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Abstract

Catastrophe Mortality Bonds are a recent capital market innovation pro-

viding insurers and reinsurers with the possibility to transfer catastrophe mor-

tality risk off their balance sheets to capital markets.

This article introduces a time-continuous model for analyzing and pricing

catastrophe mortality contingent claims based on stochastic modeling of the

force of mortality. In addition, we give an concise survey of past transactions

and explain in detail the structure of the deals and the securities.

Parametrizations of the proposed model based on three different calibra-

tion procedures are derived. The resulting loss profiles and prices are com-

pared to loss profiles provided by the issuers and to market prices, respectively.

We find that the profiles are subject to great uncertainties and should hence be

considered with care by investors and rating agencies. Furthermore, by com-

paring outcomes of risk-adjusted parametrizations based on insurance quotes

and parametrizations implied by market prices, we are able to give a possi-

ble explanation for the relatively fast growth of the market for Catastrophe

Mortality Bonds over the last years.
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1 Introduction

Regulatory changes such as the Solvency II requirements of the European Union
or Phase II of the International Financial Reporting Standard 4 demand new val-
uation methodologies for insurance liabilities. In particular, emphasis is put on
stochastic models for the evolution of the insurer’s investments. Moreover, complex
financial options offered within insurance products, such as guaranteed minimum
benefits within variable annuities or interest rate guarantees within conventional
products, together with an increasing competition from banks, mutual funds, and
other financial service providers ask for more advanced valuation and risk manage-
ment techniques than the “classical actuarial toolbox” offers. Consequently, capital
markets and insurance markets converge as actuaries and capital market investors
are accepting a common language and, more importantly, common definitions and
management strategies for risk (see e.g. Culp (2006)).
Aside from applying similar valuation methodologies, insurers have picked up some
other ideas from the banking world regarding the management of their liabilities: “I
don’t see mortgage risk in banks’ balance sheets. I see them give the service, take the
fees and offload the risk. We need to develop that model in the future because it will
make the industry less capital intensive, both life and non-life.” (Henri de Castries,
Chairman of the management board and CEO of the AXA group). By means of
securitization, i.e. isolating the cash flows that are linked to insurance liabilities and
repackaging them into cash flows that are traded in capital markets, insurers and
reinsurers can step away from their traditional risk warehousing function towards a
business model of risk intermediation. This way, the insurance industry can operate
more efficiently as well as cover the increasing demand for insurance from developing
countries (cf. Cowley and Cummins (2005)). Consequently, in recent years, efforts
to securitize insurance risks have increased. However, the market for Insurance
Linked Securities (ILS) is still small in comparison to the total volume of risk which
worldwide insurance and reinsurance companies carry on their balance sheets (cf.
Group of Thirty (2006)).
One prominent example of ILS, which enables (re)insurers to load extreme tail
risks off their balance sheets, are so-called Catastrophe (CAT) Bonds, the yields
of which depend on the incurrence of certain catastrophic events. They have been
traded since the mid 1990s and present interesting investment possibilities as they
are “low-beta” investments, i.e. their yields show a low correlation to financial
markets, and thus increase diversification possibilities for investors (see Cox et al.
(2000)). Moreover, they offer several potential advantages over alternative methods
for insurers to deal with catastrophic risk (see Niehaus (2002)).
The market for CAT securities and the pricing of CAT bonds have been studied in
various contributions (see e.g. Doherty (1997), Froot (2001) and Lee and Yu (2002),
Young (2004), respectively). However, the amount of capital that has been raised
within securitizations of catastrophic risk remains small (Cummins (2006)). One
possible explanation is that these bonds may be expensive relative to conventional
reinsurance since investors often charge a high risk premium on the bonds (cp.
Bantwal and Kunreuther (1999), Froot (2001)).
A more recent capital market innovation are so-called CAT Mortality Bonds (hence-
forth CATM bonds). While most CAT bonds and other CAT derivatives depend
on underlying loss indices, such as the Property Claim Services (PCS) loss index,
CATM bonds are contingent on less artificial events: They are triggered by a catas-
trophic evolution of death rates of a certain population. Investors’ demand for these
securities seems to be very high, and in contrast to “conventional” CAT bonds, the
number of deals has increased considerably over the last years: There were four
major deals in 2006 with a total volume of more than $1.2 Billion. Surprisingly,
there have been very few contributions in the scientific literature on CATM bonds.
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Lin and Cox (2006) and Cox et al. (2006) develop an asset pricing model for morta-
lity contingent securities in an incomplete market framework with jump processes.
In particular, they propose a pricing method for CATM bonds. Modeling the under-
lying combined mortality index which triggers the bond by a geometric Brownian
motion with a multiplicative jump component and distorting the resulting distribu-
tions by the so-called Wang transform (see Wang (2000) and Wang (2002)), they
are able to explain market outcomes of existing mortality securitizations regarding
investors’ demand by analyzing the implied risk premiums. However, their pricing
model remains static in the sense that no risk-adjusted dynamics are derived. Fur-
thermore, they only focus on a single transaction, namely the first one, and do not
provide an overview on the CATM market thus far; particularly, the stability of
their findings regarding subsequent transactions is not examined. Also, modeling
the index rather than the evolution of the underlying mortality may not be adequate
as the index corresponds to one specific deal.
The present article aims to close this gap in the literature. Aside from provid-
ing a concise overview on the market history, we develop a risk assessment and
pricing model which is based on stochastic modeling of the mortality intensity.
Parametrizations of the proposed model based on three different calibration proce-
dures are derived; we provide the resulting loss profiles as well as prices, and discuss
the consequences of our findings.
The remainder of the text is organized as follows. After explaining the general
structure of CATM bonds based on the so-called Tartan bond1 in Subsection 2.1,
Section 2.2 provides an overview on the development of the CATM securitization
market thus far. In particular, we present the characteristics of all deals until the
end of 2006. In Subsection 3.1, we describe general modeling approaches focusing
on those used in practice. After a short overview on continuous stochastic morta-
lity models in general, we introduce our specification in 3.2 based on the so-called
intensity based approach for credit risk modeling by Lando (1998). Three cali-
bration procedures for this model are presented in Section 4: First, best estimate
parametrizations based on historical data and viewpoints from the demographic
literature are derived; the other two risk-adjusted parametrizations are extracted
from market prices of term life insurance policies and past catastrophe mortality se-
curitizations, respectively. Section 5 presents our results; we provide prices in terms
of excess spread levels, loss probabilities, as well as expected losses corresponding
to the parametrizations derived in Section 4 and compare our results to loss profiles
provided by the issuers and market prices. Moreover, similarities to credit risky
securities are pointed out. After a discussion of our findings, Section 6 concludes
and provides an outlook on future research.

2 Market Overview

Securitization transactions are usually highly complex and involve several parties
such as lawyers, rating agencies, trustees, etc. Providing a general overview on secu-
ritization transactions is far beyond the scope of this article (see e.g. Deacon (2006)
or Jeffrey (2006) for an introduction to securitization and Asset Backed Securities
(ABS) in general, or Cowley and Cummins (2005) for life insurance securitization).
The basic idea is to isolate and pool cash flows that are linked to certain assets or
liabilities, repackage them into cash flows which support certain related securities,
and issue these securities to capital markets.
Within CATM securitizations, insurers and reinsurers transfer catastrophe morta-
lity risk, which arises from a possible occurrence of, for example, severe pandemics

1Tartan Capital Ltd. Series 1 arranged by Goldman Sachs for the reinsurer Scottish Re Group
Ltd. (Scottish Re), issued in May 2006.
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Figure 1: Tartan deal structure (Source: Linfoot (2007))

or catastrophic terrorist attacks, from their liability side to the capital market by
means of CATM bonds. Traditionally, these risks were shared between insurers and
reinsurers via reinsurance or retrocession. However, in contrast to these classical
approaches, securitization avoids credit risk (see also Niehaus (2002)). Moreover,
a traditional risk transfer may be more expensive as possible transaction partners
usually already have this type of risk in their books, and thus their appetite for it
is limited. Also, retrocession would require the disclosure of the own business to
possible competitors.
Thus far, there have been five public transactions. While they differed in their
coverage area, credit ratings, or spread levels, the basic structure is the same: A
certain underlying mortality index based on the mortality experience in the coverage
area is defined; if this index exceeds certain pre-specified levels, the bond is triggered,
i.e. the investors start to loose their principal. As it is cumbersome to present the
characteristics of all available CATM bonds at the same time, in Subsection 2.1, we
detail out the structure of one representative example, namely the third of all five
transactions: the Tartan transaction arranged by Goldman Sachs for the reinsurer
Scottish Re (cp. Linfoot (2007)). In Subsection 2.2, we then compare this deal to
the other transactions so far.

2.1 Structure of a CATM bond based on the Tartan trans-

action

In Figure 1, the structure of the Tartan transaction is illustrated. SALIC2, a mem-
ber of the Scottish Re Group Ltd., entered into a counter-party agreement with the
special purpose vehicle Tartan Capital Ltd. (Tartan). Under this agreement Tartan
is obligated to make payments to SALIC in case a certain index is triggered. In
return, SALIC agreed to pay Tartan a certain fixed amount quarterly. In order to
raise funds for the conditional payments to SALIC, Tartan issued and sold bonds to
capital market investors; the proceeds were used to buy eligible securities which act
as collateral. As these collateral assets could decrease in market value, Tartan went
into a swap agreement with Goldman Sachs, who have also structured the deal:

2Scottish Annuity & Life Insurance Company (Cayman) Ltd.
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In return for the variable investment income from the collateral account, Goldman
Sachs agreed to pay the 3-month LIBOR3 minus a fee of 10 basis points (bps).
Tartan issued 2 series of 3-year notes: a $75 million (mn) (Class A) and an $80
mn (Class B) tranche with different risk exposures. In particular, within the Class
A notes, both interest payments and the investors’ principal are guaranteed by the
monoline insurer Financial Guaranty Insurance Co. (FGIC). Therefore, the only
risk that investors in the Class A notes have to face is credit risk. In return for the
guarantee, FGIC received a premium from Tartan. Class B investors, on the other
hand, are actually exposed to catastrophe mortality risk, i.e. they will lose interest
and principal in case of a trigger event.
The bonds and thus the payment to SALIC are triggered if a well defined paramet-
ric index exceeds a certain level. This so-called combined mortality index (CMI) is
contingent on the mortality experience of certain populations, and the objective is
to design it such that the actual catastrophe mortality exposure of the protection
buyer (SALIC / Scottish Re) is reflected as well as is possible. Within the Tartan
transaction, this index is solely based on US population mortality. For each rel-
evant point in time (calendar year) t, the mortality rates, i.e. the probabilities to
decease within the following year for certain partitions of the whole population as
reported from the Centers for Disease Control and Prevention (CDC), are weighted
to determine a weighted population death rate q̂t:

q̂t =
∑

all x

ωx,m q̂m,x,t + ωx,f q̂f,x,t, (1)

where q̂m,x,t and q̂f,x,t are the mortality rates for age group x in calendar year
t for males and females, respectively, and ωx,m / ωx,f are the weights applied
to the corresponding mortality rates. The weights for the Tartan transaction are
displayed in Table 1. Now, the actual index at time t, say it, is derived from the

