

Übungen zur Angewandten Diskreten Mathematik

Prof. Dr. Helmut Maier, Dr. Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Freitag, 21. November 2014, vor den Übungen

1. Auf der "Arithmetik an der A7" im Januar 2014 in Hannover wurde folgendes Problem diskutiert: Es sei $n \in \mathbb{N}$ und

$$n = \sum_{j=1}^{k} \alpha_j \cdot 10^{k-j}$$

und schreiben $(n) = (\alpha_1, \dots, \alpha_k)$ als Folge der Ziffern und notieren $(x) \triangleleft (y)$ für den Fall, dass die Folge (x) eine Teilfolge von (y) ist. Es sei M eine Menge mit $M \subset \mathbb{N}$.

Wir definieren die Menge $S(M) = \{m \in M : \{n \in M, n < m : (n) \triangleleft (m)\} = \emptyset\}.$

Im folgenden betrachten wir die Menge der Primzahlen, also $M = \mathbb{P}$.

- (a) Bestimme alle Elemente $p \in \mathcal{S}(\mathbb{P})$ mit $p \leq 20$.
- (b) In welchen Restklassen modulo 10 liegen alle Elemente $p \in \mathcal{S}(\mathbb{P})$ mit $p \geq 10$?
- (c) Bestimme alle Elemente $p \in \mathcal{S}(\mathbb{P})$ mit $p \equiv 1 \mod 10$.

Hinweis:

Im Januar 2012 fand die "Arithmetik an der A7" in Ulm statt.

(10 Punkte)

- 2. Überprüfe die folgenden Kongruenzen auf Lösbarkeit und gib die Lösungen im Falle der Existenz an:
 - (a) $29x \equiv 135 \mod 257$
 - (b) $61x \equiv 7 \mod 244$

(c) $38x \equiv 133 \mod 323$

(9 Punkte)

3. Es sei $p \in \mathbb{P}$ mit p > 2. Zeige, dass für die Mersenne- Primzahlen $M_p \equiv 7 \bmod 24$ gilt. (5 Punkte)