

Übungen zur Linearen Algebra I

Prof. Dr. Helmut Maier, Hans- Peter Reck

Gesamtpunktzahl: 24 Punkte

Abgabe: Mittwoch, 11. Juni 2014, vor den Übungen

- 1. Es sei \mathbb{F}_4 der Körper mit vier Elementen, über dem ein Vektorraum V mittels (V, \mathbb{F}_4, \circ) mit $V = \mathbb{F}_4^3$ definiert ist.
 - (a) Zeige: Sind $\vec{v}_1, \vec{v}_2 \in V$ linear unabhängig, so gibt es 48 Vektoren $\vec{v}_3 \in V$, so dass $\vec{v}_1, \vec{v}_2, \vec{v}_3$ linear unabhängig sind.
 - (b) Zeige: Es gibt vier Vektoren $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in V$, von denen je drei linear unabhängig sind.
 - (c) Es sei \mathcal{A} die Matrix vom Typ 3×4 , deren Spalten gerade die Vektoren $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4 \in V$ sind und \mathcal{C} die Lösungsmenge des LGS $\mathcal{A}\vec{x} = \vec{0}$.

Zeige: C ist ein Code mit Alphabet \mathbb{F}_4 der Länge 4 und Minimalabstand ≥ 4 . (4 Punkte)

- 2. Es sei U ein Unterraum eines Vektorraumes V, und es gelte dim V=n sowie dim U=k mit $k,n\in\mathbb{N}$. Ein Unterraum W von V heißt Vektorraumkomplement zu U in V, wenn $V=U\oplus W$ eine direkte Summe ist, d.h. wenn V=U+W und $U\cap W=\{\vec{0}\}$ gilt.
 - (a) Zeige, dass U ein Vektorraumkomplement besitzt.
 - (b) Bestimme die Dimension eines solchen Komplementes.
- 3. Erweitere die folgenden Mengen linear unabhängiger Vektoren zu einer Basis des Vektorraums V über dem Körper K.

(a)
$$V = \mathbb{C}^2$$
, $\mathcal{B}_1 = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} i \\ 0 \end{pmatrix}, \begin{pmatrix} 2 \\ i \end{pmatrix} \right\}$, $K = \mathbb{R}$

(b)
$$V = \{p = a_0 + a_1 x + a_2 x^2 + a_3 x^3 : a_i \in \mathbb{R}, i = 0, \dots, 3\}, \mathcal{B}_2 = \{1, 1 + x, 1 + x + x^2\}, K = \mathbb{R}$$

(c)
$$V = \mathbb{F}_4$$
, $\mathcal{B}_3 = \{t\}$, $K = \mathbb{F}_2$ (6 Punkte)

4. Es seien $V = \mathbb{R}^4$ und die Unterräume

$$U_1 = \left\langle \begin{pmatrix} 1 \\ 2 \\ 8 \\ 0 \end{pmatrix} \right\rangle, \quad U_2 = \left\langle \begin{pmatrix} 1 \\ 1 \\ 3 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ -2 \\ 2 \end{pmatrix} \right\rangle \quad \text{und} \quad U_3 = \left\langle \begin{pmatrix} 2 \\ 0 \\ 0 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 2 \\ 2 \\ -1 \end{pmatrix} \right\rangle$$

gegeben.

- (a) Bestimme dim U_i für $i \in \{1, 2, 3\}$ sowie dim $(U_1 \cap U_3)$, dim $(U_2 \cap U_3)$ und dim $(U_2 + U_3)$.
- (b) Ist es möglich, aus den Vektoren der Erzeugendensysteme eine Basis von ${\cal V}$ auszuwählen?

(4 Punkte)

(2 Punkte)

5. Es seien V ein Vektorraum über K mit $\mathbb{Q} \subset K$ und $T = \{a_1, \dots, a_n\}$ eine Basis von V.

Wir definieren
$$a_{n+1} := -\sum_{\nu=1}^{n} a_{\nu}$$
.

Zeige: Jeder Vektor $a \in V$ besitzt eine eindeutige Darstellung der Form

$$a = \sum_{\nu=1}^{n+1} \alpha_{\nu} a_{\nu}$$

mit
$$\alpha_1, \dots, \alpha_{n+1} \in K$$
 und $\sum_{\nu=1}^{n+1} \alpha_{\nu} = 0$. (4 Punkte)

- 6. Wir betrachten nochmals die auf Übungsblatt 3 bereits diskutierte Menge der Restklassen $\mathbb{Z}/m\mathbb{Z}$ mit $m \in \mathbb{N}$. Wir definieren auf $\mathbb{Z}/m\mathbb{Z}$ in analoger Weise zur Addition über $\overline{r} \cdot \overline{s} = \overline{r \cdot s}$ eine Multiplikation, wobei wir die Restklasse $\overline{0}$ ausnehmen.
 - (a) Unter welchen Voraussetzungen liegt dann eine Gruppe vor?
 - (b) Ist diese im Falle der Existenz abelsch?
 - (c) Ist $(\mathbb{Z}/m\mathbb{Z}, +, \cdot)$ auch ein Ring bzw. ein Körper? (4 Punkte)