Age Groups (x) Age Weights: Male (ωx,m) Age Weights: Female (ωx,f)
1–4 0% 0%
5–14 0.1% 0.1%
15–24 0.4% 0.4%
25–34 8.2% 6.1%
35–44 26.0% 12.7%
45–54 21.4% 7.8%
55–64 9.8% 2.7%
65–74 2.3% 0.8%
75–84 0.6% 0.4%
84+ 0.1% 0.1%
Total 68.8% 31.2%

Table 1: Gender and age weights for the Tartan transaction (Source: Linfoot (2007))

underlying weighted population death rates at times t and t − 1 as well as the
weighted population death rates for the reference years 2004 and 2005, which are
determined according to Equation (1), by the relationship

it =
1
2 (q̂t + q̂t−1)

1
2 (q̂2005 + q̂2004)

. (2)

Since the index relies on the experience of two consecutive years and since Tartan
issued bonds with a three year tenor, there are only two dates at which the index is

3London Interbank Offered Rate.
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calculated and at which the principal may be reduced due to a potential catastrophic
event: at the end of 2007 for the years 2006 and 2007, and at the end of 2008 for the
years 2007 and 2008. In particular, this implies that investors cannot lose principal
in the first two years. However, the data for the index calculation will usually
not be available until awhile after the respective measurement dates. Therefore,
Tartan has the possibility to extend the tenor of the notes up to a maximum of 30
months, but the securities cannot suffer any losses due to a possible event within
the extension period, and investors will receive ongoing interest payments.
Furthermore, only if the index exceeds a certain level, the so-called trigger level or
attachment point a, will investors lose principal. If the index exceeds the so-called
exhaustion level or detachment point d, their complete principal will be lost. For
index levels between the attachment and detachment points, the loss percentage of
the principal at time t = 2007, 2008, lt, is determined as follows:

lt = min

{

max

{

lt−1,
it − a

d − a

}

, 100%

}

, (3)

where l2006 := 0. Coupons are only paid on the remaining principal. Table 2
provides the trigger and exhaustion levels as well as the interest on the Tartan
notes.

Class A Notes Class B Notes
Tranche Size $75mn $80mn
Term 3 years 3 years
Trigger Level 115% 110%
Exhaustion Level 120% 115%
Coupon (bps) LIBOR+19 LIBOR+300
Rating4 Aaa/AAA Baa3/BBB

Table 2: Program Summary of the notes issued by Tartan (Source: Linfoot (2007))

Interest on the notes is paid quarterly. It is worth mentioning that the spread levels
are not fixed from the beginning of the marketing phase of the notes – they depend
on investors’ demand and market conditions.

2.2 Market Development5

As mentioned earlier in this section, Tartan was the third public catastrophe mor-
tality transaction. Table 3 provides an overview on all such transactions so far.
Vita Capital Ltd. (Vita I) was the first CATM securitization transaction out of
the $2 billion (bn) multi-currency shelf program6 established by Swiss Reinsurance
Company (Swiss Re). While the latter four deals are still ongoing, Vita I matured in
the end of December 2006 and was not extended as there was no extreme mortality
event during the risk period. In contrast to the Tartan deal, it only had one single
tranche and the underlying index was based on the population from several countries
rather than just one.7 When structuring the transaction, Swiss Re wanted to involve

4Rating at Issuance from Moody’s Investors Service (Moody’s) and Standard and Poor’s (S&P).
5Based on Logisch (2007).
6Shelf program means that not the total capacity is issued initially – some “sits on a shelf”.

Establishing a shelf program reduces costs for future transactions as the legal work, modeling, etc.
are done for a relatively large amount. Moreover, it reduces the time from the decision to access
the capital market and the closure of the deal enabling the issuer to quickly react when protection
is needed or investors’ appetite is large enough to absorb the extra issued bonds.

7In this case, the combined mortality index is defined as the weighted average over the in-
dices from the individual countries determined according to Equation (2) with country weights as
provided in Table 3.
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an American monoline insurer to “wrap” the bond, but due to regulatory issues no
cooperation was established. Swiss Re managed the challenge of selling this new
type of risk to the market, and the notes were placed successfully.
About 18 months after Vita I, again Swiss Re came to the market with their sec-
ond transaction, Vita Capital II Ltd. (Vita II). In contrast to Vita I, Vita II has
three tranches with different, decreasing seniorities due to decreasing trigger and
exhaustion levels, but all of them are of a lower seniority than the single Vita I
tranche. Despite this fact, the spread level within the first transaction exceeds the
level of the Class B note from Vita II. This tight pricing was possible since the
bond was over-subscribed indicating that within Vita I, investors had demanded a
considerable novelty premium, i.e. an additional premium for the unknown asset
class. However, Swiss Re did not seem to be surprised by this fact since they chose
to issue the riskier and potentially more expensive tranches after the market had
got acquainted with this type of security. As indicated in Table 3, S&P upgraded
all three Vita II classes by one notch in April 2006. According to Standard and
Poor’s (2006), this upgrade was mainly due to the availability of new mortality data
showing mortality improvements, advances in vaccine research, and continuing work
of governments regarding their pandemic preparedness plans.
As mentioned above, Tartan was the third CATM transaction, and so far the only
one without involvement of Swiss Re. This first issue out of Scottish Re’s $300mn
shelf structure was also the first issue with a tranche wrapped by a monoline insurer.
In comparison to the Vita II Class D tranche, the non-guaranteed Class B note is
priced considerably higher even though both have the same trigger and exhaustion
levels. This may be due to the fact that, in contrast to the deals before, Tartan
is solely based on US mortality experience and, thus, there is no diversification
effect among several populations. However, the more important reason was likely
timing: During the marketing period of the transaction in the beginning of 2006, the
international press had paid an increased attention to possible outbreaks of Avian
Flu and to pandemics in general (see e.g. the Pandemic Theme Index provided by
Conquest Investment Advisory AG).
Six months after Tartan, once the public discussions regarding pandemic fears had
calmed down, the fourth series of CATM bonds were issued by OSIRIS Capital
Plc (OSIRIS). Again, Swiss Re was involved as structurer and lead underwriter
for the underlying EUR1.0bn shelf program but not as the protection buyer; the
program has been structured as a securitization for the catastrophe mortality risk
within the books of AXA Cessions (AXA), a subcompany of the French AXA
group. Therefore, it is the first deal which involves a primary insurer, and for the
first time, the underlying CMI is not dominated by US mortality experience. Aside
from Swiss Re, IXIS Corporate and Investment Bank (IXIS) and Lehman Brothers
Inc. (Lehman) were invited to act as co-underwriters. According to a press release
from Swiss Re on 11/13/2006, investors’ demand was very strong and all classes were
oversubscribed. Euroweek (2006) even reports that all tranches were increased in
size due to high investor demand and that all classes were priced well within the price
guidance. However, even though the Baa2/BBB rated Class C tranche was priced
tighter than the Baa3/BBB+ Class B note from Tartan, its price is still far from the
level of the similar Vita II Class D Bond. This may be a consequence of increased
investors’ expectations after the Tartan transaction. The high demand was mainly
due to the fact that in addition to specialized CAT bond investors, Swiss Re, IXIS,
and Lehman also approached traditional ABS investors. Furthermore, with the
Ba1/BB+ rated Class D note a non-investment grade tranche was offered within
a CATM securitization for the first time. Thus, the deal has also drawn attention
from hedge funds. All in all, 50% of the bonds were sold to asset managers, 20% to
banks, and 25% to hedge funds (cp. International Financing Review (2006)).
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Vita Capital Ltd. Vita Capital II Ltd. Tartan Capital Ltd.

Issued Nov. 2003 Apr. 2006 May 2006

Class8 A B C D A∗ B
Tranche Size $400mn $62mn $200mn $100mn $75mn $80mn
Arranger Swiss Re Swiss Re Goldman Sachs
Protection for Swiss Re Swiss Re Scottish Re
Rating9 A3/A+ Aa3/A-∗∗ A2/BBB+∗∗ Baa2/BBB-∗∗ Aaa/AAA Baa3/BBB+
Attachment Point 130% 120% 115% 110% 115% 110%
Detachment Point 150% 125% 120% 115% 120% 115%
Coupon (bps) LIBOR+135 LIBOR+90 LIBOR+140 LIBOR+190 LIBOR+19 LIBOR+300
Expected Maturity 4 years 5 years 5 years 5 years 3 years 3 years
Covered Area US 70%, UK 15%, F 7.5%, US 62.5%, UK 17.5%, US 100%

I 5%, CH 2.5% D 7.5%, J 7.5%, CAN 5%

Osiris Capital Plc.

Issued Nov. 2006
Class B1∗ B2 C D
Tranche Size Euro 100mn Euro 50mn $150mn $100mn
Arranger Swiss Re
Protection for AXA
Rating Aaa/AAA A3/A- Baa2/BBB Ba1/BB+
Attachment Point 114% 114% 110% 106%
Detachment Point 119% 119% 114% 110%
Coupon (bps) EURIBOR+20 EURIBOR+120 LIBOR+285 LIBOR+500
Expected Maturity 4 years 4 years 4 years 4 years
Covered Area F 60%, J 25%, US 15%

Vita Capital III Ltd.

