UNIVERSITÄT ULM

Institut für Zahlentheorie und Wahrscheinlichkeitstheorie

Übungen zur Elementaren Zahlentheorie

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 36 Punkte, alles Zusatzpunkte

Übungsblatt 13

Abgabe: Mittwoch, 13. Juli 2011, vor den Übungen

1. Es ist $10001 = 73 \cdot 137$. Außerdem sind 73 und 137 Primzahlen. Finde sämtliche Lösungen der Kongruenz

$$x^2 \equiv 1 \mod 10001$$

ohne Verwendung eines Rechners.

(9 Punkte)

- 2. Es sei $F_k=2^{2^k}+1$ die k- te Fermatzahl mit $k\geq 2.$
 - (a) Dann erfüllt jeder Primfaktor p von \mathcal{F}_k die Bedingung

$$p = 2^{k+2} \cdot a + 1$$

mit einem $a \in \mathbb{N}$.

(b) Folgere daraus $641|F_5$.

- (8 Punkte)
- 3. (a) Stelle fest, ob 91 ein quadratischer Rest modulo der Primzahl 181 ist.
 - (b) Für welche Primzahlen p ist 5 ein quadratischer Rest modulo p?
- (6 Punkte)

- 4. Es sei $p \in \mathbb{P}$, $x \in \mathbb{Z}$ und $p|(20x^2 1)$. Zeige:
 - (a) $p \equiv 1 \mod 5$ oder $p \equiv 4 \mod 5$.
 - (b) Es gibt unendlich viele Primzahlen mit letzter Dezimalstelle 9.

(7 Punkte)

5. Es sei $n = 2^{1001} \cdot 3^{1600} + 1$, eine Zahl mit 1165 Dezimalstellen.

Man kann rechnerisch folgende Tatsachen beweisen:

$$5^{n-1} \equiv 1 \bmod n \tag{1}$$

$$5^{\frac{n-1}{2}} \not\equiv 1 \bmod n \tag{2}$$

$$5^{\frac{n-1}{3}} \not\equiv 1 \bmod n. \tag{3}$$

Folgere aus (1), (2) und (3), daß n eine Primzahl ist.

Hinweis:

Betrachte $\operatorname{ord}_n 5$. (6 Punkte)