

Übungen zur Linearen Algebra I

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Mittwoch, 23. November 2011, vor den Übungen

- 1. Es sei V ein reeller Vektorraum und U und W Unterräume von V. Zeige:
 - (a) Im allgemeinen ist $U \cup W$ kein Unterraum.
 - (b) Es ist $U \cup W$ genau dann ein Unterraum, wenn $U \subset W$ oder $W \subset U$ gilt. (3 Punkte)
- 2. Es sei V ein reeller Vektorraum und U_1 und U_2 Unterräume von V.

Man nennt $U_1 + U_2 := \{ \vec{u}_1 + \vec{u}_2 : \vec{u}_1 \in U_1, \vec{u}_2 \in U_2 \}$ die Summe von U_1 und U_2 .

Falls $U_1 \cap U_2 = \{\vec{0}\}$ gilt, heißt diese Summe direkt und man schreibt $U_1 \oplus U_2$. Zeige:

- (a) Es ist $U_1 + U_2$ ein Unterraum von V.
- (b) Es ist $U_1 + U_2$ der kleinste Unterraum von V, der $U_1 \cup U_2$ enthält.
- (c) Für alle $\vec{u} \in U_1 + U_2$ ist die Darstellung $\vec{u} = \vec{u}_1 + \vec{u}_2$ mit $\vec{u}_1 \in U_1$ und $\vec{u}_2 \in U_2$ genau dann eindeutig, wenn $U_1 + U_2$ eine direkte Summe ist. (6 Punkte)
- 3. Es sei V ein reeller Vektorraum mit den Unterräumen $V_1,\,V_2$ und $V_3.$ Zeige:
 - (a) Es gilt $(V_1 \cap V_3) + (V_2 \cap V_3) \subset (V_1 + V_2) \cap V_3$.
 - (b) Falls $V_1 \subset V_3$ gilt, so folgt $(V_1 \cap V_3) + (V_2 \cap V_3) = (V_1 + V_2) \cap V_3$.
 - (c) Gib ein Beispiel mit $V_1 \not\subset V_3$ und $V_2 \not\subset V_3$ sowie $(V_1 \cap V_3) + (V_2 \cap V_3) \subsetneq (V_1 + V_2) \cap V_3$ an.

(5 Punkte)

4. Im \mathbb{R}^3 seien die Vektoren

$$\vec{x} = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}, \quad \vec{y} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \vec{z} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix} \quad \text{und} \quad \vec{a} = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

gegeben.

- (a) Ist der Vektor \vec{a} als Linearkombination von \vec{x} , \vec{y} und \vec{z} darstellbar?
- (b) Ist der Vektor \vec{a} auch eindeutig als Linearkombination von \vec{x} , \vec{y} und \vec{z} darstellbar?
- (c) Bestimme die zugehörigen Koeffizienten.

(4 Punkte)

- 5. Es sei V ein reeller Vektorraum.
 - (a) Zeige: Sind $\vec{u}, \vec{v}, \vec{w} \in V$ linear unabhängig, so sind auch $\vec{u} + \vec{v}, \vec{v} + \vec{w}$ und $\vec{u} + \vec{w}$ linear unabhängig.
 - (b) Es sei $V = \mathbb{R}^2$. Zeige, dass zwei Vektoren $(a, b)^T$, $(c, d)^T \in \mathbb{R}^2$ genau dann linear abhängig sind, wenn ad bc = 0 gilt.
 - (c) Es sei $V = \mathbb{R}^3$. Für welche $t \in \mathbb{R}$ sind die Vektoren $(t,1,0)^T$, $(1,t,1)^T$ und $(0,1,t)^T$ linear abhängig? (6 Punkte)