Issued Dec. 2006
Class A-IV∗ A-V∗ A-VI∗ A-VII B-I B-II B-III BV∗ BVI∗

Tranche Size $100mn $100mn Euro 55mn Euro 100mn $90mn $50mn Euro 30mn $ 50mn Euro 55mn
Arranger Swiss Re
Protection for Swiss Re
Rating Aaa/AAA Aaa/AAA Aaa/AAA Aa2/AA- A1/A A1/A A1/A Aaa/AAA Aaa/AAA
Attachment Point 125% 125% 125% 125% 120% 120% 120% 120% 120%
Detachment Point 145% 145% 145% 145% 125% 125% 125% 125% 125%
Coupon (bps) LIBOR+21 LIBOR+20 EURIBOR+21 EURIBOR+80 LIBOR+110 LIBOR+112 EURIBOR+110 LIBOR+21 EURIBOR+22
Expected Maturity 4 years 5 years 4 years 5 years 4 years 5 years 4 years 5 years 4 years
Covered Area US 62.5%, UK 17.5%, D 7.5%, J 7.5%, CAN 5%

Table 3: Deal Comparison (Source: New Issue Reports from S&P and Moody’s; Bloomberg data)

8The tranches marked with ∗ are guaranteed by monoline insurers.
9Rating at Issuance from Moody’s / S&P – the ratings marked with ∗∗ were upgraded by S&P.
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In late December of 2006, Vita Capital III Ltd. (Vita III) issued the third series
of bonds out of Swiss Re’s shelf program with the key objective to replace Vita I,
which had expired in the same month. However, the total amount was increased
in comparison to Vita I. All offered tranches are of a high seniority with all ratings
above A, and they were priced similarly to the comparable OSIRIS notes. It is
worth noting that five of the nine tranches are wrapped by three different monoline
insurers.
In conclusion, it appears that in the relatively short history of the CATM market,
the spectrum of investors has broadened considerably. While the initial transactions
were mainly geared towards specialized CAT bond investors, more and more fixed-
income and traditional ABS investors seem to be interested. This may be reasoned
with the low correlation or the one-way relationship with debt capital and equity
markets and the resulting diversification possibilities, but the attractive risk-return
profile when comparing CATM bonds to similar rated Mortage Backed Securities
(MBS) or Collateralized Debt Obligation (CDO) tranches certainly plays a role,
too.10 For example, an anonymous investor explained that he is investing in CATM
bonds because of the relative high spread margins and added: “If there will be
one day such a severe world-wide pandemic that one of the bonds I bought will
be triggered, there will be more important things to look after than an investment
portfolio.”
In order to estimate and analyze the risks within CATM bonds, investment man-
agers started hiring actuaries to act as specialists on insurance risks. However, so
far, the market participants mainly rely on the advice of so-called modeling firms.
In the next section, after providing an overview of these consultants and their mod-
eling approaches, we introduce a model which can be used to price and analyze
extreme mortality risks.

3 Modeling CATM bonds

Aside from the arranger, SPV managers, rating agencies etc., so-called risk mod-
eling firms play an important role in a catastrophe mortality securitization. They
are appointed to calculate loss probabilities and expected losses for the different
tranches of a transaction. These loss profiles are important as, usually, investors
and rating agencies base their decisions on this data. Furthermore, they are in
charge of calculating the combined mortality index; thus, they are also referred to
as calculation agents. To date, the global acting actuarial consultant Milliman Inc.
(Milliman) was hired as the calculation agent in all transactions so far. However,
within the Vita III transaction, the US based company Risk Management Solutions
(RMS) was also involved as an adviser for the monoline insurer Financial Secu-
rity Assurance Inc. (FSA). The modeling approaches of Milliman and RMS differ
considerably: While Miliman bases their analysis on an actuarial model, RMS uses
an epidemiological approach. Although no mathematical details on their respective
models can be presented as to our knowledge these are not published, an overview
of their approaches based on the available information is provided in Subsection 3.1.
In Subsection 3.2, we present our approach based on stochastic mortality modeling.

10The term one-way relationship means that adverse events in the financial market have no
impact on the performance of a CATM bond, whereas a severe pandemic could affect the financial
markets considerably.
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Figure 2: RMS Pandemic Influenza Model Framework (Source: Logisch (2007))

3.1 General Modeling Approaches

RMS: An Epidemiological Approach11

RMS reports that their catastrophe mortality model is based on epidemiological
data and research rather than historical data, and that they were supported by
world-wide experts in influenza research when developing their methodology. How-
ever, historical data is used to test the model. It is worth mentioning that their
model does not include man made catastrophes such as terrorism acts.
Within their model, event tree techniques are applied to produce 1,890 probability
weighted scenarios; Figure 2 shows the underlying event tree. Regarding the prob-
ability of an outbreak, RMS mentions that there have historically been an average
of three pandemics per century. Thus, they assume an annual outbreak probabil-
ity of 3-4%. However, as industrialized livestock husbandry and other conditions
fostering mutations of viruses have increased in recent decades, it is possible that
the situation has worsened. Furthermore, the ongoing scientific debate of whether
the risk of a pandemic is increased due to H5N1 prevalence in bird populations
(the so-called Avian Flu) is another indication that the historical probability may
be too low. Therefore, RMS advises using levels of 5% and 6.7% for stress-testing
purposes.
The parameters determining infectiousness and lethality are fixed based on influenza
research. In particular, they researched what proportion of the population is sus-
ceptible to a virus, which proportion will be affected, and what the corresponding
recovery rates are. More precisely, the demographic impact of a virus is considered
in their model as usually the very young and the elderly – those with a weaker
immune system – are most affected by a virus. However, due to so-called “cytokine
storms”, i.e. potentially fatal immune reactions, a strong immune system may rather
be a disadvantage than an advantage. For example, within the Spanish Flu from
1918, the most severe pandemic in the last century, a disproportionate amount of
young adults had been killed, which is believed to be the consequence of cytokine
storms. Furthermore, human deaths from H5N1 usually involve cytokine storms.12

The location of an outbreak is another important influence factor within the RMS
model: Five world regions are being distinguished, and a regional as well as an in-
terregional spread rate is modeled. For example, the underlying data includes maps

11Based on Logisch (2007), who reports a web presentation held by an RMS modeling expert in
January 2007 as his primary source.

12From www.wikipedia.org, 02/09/2007.
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Figure 3: Milliman Model Overview (Source: Logisch (2007))

of the connections between international airports. According to RMS, their spread
model yields results which are consistent with the models used by the US govern-
ment, the UK government, and the World Health Organization. The location of the
outbreak also determines the effectiveness of the country-specific emergency plans
and countermeasures as well as vaccine production scenarios and their probabilities.
RMS claims consistency of their model with all historic data. In their opinion, a
severe pandemic would arise from the combination of a virulent and infectious virus,
a high incidence of cytokine storms, a delayed vaccine, and a failed government
response.

Milliman: An Actuarial Approach13

As noted above, Milliman’s approach differs considerably from the one presented
by RMS as Milliman models the future evolution of mortality with actuarial and
statistical methods based on historical data. As shown in Figure 3, their framework
consists of three basic components:

1. The Baseline Component models random fluctuations within annual morta-
lity rates as long as no catastrophic event occurs. Using time-series models,
they develop stochastic forecasts of the mortality evolution for every coun-
try covered in the combined mortality index which are applied to produce
simulations of the weighted combined death rates (cp. Equation (1)).

2. The Disease Component captures the excess mortality due to a pandemic
outbreak. The frequency and severity of an outbreak are modeled separately
based on data from past pandemics. The same model is used for each relevant
country, and it is assumed that pandemics occur simultaneously in these coun-
tries. Furthermore, they assume that these events are independent between
calendar years.

3. The Terrorism Component produces simulations for mortality shocks arising
from a terrorist attack based on a multi-level trinomial tree. In each level,
there are three possible outcomes with different probabilities: “Failure”, i.e.
no deaths have occurred; “Success” of the attack, so a random number of
deaths within a given range is assumed; or “Escalate”, which means that
the attack was more severe than attacks corresponding to the current level
implying that the model jumps to the next level with a higher range of possible
death counts. According to Linfoot (2007), the probabilities and ranges are
calibrated to the terrorism model from the US State Department (for 1999-
2003) and the National Counterterrorism Center (for 2004).

For each basic component 250,000 simulations are produced and combined to esti-
mate annualized as well as cumulative expected losses and several loss probabilities

13Based on Linfoot (2007) and Logisch (2007).
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such as the probability that the trigger level of a certain tranche will be reached.
Even though the terrorism component only has a marginal impact for these estima-
tions, it was included into Milliman’s model since the Vita II deal upon investors’
requests. Furthermore, mortality shocks due to natural disasters are not modeled
explicitly as “such events would not have resulted in a large enough number of deaths
to cause a loss to any Class of the Notes [within the Tartan deal].”14

As noted above, Milliman’s model was the primary basis for investors’ and rat-
ing agencies’ decisions within all CATM transactions thus far since Milliman was
appointed as the risk modeling firm in each deal. The reason for this “monopoly-
position” is probably that they were the first to have a model for catastrophe mor-
tality risk which was accepted by the market. Since they are part of several ongoing
shelf programs and since investors have become accustomed to seeing Milliman in-
volved in the deals, it is very likely that they also will play a dominant role in the
future. However, rumors in the market indicate that RMS is currently working on a
transaction together with a large American insurer. As RMS reports substantially
higher loss probabilities than Milliman, the consequences of an involvement of RMS
in future transactions may considerably change current spread levels.
While RMS’ idea of building an epidemiological model is interesting, from a math-
ematical point of view the massive amount of necessary parameters is problematic.
For example, when including parameter uncertainty or when conducting sensitivity
analyses, confidence bands for the loss probabilities become very large; therefore,
we will follow Milliman’s approach and present an actuarial model in the next sub-
section.

3.2 Stochastic Mortality Modeling

In order to analyze and eventually price CATM bonds, it is necessary to model
the underlying combined mortality index. While Lin and Cox (2006) and Cox et
al. (2006) directly model the weighted population death rate from Equation (1),
we consider modeling the underlying cohort specific death rates. Understanding
the index as a function of these death rates is, in our opinion, more adequate as
the combined index corresponds to the specifications of a certain transaction, and
therefore, a “direct” model of the index or the weighted population death rate will
naturally be bound to the deal in view. Furthermore, we believe that the more
basic approach coheres better with the structure of the problem and permits the
consideration of more general transaction structures.
Several stochastic mortality models have been proposed in the literature – for an
overview and a categorization of continuous mortality models, see Cairns et al.
(2006). By replacing formerly constant parameters in the Gompertz mortality law15

with diffusion processes, Milevsky and Promislow (2001) were among the first to
propose a stochastic hazard rate, which is also referred to as the (spot) force of
mortality or the mortality intensity. Their idea has been extended and generalized in
more recent contributions; in particular, the application of so-called affine processes,
which are well known from interest rate and credit risk modeling, to stochastic
mortality modeling has been brought forward by a number of authors due to their
analytical tractability (see e.g. Biffis (2005), Dahl (2004), or Schrager (2006)).
We also make use of affine structures but focus on our particular model rather than
providing a general overview on (affine) mortality models as this is beyond the scope
of this article – we refer the interested reader to Biffis (2005). Furthermore, the

14cp. Linfoot (2007).
15Mortality Laws are certain parametric functions which are used to model human mortality;

see Gompertz (1825) for a classical example or Bowers et al. (1997) for an overview on mortality
laws.
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underlying force of mortality can be defined using several approaches. For exam-
ple, Cairns et al. (2006) define the involved quantities via prices on a hypothetical
exogenous mortality bond market, whereas Biffis et al. (2005) define the mortality
intensity as the so-called hazard process of the time of death τ . Here, we take a
rather simple path and, similarly to Miltersen and Persson (2005), define the force
of mortality based on the so-called intensity based approach from Lando (1998),
which is well-known from credit risk modeling and arises as a special case from the
approach presented in Biffis et al. (2005).
For the remainder of the article, we fix a time horizon T ∗ and a filtered proba-

bility space
(

Ω,F ,F = (Ft)0≤t≤T∗ , P
)

where F is assumed to satisfy the usual

conditions, i.e. P -completeness and right continuity. Moreover, we fix a specific
underlying population of individuals at inception, where each individual has a cer-
tain age denoted by x0. Following Lando (1998), we further assume that an F-
adapted, d-dimensional stochastic process X = (Xt)0≤t≤T∗ , which is assumed to be
right continuous with left limits (RCLL), as well as a positive, continuous function
µ(·, ·) : R × R

d → R+ are given. We define the time of death τx0
of an individual i

of age x0 as the first jump time of a Cox-process with intensity µ(x0 + t, Xt), i.e.

