UNIVERSITÄT ULM

Institut für Zahlentheorie und Wahrscheinlichkeitstheorie

Probeklausur zur Elementaren Zahlentheorie

Prof. Dr. Helmut Maier, Hans- Peter Reck Gesamtpunktzahl: 130 Punkte, 100 Punkte= 100 %

keine Abgabe

- 1. Es seien p, q und r verschiedene Primzahlen.
 - (a) Finde den größten gemeinsamen Teiler und das kleinste gemeinsame Vielfache der beiden Zahlen p^5q^2 und p^3q^3r .
 - (b) Gib jeweils den Wert der Eulerschen φ Funktion an. (10 Punkte)
- 2. (a) Bestimme mit Hilfe des Euklidischen Algorithmus den größten gemeinsamen Teiler der beiden Zahlen 2323 und 943.
 - (b) Entscheide über die Lösbarkeit der folgenden Diophantischen Gleichungen. Gib im positiven Falle eine Lösung an.

i.
$$2323x + 943y = 92$$
.

ii.
$$104x + 69y = 3$$
. (14 Punkte)

- 3. Bestimme das multiplikative Inverse von
 - (a) 31 mod 163
 - (b) 53 mod 349

Benütze dazu die Information $53 \cdot 79 = 12 \cdot 349 + 1$.

(10 Punkte)

- 4. (a) Wie lautet der kleinste Primfaktor von $2^{16} 16$?
 - (b) Zeige, daß die Summe 1000 aufeinanderfolgender natürlicher Zahlen keine Primzahl sein kann. (12 Punkte)
- 5. (a) Zeige durch eine geeignete Reduktion auf eine Kongruenz, daß die Diophantische Gleichung

$$x^3 + 5x + y^2 + 1 = 0$$

keine Lösung besitzt.

(b) Finde alle Lösungen der Kongruenz $x^3 - x + 3 \equiv 0 \mod 7$. (10 Punkte)

- 6. (a) Gib eine Definition für die folgenden Begriffe an:
 - i. gemeinsamer Teiler
 - ii. kanonische Primfaktorzerlegung
 - iii. Polynomkongruenz
 - (b) Formuliere den Satz von Euler.

(12 Punkte)

- 7. Es sei d(n) die Anzahl der Teiler von $n \in \mathbb{N}$. Aus den Übungen wissen wir, daß die zahlentheoretische Funktion d multiplikativ ist. Ist sie auch vollständig multiplikativ? Beweise die Aussage oder verwende ein Gegenbeispiel. (6 Punkte)
- 8. (a) Bestimme $11^{93} \mod 63$ mit $63 = 3^2 \cdot 7$.

(b) Zeige, daß
$$3^{2011} + 5^{2011} + 11^{2011}$$
 durch 13 teilbar ist. (12 Punkte)

9. Bestimme die kleinste positive Zahl, die die folgenden Eigenschaften erfüllt:

$$x \equiv 2 \mod 6$$

$$x \equiv 5 \mod 17$$

$$x \equiv 7 \mod 19.$$

Es ist dabei $6 \cdot 17 \cdot 19 = 1938$.

(14 Punkte)

10. Eine Primzahl M_n von der Form $M_n = 2^n - 1$ heißt Mersennsche Primzahl, und die k- te Fermatzahl F_k war definiert durch $F_k := 2^{2^k} + 1$.

Zeige: Gilt $n=2^m$, so ist M_n das Produkt der ersten m-1 Fermatzahlen, es gilt also

$$M_n = \prod_{k=0}^{m-1} F_k.$$

(10 Punkte)

- 11. Es sei $n \in \mathbb{N}$, $n \ge 10$ und p eine Primzahl. Zeige:
 - (a) Für $2n ist <math>p | \binom{3n}{2n}$ und $p^2 \not | \binom{3n}{2n}$.

(b) Für
$$\frac{3}{2}n ist $p \not|\binom{3n}{2n}$. (10 Punkte)$$

- 12. (a) Wie ist die Primzahlzählfunktion $\pi(x)$ definiert?
 - (b) Es sei $n \in \mathbb{N}$. Leite aus der Schranke

$$\prod_{n$$

eine Abschätzung der Form

$$\pi(2n) - \pi(n) \le c \cdot \frac{n}{\log n}$$

mit kleinstmöglichem c her.

(10 Punkte)

Viel Erfolg!