzklassen zu untersuchen. Für den Fall $R = \mathbb{Z}$ erhält man so sie Ringe $\overline{\mathbb{Z}} = \mathbb{Z}_m$, die in der elementaren Zahlentheorie betrachtet werden. Diese Ringe gehören zu den mod Relationen $a \equiv b \mod m \Leftrightarrow m | (b-a)$. Zeige, daß es keine anderen Kongruenzrelationen auf \mathbb{Z} gibt. (8 Punkte)
- 2. Es sei $(K, +, \cdot)$ irgendein Körper. Sein Primkörper ist der kleinste in K enthaltene Körper (wobei wir $\{0\}$ nicht als Körper ansehen, er muß mindestens eine Null und eine von der Null verschiedene Eins enthalten).

Wir können die natürlichen Zahlen $\mathbb N$ in einen beliebigen Körper K einbetten mithilfe der Abbildung

$$\phi: \mathbb{N} \to K, \quad k \to \underbrace{1_K + 1_K + \ldots + 1_K}_{k-\text{mal}}.$$

Uber die Festlegung $\phi(-n) = -\phi(n)$ (auf der rechten Seite steht die Negation aus K) wird daraus eine Abbildung $\phi: \mathbb{Z} \to K$, die (da sie über Nachfolger definiert ist) ein Gruppenhomomorphismus von $(\mathbb{Z}, +)$ nach (K, +) ist.

Zeige, daß das Bild $\phi(\mathbb{Z})$ entweder isomorph zu \mathbb{Z} oder einem \mathbb{Z}_p mit einer Primzahl p ist. Folgere daraus, daß es bis auf Isomorphie nur die Primkörper \mathbb{Q} und \mathbb{Z}_p gibt.

Hinweis:

Isomorphie ist in Ringen wie folgt definiert:

Es seien $(R, +, \cdot)$ und (S, \oplus, \odot) Ringe. Eine Abbildung $\phi: R \to S$ heißt (Ring-)homomorphismus, falls für alle $a, b \in R$ gilt:

- $\Phi(a+b) = \Phi(a) \oplus \Phi(b)$
- $\Phi(a \cdot b) = \Phi(a) \odot \Phi(b)$
- $\Phi(1_R) = 1_S$.

Ein bijektiver (Ring-)homomorphismus heißt (Ring-)isomorphismus.

(16 Punkte)