τx0
= inf

{

t :

∫ t

0

µ(x0 + s, Xs) ds ≥ Ei

}

, (4)

where Ei is a unit-exponentially distributed random variable independent of X and
Ei and Ej are assumed to be independent for two different individuals i 6= j. As a
consequence, the mortality intensity µ(xt, t) of an xt year old person at time t is,
in our setup, a function of the age, xt, and of the realization of X at time t.
Considering only one single insured for now, let the subfiltrations G = (Gt)0≤t≤T∗

and H = (Ht)0≤t≤T∗ be given as the augmentations of the filtration generated by

(Xt)0≤t≤T∗ and
(

1τx0
≤t

)

0≤t≤T∗
, respectively, that is – neglecting the null sets –

Gt = σ {Xs, 0 ≤ s ≤ t}, Ht = σ
{

1τx0
≤s, 0 ≤ s ≤ t

}

, and we set Ft = Gt ∨Ht.
From Equation (4), we can derive the (T − t)-year survival probability at time t for
an xt = x0 + t year old individual as

T−tp
(t)
xt

:= E
[

1τxt
>T

∣

∣Gt

]

= E

[

exp

{

−

∫ T

t

µ (x0 + s, Xs) ds

}
∣

∣

∣

∣

∣

Gt

]

. (5)

The results of Lando (1998) yield

E
[

1τx0
>T

∣

∣Ft

]

= 1τx0
>t T−tp

(t)
x0+t

and, particularly,

E
[

1τx0
>T

]

= E
[

1τx0
>T

∣

∣F0

]

= T p(0)
x0

.

Based on this insight, we can now use the “classical actuarial toolbox” to model and
price insurance products. Therefore, in addition to survival probabilities, we will
also need death probabilities and, in particular, mortality rates: The (T − t)-year
death probability at time t for an xt = x0 + t year old individual is

T−tq
(t)
xt

= 1 − T−tp
(t)
xt

,

and, as usual, we set q
(t)
xt

= 1q
(t)
xt

.
In order to specify a particular model, it is now sufficient to specify a certain
RCLL process X as well as a function µ(·, ·). Dahl et al. (2006) propose mortality
intensities µ(xt, t), xt = x0 + t, of the form

µ(xt, t) = µ(x0 + t, Xt) = µ0(x0 + t)Xt,
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where X is a time in-homogeneous mean reverting square root diffusion process,
the parameters of which can also depend on x0, and the initial mortality intensities
µ0 are of the Gompertz-Makeham form. However, as pointed out by Lin and Cox
(2006), “mortality jumps” arising from catastrophes such as pandemics should be
taken into account when modeling the evolution of mortality, particularly when
focusing on catastrophic mortality risk. Therefore, we extend the model by Dahl et
al. (2006) on the one hand by including mortality jumps in the form of a Gamma
Ornstein-Uhlenbeck process Γ but restrict it by choosing a time homogeneous mean
reverting square root diffusion Y and considering a simpler, pure Gompertz form for
the initial mortality intensities. Thus, we choose X = (Y, Γ) and propose mortality
intensities of the form

µ(xt, t) := µ(xt, Yt, Γt) = Yt eb xt+c + Γt, (6)

where b, c ∈ R, Y evolves according to the stochastic differential equation (SDE)

dYt = α (β − Yt) dt + σ
√

Yt dWt, Y0 > 0 (7)

and Γ is governed by the SDE

dΓt = −κΓt dt + dJt, Γ0 = 0.

Here α, β, σ, κ are positive constants, W is a standard one dimensional Brow-
nian motion, and J is a compound Poisson process with intensity λ and positive,
independent Exp(ζ)-distributed jumps. In particular, the proposed mortality inten-
sities in (6) have an affine structure which enables us to provide a semi-analytical
representation of the survival probabilities implied by them. We have

T−tp
(t)
x0+t = E

[

exp

{

−

∫ T

t

µ (x0 + s, Ys, Γs) ds

}∣

∣

∣

∣

∣

Gt

]

= exp
{

u(T − t) + v(T − t)Yte
b(x0+t)+c

}

exp

{

−
Γt

κ

(

1 − e−κ(T−t)
)

−
λ(T − t)

ζκ + 1

}

exp

{

λζ

ζκ + 1
log

[

1 +
1

ζκ

(

1 − e−κ(T−t)
)

]}

, (8)

where u and v satisfy the following Riccatti ordinary differential equations (ODEs)

u′(x) = αβ v(x) eb(x0+T−x)+c, u(0) = 0,

v′(x) = −1 − (α − b) v(x) +
1

2
σ2 v2(x) eb(x0+T−x)+c, v(0) = 0. (9)

See the Appendix for a derivation of Equation (8). Therefore, by solving the ODEs
from Equation (9), we are able to compute survival probabilities and then, as men-
tioned earlier in this section, use the “classical actuarial toolbox” to price life in-
surance products.
However, so far we have fixed a specific probability measure P , even though different
investors may have different opinions regarding the evolution of the future mortality
implying different individual measures. Furthermore, prices for mortality contingent
claims may include a risk premium for the inherent risk, which also leads to a
different probability measure, the so-called pricing measure Q. Informally, by a
change of measure, the structure of the model can be altered considerably: Not
only could it affect the intensity process µ(·, ·), but a market price for unsystematic
or idiosyncratic risk may be included (see e.g. Biffis et al. (2005)). We will not
consider loadings for the idiosyncratic component as we regard a whole population.
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However, when limiting the perspective to an insurer’s portfolio, there may (or may
not) be reasons for a premium for unsystematic risk (see Bauer and Russ (2006) for
a discussion of this issue). Furthermore, when allowing for an (almost) arbitrary
change of measure, the structure of the force of mortality could change tremendously
under the “new” measure. Therefore, similarly to Dahl et al. (2006), we restrict
ourselves to choices where the parameters of our setup can be changed but not the
process’ structure.
From a mathematical point of view, the analytical tractability of the presented
model is a valuable and important feature that can be considered as a first advan-
tage. A detailed discussion of our model choice in the context of actual mortality
data is postponed to the next section where different calibration procedures are
presented.

4 Calibration of the Model

When applying a financial model to determine risk-measures such as loss probabili-
ties or expected losses, historical data is usually used to determine a parametrization
which matches the past experience. However, as we are considering the evolution
of mortality, not only past experiences but also the particular properties of mor-
tality have to be taken into account. For example, mortality rates are positive.
Furthermore, the projection of future death rates is not a purely statistical prob-
lem as demographic considerations should also be taken into account. Therefore,
when calibrating our model to historic data in Subsection 4.1, we also incorporate
demographical aspects.
When pricing contingent claims, on the other hand, it is usually not sufficient to
rely on historical data as prices include premiums for the adopted risk. This risk
premium generally cannot be determined endogenously, but it is implied by the
market. Aside from catastrophe mortality securitization transactions, life insurance
prices are subject to catastrophic mortality risk. Hence, a natural approach for
determining a risk-adjusted parametrization for our model is to extract it from
insurance prices. This indirect approach is presented in Subsection 4.2, whereas in
Subsection 4.3 we calibrate the model using data directly from CATM securitization
transactions.

4.1 Backtesting the Model and Historical Parametrizations

Most CATM transactions to date were primarily exposed to US mortality expe-
rience. Therefore, we limit our considerations to American mortality data. Fur-
thermore, as within the combined mortality indices, male death rates are usually
weighted more heavily than female death rates (see Table 1), we focus on male mor-
tality experience; however, when assuming independence of the “regular” mortality
evolution for the different cohorts and a simultaneous occurrence of pandemics in
the relevant countries as in the Milliman model, including female or non-US morta-
lity data is straigth-forward. Without these rather rigorous assumptions, i.e. when
allowing for correlations and diversification effects across genders and populations,
the calibration procedure will get more sophisticated as correlations need to be es-
timated and incorporated into the model. We leave the exploration of this issue for
future work.
Our model consists of two independent components: A diffusion part which models
the “regular” evolution of mortality, i.e. when no catastrophic event occurs, and a
jump-part which models pandemics and other catastrophes. In what follows, we
will refer to these two components as the Baseline Component and the Catastrophe
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Component, respectively. The independence of the two components allows us to
carry out the calibration procedures separately.

The Baseline Component

We use annual, periodic male mortality data as available from the Human Morta-
lity Database16 for our considerations. There, age specific death rates m(x, t) are
available for each year t from 1959 until 2003. From these death rates, we derive
the sample mortality intensities µ̃ by the following approximation (for a proper
definition and properties of death rates m(x, t) see e.g. Bowers et al. (1997)):

µ̃(xt + 0.5, t + 0.5) = µ̃(xt + 0.5, t + 0.5)

∫ 1

0
l(xt + s, t + s) ds

∫ 1

0 l(xt + s, t + s) ds

≈

∫ 1

0
l(xt + s, t + s)µ(xt + s, t + s) ds

∫ 1

0 l(xt + s, t + s) ds

= m(xt, t), (10)

where l(xt, t) denotes the exposures, i.e. the number of individuals within the rele-
vant cohort of xt-year aged males at time t. In order to simplify notation, we set
the inception date t = 0 to mid 1959, i.e. 30.06.1959, and thus we are given the spot
intensities µ̃(xt, t) for ages xt ∈ {0.5, 1.5, ..., 100.5} in years t = 0 (1959.5) through
t = 44 (2003.5).17 Within our model, neglecting the influence of the catastrophe
component, the endogenous intensities µ(xt, t) are of the form (see Equation (6))

µ(xt, t) = Yt eb xt+c, (11)

where we conveniently set Y0 = 1. Therefore, µ(x0, 0) = eb x0+c is simply given by
the Gompertz form, and the parameters b as well as c can be determined by an
exponential regression on µ̃(x0, 0); we obtain b = 0.08117916 and c = −8.7674591.
The comparison of the “actual” and model-endogenous mortality intensities is dis-
played in Figure 4. We find that the Gompertz approximation fits the data quite
well. Particularly for years below 85, which are most relevant for the calculation of
the combined mortality index (cf. Table 1), we only see slight deviations.
Similarly, Gompertz forms can be derived for all years t. However, within our
model, b and c are constant over the years. By the relationship

µ(xt, t) = eb xt+c+log{Yt} ⇔ log {µ(xt, t)} − b xt − c = log {Yt} ,

we can estimate log {Yt} as the mean of log {µ̃(xt, t)}−b xt−c, xt = 0.5, 1.5, ... and,
hence, our model µ(xt, t) by Equation (11). For example, in Figure 5, the actual-,
the model-, and the Gompertz-mortality intensities for the years 36 (1995.5) and 43
(2002.5) are shown. Again, we can see that the model and the Gompertz intensities
fit the data well in the relevant ages. However, the growth of the actual intensities
is super-exponential for older ages, i.e. while the curve gets less steep for younger
ages, it increases very fast for older ages. Furthermore, we find that the model and
the Gompertz intensities are very close; for year 36 deviations are hardly noticeable,
and for year 43 the deviations in the more relevant ages below 85 are also rather
small.

16Human Mortality Database. University of California, Berkeley (USA), and Max
Planck Institute for Demographic Research (Germany). Available at www.mortality.org or
www.humanmortality.de (downloaded 11/03/2006 (1959-2002) and 04/11/2007 (2003)).

17Since the mortality index is only slightly affected by ages less than 30 and since there are
structural deviations for very young ages and ages around 20 (so-called mortality humps), we only
consider ages above 30 for the calibration.
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By this procedure, we obtain a time series of the Yt for t = 0, ..., 43, shown in Figure
6, which can be used to estimate the parameters of the square root diffusion process
α, β, and σ by estimators for the Cox-Ingersoll-Ross (CIR) interest rate model (see
Cox et al. (1985)). However, there are two potential pitfalls.
Since we want to separate the influences of catastrophic events, such as pandemics,
and “regular” deviations in mortality, we should not include peaks which are due to
such catastrophic events. In the time between 1959 and 2003, there were two major
occurrences: the so-called Hong-Kong Flu from 1968 and the so-called Russian Flu
from 1977. The first is quite noticeable in our time series as there is a peak at the
data point t = 9 (1968.5). In order to disregard these influences, we smooth the
time series by linearly interpolating these data points by the surrounding ones and
taking the interpolated value instead of the recorded one whenever the interpolated
value is lower.
We cannot observe a mean reversion trend in the time series. This fact could
be interpreted as a problem with the specification or the general structure of the
model, i.e. that a mean reverting process does not present a suitable choice. In
fact, the question whether mean reverting processes are adequate for describing the
evolution of mortality has been raised before in the literature (see e.g. Luciano and
Vigna (2005)).
In this regard, Oeppen and Vaupel (2002) show that the average life expectancy in
the country with the current highest life expectancy has increased almost strictly
linearly at a little under three months per year over the last 160 years. Even
though the annual records were set by only two nations since 1975, namely Iceland
and Japan, the observations for other industrialized countries are quite similar.
Therefore, they do not believe in a barrier for the life expectancy, which would be
implied by a positive mean reversion level. Furthermore, they note that there is a
long history of conjectured barriers, which were all broken only shortly after their
publication.
A continuing linear trend of life expectancies may even require mortality intensities
to decrease faster than observed over recent years: Keyfitz (1985) shows that a
reduction of mortality intensities across all ages of δ % would imply an increase of
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the life expectancy by δ H(t)%, where H(t) is the so-called demographic entropy at
time t, and investigations by Olivieri (2001) and Pitacco (2004) indicate that the
demographic entropy is decreasing towards zero.18

However, Olshansky et al. (2001) believe that a faster decrease of death rates is
very improbable. They argue that, on the one hand, death rates for young ages are
almost at their minimum value.19 Therefore, reductions in high ages would need to
account for increasing life expectancies, which eventually would lead to a so-called
negligible senescence, i.e. mortality rates would remain constant for all attainable
ages and aging would not reduce survival probabilities. According to the authors,
this contradicts basic biological ideas and is thus not likely, if not impossible. On
the other hand, they note that social-political and economical reasons indicate that
life expectancies will not increase continuously.
We do not want to join this discussion (see Kristen (2007) for more details), but
it appears that there is no general agreement among demographers regarding the
future evolution of life expectancies.
Our model does not allow for systematically faster decreasing mortality rates in the
future when choosing a positive mean reversion level β and speed of mean reversion
α.20 Furthermore, when applying the maximum likelihood estimators from Walter
(1996), these result in a negative speed of mean reversion α and a mean reversion
level β greater than 1, which indicates a strictly negative drift term of the process
displayed in Figure 6. We may solve this problem by allowing for a deterministic
function βt as the mean reversion level in our specification of Y (see Equation (7))
rather than a constant. For example, β could be replaced by

βt = e−β1t + β2, β1,, β2 > 0.

A deterministic mean reversion level βt would not affect the analytical tractability
of the proposed model. However, the number of model parameters would increase
complicating calibration procedures. This particularly seems problematic in view of
the limited data availability of only 44 data points. Moreover, even with a constant
mean reversion level, our specification permits modeling all presented demographic
viewpoints by choosing a coherent value of β. Therefore, we restrict ourselves to
constant mean reversion levels, but we intend to further explore the possibility of
choosing a deterministic mean reversion level in future work.
Instead of following only one particular demographic opinion, we will consider three
parametrizations P1, P2, and P3, where the first (β = 0.6) and the third (β = 0)
correspond to the “extreme” points of view from Olshansky et al. (2001) and Oeppen
and Vaupel (2002), respectively, whereas P2 (β = 0.4) is a choice in the middle.
Table 4 displays the resulting parametrizations. The speed of mean reversion α and

β α σ
P1 0.6 0.0325 0.01647
P2 0.4 0.01829 0.01582
P3 0.0 0.00976 0.01552

Table 4: Parametrizations of Y

the volatility σ have been determined by the estimators presented in the Appendix.

18In the literature, this development is usually referred to as rectangularization as the shape
of the mortality intensity curve gets more “rectangular”, i.e. deaths occurrence is concentrated
around a certain modal age (see also Figure 5).

19Demographers generally assume a minimal level of death rates for all age groups, which is
motivated by the natural occurrence of accidents etc.

20This is due to the fact that in our specification, the drift of Y decreases as it gets closer to
the mean reversion level.
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The Catastrophe Component

In Lin and Cox (2006), catastrophic events are modeled as multiplicative shocks on
the combined mortality index. While this approach could be reasoned by the idea
that due to weaker immune systems the elderly population may be most affected
by a possible pandemic in absolute terms, cytokine storms, which are believed to
have been present during severe pandemics such as the Spanish Flu, may lead to a
disproportionate amount of deaths in younger ages (cp. Section 3.1). Furthermore,
man made catastrophic events such as severe terror attacks are not likely to affect
older aged individuals more than younger individuals. Therefore, it seems to be
appropriate to model catastrophic events as additive shocks, and we included the
catastrophe component as an additive jump part to the mortality intensities (see
Equation (6)).
For the calibration of the catastrophe component, we rely on the data from Lin-
foot (2007), where the frequency and severity of historical occurrences of infectious
disease epidemics based on U.S. population experience are provided. This choice is
motivated by the fact that this data was also used by the risk modeling firm Milli-
man within the Tartan transaction, and we want to keep our findings comparable;
discussing the quality or adequacy of the data is beyond the scope of this article.
Linfoot (2007) reports an annual frequency of 7.4% (31 occurrences in the past
420 years) and severities for 5 (6) specific occurrences (model points)21. Therefore,
we set the jump intensity of the compound Poisson process within the catastrophe
component to λ = 7.4%. Percentiles for the likelihood of each model point are
derived by considering the number of equal or worse pandemics in relation to all
occurrences. For example, the Spanish Flu is taken as a 1 in 420 years event, and
given the annual frequency of 7.4%, this yields the 1

420
1

0.074 ≈ 0.032 percentile.
The impact on the force of mortality which a catastrophic event implies τ years
after its first occurrence in our model is given by ∆e−κτ with ∆ denoting the initial
“jump”. We assume that the event basically affects the mortality for one year only,
i.e. that the influence after a year has decreased to only 1% of the initial impact,
and thus set

∆e−κ·1 = 0.01∆ ⇐⇒ κ = 4.6052.

For fitting the exponential distribution of ∆, the given severities for the five model
points are used. However, there the (multiplicative) excess mortality as a percentage
of the mortality probability over all ages is provided. In order to use them for our
considerations, they need to be “translated” to additive excess mortality intensities.
As the population is not homogeneous across all ages, it is not sufficient to compute
excess mortality intensities resulting from distorted mortality rates for every age and
take the mean, but they have to be properly weighted: For the male population
death rate at time t, we have

q̃m
t =

∑

all ages x

ω̃(t)
x q̂m,x,t,

where ω̃
(t)
x are the male population weights, and q̂m,x,t is the mortality rate for

an x-year old male at time t.22 Hence, if e denotes the excess mortality rate, the
corresponding initial impact ∆ of the catastrophic occurrence can be approximated

211918 (Spanish Flu), 1957 (Asian Flu), 1968 (Hongkong Flu), 1977 (Russian Flu) and 2003
(SARS). We omitted one data point called “Adjusted 1918-20” as it was fixed at the 0.0 Percentile
Level.

22Note that the weights ω̃
(t)
x are the actual population weights and, thus, do not coincide with

the deal-specific weights from Equation (1).
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by

(1 + e)q̃m
t = (1 + e)

∑

all ages x

ω̃(t)
x q̂m,x,t

!
=

∑

all ages x

ω̃(t)
x

(

1 − e−
R

1

0
µ(x+s,t+s)+∆e−κs ds

)

⇒
∆

κ

(

1 − e−κ
)

= log

{

1 − q̃m
t

1 − (1 + e)q̃m
t

}

. (12)

Therefore, given e, we still need to fix mortality rates and population weights to
determine ∆. We use mortality rates as implied by the Gompertz forms and pop-
ulation weights as provided by the U.S. Census Bureau23 for years 1959 and 2003,
respectively. By matching the quantiles of an exponential distribution for the model
points, we arrive at the parameters displayed in Table 5. Aside from an exponential

1959 2003
Exp(ζ) Distribution ζ 317.77 357.31

mean = 1
ζ

0.003147 0.002799

Gamma(g1,g) Distribution g1 0.57298 0.57293
g2 182.08 204.71

Table 5: Parametrizations for the jump size distribution

distribution for the jumps, we also fit a Gamma distribution. Keeping the mean
at the same level as for the exponential distribution in order to obtain comparable
results and choosing the parameters that provide the best match with the model
points in a (weighted) Least Squares sense, we arrive at the parameters displayed
in Table 5.
We find that for a different demographic structure and different mortality rates, the
calibrated parameters are quite different: For the exponential distribution, the mean
is reduced by approximately 11% from the 1959 to the 2003 estimates. However,
it is not clear which parametrization is more adequate; on the one hand, the 2003
demographic structure resembles the actual structure today, but on the other hand,
the 1959 demographic structure may better cohere with the demographic structure
when (severe) pandemics occurred. In order to keep our presentation concise, if
not stated otherwise, we rely on the parametrization for 2003 and exponentially
distributed jumps.
It is worth noting that due to the data used, the catastrophic component is subject
to a high parameter uncertainty. For example, when only considering pandemic
data from the last century, we may still use the data points from Linfoot (2007),
but the resulting quantiles change considerably: When proceeding analogously, for
the Spanish Flu we would obtain the 1

100
1

0.074 ≈ 0.135 > 0.032 percentile. Moreover,
the given annual frequency of 7.4% is rather high in comparison to the frequency
proposed by RMS (3 − 4%) or by Cox et al. (2006) (≈ 3.3%). Thus, it is necessary
to conduct detailed sensitivity analyses for the catastrophe component. Further-
more, man made catastrophes are not explicitly modeled because we assume that
the structural affect on mortality rates is very similar to a pandemic occurrence.
However, as past events had a negligible effect on general population mortality, they
are not considered in our calibration procedure.

23U.S. Census Bureau. National population estimates (male), www.census.gov/popest (down-
loaded 04/19/2007).
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4.2 Risk-Adjusted Calibration Based on Insurance Prices

If life insurers knew the future evolution of mortality, mortality risk management
would be simple: With an increasing number of insured, the risk per sold policy
would decrease to zero by the Law of Large Numbers. However, aside from this
diversifiable, “unsystematic” mortality risk, insurance companies are also exposed
to “systematic” mortality risk as the future evolution of aggregate mortality actually
is not deterministic. Catastrophe mortality transactions allow insurers to transfer
a part of this systematic risk, namely the part due to the possible occurrence of a
catastrophic event, to the capital market. These transactions or, more specifically,
the excess spreads are financed by the insurer and, hence, eventually by insurance
premiums. This means that these premiums must account for catastrophic mortality
risk. Thus, it is a natural idea to use life insurance prices to derive a risk adjusted
parametrization for the mortality intensity process.
Similar ideas have been proposed for pricing longevity bonds (see Lin and Cox
(2005)) and classical catastrophe derivatives (see Muermann (2003)). As pointed
out by Bauer and Russ (2006), some conditions need to be satisfied regarding in-
surance prices and the insurance market in order to derive the risk premium for
systematic mortality risk from insurance prices. In particular, insurance prices
should not include a loading for unsystematic mortality risk,24 and the insurance
market should be free of arbitrage. We refer to their article for a discussion of these
assumptions.
The basic approach is straight-forward: Using our model, we compute prices for
term life insurance policies and derive parameters such that the model-endogenous
prices match market quotes optimally in the least squares sense. We consider term
life insurance contracts with different maturities Ti and individuals of different ages
x0 at inception,25 who get paid a fixed death benefit D against fixed, monthly
premiums P. Hence, the expected discounted value of the benefits EBTi,x0

(D) and
the premiums PBTi,x0

(P) are given by the following equations:

EBTi,x0
(D) = E

[

Ti12−1
∑

t=0

De−r t+1
12 1 t

12
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≤ t+1
12

]

=

Ti12−1
∑
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De−r t+1
12

(

E
[

1τx0
> t

12

]

− E
[

1τx0
> t+1

12

])
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12

(
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12
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− t+1

12
p(0)
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,

PBTi,x0
(P) = E

[

Ti12−1
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t=0

Pe−r t

12 1τx0
> t

12

]

= P

Ti12−1
∑

t=0

e−r t

12 t

12
p(0)

x0
,

where r denotes the (constant) rate of interest. For the remainder of the article,
we assume a constant short rate of r = 5.05%, which corresponds to the 1 year
U.S. treasury constant maturity date rate from 01/11/2007.26 For a given set of

24Technically, this means that the change of measure implied by including a risk premium should
not affect the idiosyncratic jump component (cp. Section 3.2).

25Note that in contrast to the last subsection, for the remainder of the text we set the inception
date 0 to January 1st, 2006.

26FRED (Federal Reserve Economic Data) provided by the St. Louis Federal Reserve Bank
(www.research.stlouisfed.org). As the yield curve has only a mild downward slope, we consider the
one year treasury yield as a fair proxy for our considerations.
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parameters, the quantities tp
(0)
x0 can be conveniently calculated using Equation (8).

By the actuarial principle of equivalence (see e.g. Bowers et al. (1997)), we then
obtain the model-endogenous premiums

P̂Ti,x0
=

EBTi,x0
(D)

PBTi,x0
(1)

,

which depend on the parameter choice. Hence, the task is to find parameters such
that the target function

∑

Ti,x0

(

P̂Ti,x0
− PTi,x0

)2

→ min

is minimized, where PTi,x0
are the actual market quotes. Our data set contains

prices as provided by Quickquote.com for male Californians27 with ages ranging
from 25 to 55 and maturities from 10 up to 30 years. This calibration routine as
well as all other numerical calculations are implemented in C++ using routines
from the GNU Scientific Library28 (GSL); in particular, we make use of an ODE
solver provided in the GSL based on the Runge-Kutta method.

But again, there are two potential pitfalls:

1. Death rates for the population of insured and the general population differ con-
siderably, but CATM bond prices depend on population mortalities, whereas
insurance prices depend on insured mortalities. Hence, assuming equality
would not be adequate. However, this is not the case for mortality improve-
ments: Even though mortality improvements were somewhat higher for the
population of insured in comparison to the general population, the deviation
is rather small. For example, for the incorporation of mortality trends into the
Valuation Basic Table 2001 (VBT 2001), the American Academy of Actuaries
reports that they relied on the improvements for the general population (cf.
American Academy of Actuaries (2002)). Therefore, we assume that mortality
improvements, which in our model are governed by the process Y , are alike for
the population of insured and the general population. Furthermore, it seems
to be reasonable that the exposure to catastrophes do not differ between the
two populations, and therefore we also assume that the process Γ is the same
for both populations. Thus, it is sufficient to apply different parametrizations
for the initial mortality intensity ebx0+c to the different populations.

2. Insurance prices include adjustments for selection effects, which e.g. arise due
to mandatory health examinations before underwriting the policies. Hence,
when determining insurance prices based on mortality rates without selec-
tion effects included, the resulting prices are higher than corresponding prices
based on selection tables. Since our model does not take selection effects into
account, resulting parametrizations tend to underestimate risk and respective
premiums included in insurance prices, but yield a lower bound.

In order to carry out the optimization algorithm, we still need to fix the initial
mortality intensity, i.e. we need to find appropriate parameters b and c. We use the

VBT 2001, where period (spot) mortality rates q
(2001)
x are provided. By a similar

approximation to the one used in Equation (10), we can derive mortality intensities
via the relationship

q(2001)
xt

= 1 − e−
R

1

0
µ̃(xt+s,2001+s) ds

≈ 1 − e−µ̃(xt+0.5,2001+0.5). (13)

27Non-Smoking, Standard-Plus, monthly premium payments, $100,000 coverage.
28See www.gnu.org for detailed information.
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Fixed Parameters

b c Y0 Γ0

0.09697472 -10.16051938 0.630240494 0

Calibrated Parameters

α β σ κ 1/ζ λ
0.1528 0.2234 0.0003393 6.370e-16 0.002860 0.06441

Table 6: Parameter calibration based on insurance prices

However, mortality intensities for t = 0, i.e. 2006+0 rather than for 2001+0.5, are
needed. We approximate them using the same methodology as was implemented
for the derivation of the VBT 2001 (see American Academy of Actuaries (2002));
here, the 2001 data was extrapolated from 1990-1995 Basic Tables derived by the
Society of Actuaries’ (SOA) Individual Experience Committee. By applying the
same trends, we further extrapolate the 2001 data to 2005.5 and derive mortality
intensities µ̃(x, 2006) by relationship (13), and hence, parameter b = 0.09697 and
parameter c = −10.62217 by exponential regression. Of course, when choosing
the starting value of the continuous part Y0 different than 1, c has to be adjusted
accordingly.
In the calibration procedure, we encounter numerical instabilities due to local min-
ima of the target function. We solve this problem by considering a large set of
different starting values for the optimization algorithm and choose the parameters
which imply the minimum value for the target function within the considered set.
The resulting parameter estimates are displayed in Table 6.29

We find that the parametrization for the baseline component significantly differs
from the results in the foregoing section. This may be a sign that the death rates
derived from the VBT 2001 do not present a very good match to the death rates
underlying the population of insured in view: The high mean reversion speed as
well as the low volatility imply that the spot mortality intensities decrease very
rapidly to levels close to βebx+c. For the catastrophe component, on the other
hand, the resulting expected jump size 1

ζ
(jump intensity λ) is only slightly increased

(decreased) compared to the historical value, but the impact over time, which the
occurrence of a pandemic has on mortality rates, is substantially higher since κ is
almost zero.
These outcomes indicate that we have to be careful with definite conclusions since
we did not include selection effects and since we can not be sure whether the initial
mortality data from the VBT 2001 presents a good approximation for the population
of insured in view. Considering other mortality tables or a different set of insurance
quotes may yield more reliable results. For example, using prices from continuing
options for existing term life insurance contracts, where selection effects usually are
less dominant, may be worthwhile.

29Y0 was fixed at the same level as for the 2006 population mortality (cp. Section 4.3), and c

was adjusted accordingly.
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4.3 Parameters Implied by Market Prices

When pricing credit derivatives, the parameters of a given model are usually cali-
brated to market prices of certain securities such as Credit Default Swaps (CDSs)
or CDOs with different maturities. Similarly, we may also parametrize our model
based on prices of different CATM transactions or tranches within one transac-
tion. In order to derive such an implied parametrization, but also to eventually
analyze and price a transaction given some parameters, it is necessary to model the
combined mortality index contingent on the basic quantities within our model, i.e.
mortality intensities.
As noted earlier in this section, we limit our considerations to one gender and one
population only. Actual transactions were based on both genders, but differences in
the evolution of male and female death rates are rather small, particularly in view
of catastrophic events. This may not be the case for different populations as a possi-
ble epidemic or a severe terrorist attack may occur locally. Into a multidimensional
version of our model, a complex dependence structure between the catastrophe
components can be incorporated. However, for the baseline component, restrictions
need to be imposed; for example, independently or fully correlated evolving baseline
components will sustain the model’s analytical tractability, but empirical investi-
gations are necessary to support such assumptions. Furthermore, the number of
parameters will naturally increase.
As mentioned earlier in the text, we primarily focus on the Tartan transaction,
which is solely based on US mortality experience. Denoting 1

2 (q̂2005 + q̂2004) by i0,
the combined mortality index it at times t = 2(2007), 3(2008) in terms of our model
is given by (cp. Equation (2))30

it =
1

2i0
(q̂t + qt−1)

=
1

2i0

∑

x

ωx,m

((

1 − e−
R

1

0
µ(x+s,t−1+s) ds

)

+
(

1 − e−
R

1

0
µ(x+s,t+s) ds

))

=
1

i0
−

∑

x

ωx,m

2i0

(

e−
R

1

0
µ(x+s,t−1+s) ds + e−

R

1

0
µ(x+s,t+s) ds

)

(14)

In order to determine “the value”, i.e. the expected discounted payoff under a
certain model parametrization, we need to determine the cash flows of the security.
As explained in Section 2.1, the investor is entitled to coupon payments. During the
first measurement period, that is the time before the index is calculated for the first
time (here t = 2), the coupon payments are not at risk. For the remaining time,
interest is only paid on the remaining principal, which is determined according to
Equation (3). At maturity, interest for the last period and the remaining principal
are disbursed. Table 7 shows the resulting cash flows for a nominal of 1 and spread
s within the Tartan transaction. To simplify notation, annual instead of quarterly
coupon payments are assumed; a and d denote the attachment and detachment
point, respectively. Thus, it is sufficient to determine the (joint) distributions of i2
and i3 to derive the value as the sum of the expected discounted cash flows.
While there is an approximative method to solve the valuation problem semi-
analytically, the derivation is computationally involved as it requires numerical
methods for inverting multidimensional Fourier/Laplace transforms and the nu-
merical computation of multidimensional integrals (see the Appendix for details).
But aside from the computational difficulties, we are faced with a practical con-
straint: There are only very few market prices available. Naturally, we need at
least as many quotes as there are parameters to be calibrated. In particular, for the

30Note that in comparison to Table 1, the weights ωx,m need to be adjusted as we consider only
male and single age rather than age group weightings.
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Cash Flows
t = 0 −1
t = 1 (LIBOR + s)1
t = 2 (LIBOR + s)1

t = 3 (LIBOR + s)
(

1 − min
{

1, max
{

i2−a
d−a

, 0
}})

+
(

1 − min
{

1, max
{

i2−a
d−a

, i3−a
d−a

, 0
}})

Table 7: Cash flows for the Tartan bonds

Tartan deal there is only a single price available as there is only one (unwrapped)
tranche which enables us to only calibrate one parameter implicitly. While we may
additionally consider prices of other transactions, as for example the OSIRIS or the
Vita III deals, within these securities, the combined mortality index is subject to
several different populations (e.g. 60% France for OSIRIS), and assuming the same
evolution for the underlying mortality would be rather harsh without empirical
investigations.
Therefore, we limit our considerations to the single Tartan tranche and rely on
Monte Carlo simulations for both implicitly calibrating the parameter(s) as well as
analyzing and pricing the contracts by simulating the index. This is computationally
procurable for only one free parameter and has the additional advantage that we can
carry out the computation “exactly” rather than using an approximation. However,
when there are more prices available, Monte Carlo simulations may not present a
feasible choice for calibrating several parameters at a time and the approximative
method from the Appendix may be a valuable alternative.
In the calibration procedure, we are left with the choice of which parameters to
fix and which parameter to keep variable since only one free parameter may be
included. We choose the expected jump size: On the one hand, the baseline compo-
nent, by definition, does not reflect the attitude towards catastrophic events, which
are most important for the transactions, and is, therefore, set to the conservative
parametrization P1 (see Table 4). On the other hand, as we want to interpret a
jump of the catastrophe component solely as a catastrophic event, relatively high
values for the jump intensity λ or very low values for κ are not preferable. Hence,
we fix λ and κ to the parameter values 0.074 and 4.6052 which were estimated in
Subsection 4.1. Similarly as for pricing insurance contracts, we further need to fix a
parametrization for the initial mortality intensity ebx+c. We proceed analogously to
the last subsection, i.e we derive µ(x0, 0) based on the given 2003 population mor-
tality data and the projection method from the American Academy of Actuaries
(2002). Now, given the spread level of 300bps for the Class B notes of the Tartan
deal, we choose ζ such that we fit the price – we obtain an expected jump size of
1
ζ

= 0.0075726.
Based on the different parameter choices that we derived in this section, we are now
able to price and analyze the CATM bonds from different perspectives.

5 Results

For rating agencies and traditional ABS investors, the Probability of Default (PD),
that is the probability that the investors’ principal will be reduced due to the occur-
rence of a catastrophic event, as well as the Expected Loss (EL), i.e. the expected
percentage of the principal loss, are important comparative statistics. Furthermore,
the corresponding spread level leading to an “actuarially fair” contract in the sense
that the sum of the expected discounted cash flows equals zero may be of interest.
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Scenario Cl. B Tranche (110 % - 115 %) Cl. A Tranche (115 % - 120 %)

PD (%) EL (%) Spread (bps) PD (%) EL (%) Spread (bps)
P1 2.4856 1.5675 61.80 0.9162 0.5789 22.65
P2 2.0954 1.3223 52.53 0.7710 0.4856 19.20
P3 1.8896 1.1908 47.70 0.6844 0.4346 17.29

Table 8: Influence of the Baseline Component

In Table 8, the loss profiles as well as the respective spread levels are displayed for the
two tranches within the Tartan deal and the three different historical parametriza-
tions for the baseline component31 P1, P2, and P3.
The results clearly reflect the increased exposure to catastrophic mortality risk
of the lower Class B notes in comparison to the more senior Class A notes: All
three risk measures are reduced by more than 63%. This does not seem surprising
considering the fact that the lower tranche will be completely exhausted if the
higher tranche is triggered. Moreover, all three quantities are relatively high for
the more conservative parametrization P1, where only very mild future mortality
improvements are assumed. While this general trend also does not seem peculiar,
it occurs that the influence of the baseline component is quite pronounced: From
parametrization P1 to P2, the expected loss is reduced by almost 16%, and from
P2 to P3 the reduction is still about 10%. This reveals that despite the rather short
maturity of three years, the baseline component considerably affects the loss profile.
This does not mean that the bond may be triggered by an adverse evolution of
the baseline component. In fact, when neglecting the catastrophe component, the
default probability is at an almost negligible level for all three parametrizations
of the baseline component – but differences in mortality improvements due to the
parametrization of the baseline component affect the probability that the tranche is
triggered given a “jump” occurred. In Figure 7, the discretized distribution of the
index at time t = 3, i3, is plotted for parametrizations P1 and P3. We find that the
right tail is only slowly declining in comparison to the left tail. This “skewness” is
due to the influence of the catastrophe component, i.e. the influence of the (positive)
jumps of the mortality intensity. When comparing the distributions of the index
implied by the two baseline parametrizations, it appears that the shape is very
similar but that more pronounced mortality improvements lead to a left shift. This
means that for higher mortality improvements, catastrophic occurrences may be
leveled to the point where they do not lead to a trigger event.
However, the catastrophe component is the more important risk driver for CATM
securitizations. In particular, the uncertainties regarding the corresponding pa-
rameters have a significant effect: The loss profile of the bonds is very sensitive
to changes in all three parameters affecting the catastrophe component.32 As in-
dicated in Section 4.1, there are particular problems when trying to find an ad-
equate parametrization for the expected jump size 1

ζ
since different observation

periods or different demographic structures may yield considerably different out-

31While discussing the influence of the baseline component, we always assume the following
parametrization for the catastrophe component: κ = 4.6052, λ = 0.074, ζ = 357.31 (cp. Table 5).

32See Figures 10, 11, and 12 in the Appendix for sensitivities of the expected tranche loss to
changes in λ, κ, and 1

ζ
, respectively. The basic parametrization of the catastrophe component,

which this sensitivity analysis is based on, is again κ = 4.6052, λ = 0.074, and ζ = 357.31 (cp.
Table 5).
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Figure 7: Distribution of the index value

comes of the calibration procedure. In Table 9, comparative statistics for different
parametrizations are presented. For the middle choice of the baseline component
(P2), aside from risk measures resulting from parameters corresponding to the 2003
demographic structure (P2 and P2′), the results implied by the 1959 demographic
structure (P21 and P21′) for exponentially as well as Gamma distributed jumps,
respectively, are provided. Moreover, the loss profile for the Tartan bonds as quoted
from Linfoot (2007) is shown.
We find that there are distinct differences between the two contemplated jump dis-
tributions, which emanate from a higher variance of the Gamma distributed jumps.
For the utilized data consisting of only five model points, it is arguable whether
the additional degree of freedom within the Gamma distribution is essential or even
appropriate, but for larger data-sets it may prove necessary in order to obtain a
significantly better fit to the empirical distribution. Moreover, in comparison to

Scenario Cl. B Tranche (110 % - 115 %) Cl. A Tranche (115 % - 120 %)

PD (%) EL (%) Spread (bps) PD (%) EL (%) Spread (bps)
P21 2.6464 1.7507 70.06 1.0854 0.7181 28.55
P21′ 2.9376 2.1615 88.16 1.5460 1.1594 47.27
P2 2.0954 1.3223 52.53 0.7710 0.4856 19.20
P2′ 2.4742 1.7639 71.74 1.2208 0.8841 35.87
Quoted 0.8800 0.5400 - 0.2900 0.1600 -

Table 9: Influence of the Catastrophe Component
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Figure 8: Influence of the expected jump size on the tranche spreads

the jump size distribution, the influence of the population structure appears to be
similarly pronounced. The expected loss is reduced by approximately 20% to 30%
for the different tranches and jump distributions when considering the 2003 opposed
to the 1959 demographic structure.
The risk measures from Linfoot (2007) are considerably lower than our results for
the 2003 population, but when comparing the results for Class A and B notes as
well as the ratios of default probabilities and expected losses within one set of
results to our outcomes, the implicit structure is quite similar. This observation
indicates that the deviations of our findings in comparison to the “official” quotes
from Linfoot (2007) do not result from a distinctive structural difference in the
model specification but rather from differences in the considered parametrizations,
in particular for the expected jump size 1

ζ
and the mean reversion parameter κ.

Regarding the difficulties which come along with the calibration procedure, these
deviations indicate that the estimates provided by risk modeling firms should be
interpreted carefully by investors and, especially, rating agencies.

Even though the resulting spreads for our parametrizations are presumably higher
than the spread levels corresponding to the loss profiles from Linfoot (2007), they
are clearly still well below the market level of 300bps. Figure 8 shows the sensitivity
of the spread level to changes in the expected jump size 1

ζ
. For relatively low values,

the tranche spreads increase exponentially in the expected jump size.33 However, as
ζ decreases, the sensitivity lessens and the curve becomes, ceteris paribus, concave.
This peculiarity is due to the structure of the deal: If a jump is large enough such
that the complete principal is exhausted, it is not relevant by how much the jump
exceeds this critical value. In particular, this means that the differences between
the spread levels for the two different tranches decrease with an increasing expected

33See also Figure 12 in the Appendix for the same observation of the sensitivity of the expected
tranche loss.
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Figure 9: Discretized tranche loss distributions

jump size, as – beyond some critical point – most jumps will fully exhaust both
tranches. Thus, we obtain an upper bound of approximately 1200bps for the spread
level since for “infinitely” large jumps, the only question in view is whether a jump
occurs or not which is controlled by the jump intensity λ = 0.074.
This structure is similar to the one of CDO tranches. In fact, the tranche loss
distributions displayed in Figure 9 have exactly the same shape as for CDOs.34

The left tail of the index distribution is attributed to the 0% loss, whereas the
outer right tail is attributed to a full loss. In particular, it is worth noting that the
cumulated loss probabilities for the Class A tranche exceeding the 0% level add up
to the full loss probability of the Class B tranche. Moreover, we can again observe
the “shift” of the distributions when comparing the histograms for parametrization
P1 and P3.

The relatively young history of the CATM market and the unfamiliarity of ABS
investors with mortality contingent securities suggest that the spread levels investors
can earn within CATM transactions are likely to be above the levels for CDOs with
a similar PD and EL. This idea is backed by a comparison of the different CATM
deals so far. In Table 10, risk measures and spread levels as implied by the Tartan
price (cp. Section 4.3) as well as the quoted market spreads for tranches from the
Vita I and the Vita III transactions are displayed.35 It appears that the quoted
spread level within the Vita I deal was considerably higher than the spread level
implied by the Tartan price. This does not seem surprising as Vita I was the first
CATM transaction, and consequently the spreads included a considerable novelty
premium. Conversely, the actual spread level for the B-II notes of the Vita III
transaction is considerably lower than the respective spread implied by Tartan.

34Note that the probability of a 0% tranche loss is capped at 0.0125 in Figure 9.
35Note that using the same parametrization would suggest that the underlying population is

the same for all transactions, which is not the case. Thus, our findings have to be considered with
care as e.g. diversification effects are not included.
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Cl. A Vita I
Tranche (130 % - 150 %)

PD (%) EL (%) Spread (bps)
Calibration 2.7508 1.4408 47.12
Quoted - - 135.00

Vita III
Cl. B-II Tranche (120 % - 125 %) Cl. A-VII Tranche (125 % - 145 %)

PD (%) EL (%) Spread (bps) PD (%) EL (%) Spread (bps)
Calibration 7.1754 4.9992 190.26 6.0290 2.6332 74.97
Quoted - - 112.00 - - 80.00

Table 10: Summary of results for risk-adjusted parametrization based on the Tartan
tranche

This relationship cannot be observed for the A-VII tranche: Here, the market spread
slightly exceeds the Tartan-implied spread. However, the difference of the market
spreads between the two Vita tranches seems rather small considering the signifi-
cantly higher exposure of the Class B-II note to catastrophic occurrences. In partic-
ular, if we adjust the expected jump size to match one of the two prices, the other
model-endogenous spread will be far from the observed one. However, we only
adjust one parameter, namely the expected jump size; as depicted earlier in this
section, the sensitivity of the spread level to the expected jump size fades for higher
values of 1

ζ
(see Figure 8), whereas the spread level decreases exponentially in κ and

increases almost linearly in the jump intensity λ.36 Therefore, using our model, it
is possible to mimic price structures as observed within the Vita III transaction
by simultaneously adjusting several parameters instead of a single one. However,
a calibration via Monte Carlo simulations as was carried out in Section 4.3 will
become cumbersome. Thus, when calibrating our model to several tranche prices
as e.g. within the Osiris or Vita III transaction, the calibration procedure based on
the approximative derivation of the index distribution from the Appendix, which is
also adverted in Section 4.3, may be advisable.

Table 11 shows the results for the risk-adjusted parametrization based on insurance
prices as was explained in Section 4.2. In comparison to the results from the historic
parametrizations, we find that all risk measures increase dramatically. Despite the
problems with the calibration due to selection effects and differences in the popula-
tions considered as described in the foregoing section, these large deviations indicate
that insurance prices include considerable margins for adverse mortality evolutions
due to occurrences of catastrophic events. In particular, we find that the resulting
spread level of approximately 277bps for the Class B notes is only slightly lower
than the market spread of 300bps. Disregarding possible flaws, this means that
Scottish Re was able to bin the catastrophic mortality risk from their books for less
than 23bps, since the 277bps constitute a lower bound for the spread level implied
by insurance prices (cp. 4.2). Furthermore, as detailed in Section 2.2 and indicated

36See Figures 10 and 11 in the Appendix for the sensitivity of the expected tranche loss to
changes in the jump intensity and the speed of mean reversion.
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Tranche (110 % - 115 %) Tranche (115 % - 120 %)

PD (%) EL (%) Spread (bps) PD (%) EL (%) Spread (bps)
Calibration 7.1272 6.6586 277.29 6.2092 5.8092 239.36
Quoted - - 300 - - -

Table 11: Summary of results for risk-adjusted parametrization based on insurance
prices

in Table 10, the Tartan deal was priced wider than many other deals, meaning that
this difference may have even been smaller for other transactions. Hence, it is even
conceivable that within some tighter priced notes, such as the Vita III Class B-II
notes, (re)insurers were able to lay off their catastrophic mortality risk by earning
rather than paying a premium.
These observations provide us with a possible answer to the question of why the
CATM market has grown so quickly over the last years: For ABS investors, CATM
transactions provide investment opportunities with a familiar payoff structure, but
the spreads one can earn seem to exceed the ones within the credit market, possibly
due to considerable novelty premiums. However, the margins for catastrophic mor-
tality risk within insurance prices appear to be, if at all, only slightly lower than
the margins within the CATM bonds. Thus, for (re)insurers, CATM transactions
seem to provide relatively cheap – or even profitable – means to remove catastrophic
mortality risks from their liability side.
In this regard, the Theory of General Economic Equilibrium suggests that it is
even possible that a growing CATM market with decreasing spread margins may
eventually yield decreasing life insurance premiums, which in turn would induce
welfare gains.

6 Conclusion

Catastrophe Mortality Bonds are a recent capital market innovation providing in-
surers and reinsurers with the possibility to transfer catastrophe mortality risk off
their balance sheets to capital markets. While the various transactions differ in
the composition of the underlying reference population, the basic structure is the
same: Based on mortality data as reported by official entities, a combined mortality
index is calculated. If this index exceeds a certain level, the bonds will be triggered
and the investors’ principal will be reduced. In return, investors receive coupon
payments on their principal including spread margins for the adopted risk.
So far, there have been five public deals in the market, four of which Swiss Re
has been involved in as protection buyer and/or arranger. Since the first deal
in late 2003, in which only one tranche with a relatively low risk exposure was
issued, the market has developed considerably – more recent deals include several
tranches with different seniorities. Moreover, the spectrum of investors has widened
substantially: While the first bond was mainly sold within the insurance world or
to specialized CAT bond investors, now several tranches are wrapped by monoline
insurers, and traditional ABS investors as well as hedge funds have found interest
in these securities.
An important role in the arrangement and the execution of these transactions is
played by so-called risk modeling firms, who are in charge of the calculation of the
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combined mortality index and the provision of comparative statistics such as default
probabilities or expected losses of the securities for investors and rating agencies.
Despite the growing market and the increasing bandwidth of investors, so far only
one company, the actuarial consultant Milliman, was appointed as the calculation
agent for all deals. However, within the last transaction (Vita III), the consulting
firm Risk Management Solutions was hired as an adviser by one of the involved
monoline insurers. Their modeling approaches differ considerably: While Milliman
uses statistical forecasts based on an actuarial model, RMS relies on their expertise
regarding pandemic occurrences in a causal modeling approach.
In this article, a time-continuous actuarial model for analyzing and pricing mortality
contingent securities is introduced. The model consists of two additive parts: A
baseline component, which models the “regular” random fluctuations of mortality
over time and is driven by a diffusion, and a catastrophe component governed by a
jump process. Due to its affine structure, survival probabilities can be determined
analytically up to the solution of ordinary differential equations, and – on this basis
– the “classical actuarial toolbox” can be used to determine insurance premiums,
for example.
In order to apply this model for analyzing mortality contingent securities, it natu-
rally needs to be calibrated. We provide a detailed discussion of different calibration
procedures and resulting parametrizations. In addition to a calibration based on
historical data, we derive risk-adjusted parametrizations based on insurance quotes
and market prices of catastrophe mortality bonds, respectively.
Our discussion shows that finding adequate parameters based on the data used in
practice is very difficult, particularly for the catastrophe component. Therefore, we
do not consider a single set of parameters but several parametrizations and conduct
detailed sensitivity analyses. We find that the outcomes regarding expected losses
and default probabilities of the considered securities differ significantly among the
different sets of parameters, which leads to the conclusion that loss profiles as pro-
vided by the risk modeling firms have to be considered with care. In particular,
the provided risk measures are substantially lower than our results for all consid-
ered parametrizations although there are no structural differences in the outcomes,
which indicates that the parametrizations used by the calculation agents are rather
“optimistic”. A collaboration of actuaries and experts in epidemiological research
may potentially lead to more reliable results.
Analyzing the loss distribution of the notes, one detects that they look very similar
to loss distributions of CDO tranches, suggesting that ABS investors may feel quite
comfortable with these securities as they are used to their structure. Moreover, when
comparing loss probabilities and expected losses, the risk-return profile of CATM
bonds seems to be very attractive. However, one has to keep in mind that the
structure of the underlying risk is not alike meaning that comparisons based on low
order moments or partial moments may be misleading. Nevertheless, a comparison
of the pricing of the different transactions suggests that there is a substantial novelty
premium included in the spread margins, which explains the investors’ interest in
the notes.
Comparing the spread margins to notional margins in term life insurance prices,
the differences seem to be rather small. This indicates that insurers and reinsurers
can take advantage of the risk transfer at a relatively low cost or even by earning
a premium, which may explain the quick growth of the market from the insurer’s
perspective.
For assessing CATM bonds with more than one underlying population, as a next
step, the model can be extended to multiple dimensions. As depicted in Section 4.3,
the model structure and, in particular, the analytic properties will remain the same
under certain assumptions on the dependence of the respective baseline components.
For the securities considered, the introduced model performs very well for ana-
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lyzing and pricing, and this article provides valuable insights into the market for
catastrophe mortality bonds.
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Appendix

Derivation of Equation (8)

Equation (8) is a special case of the far more general result from Duffie et al. (2000),
Proposition 1. However, for the sake of completeness, we shortly re-derive it for our
specification.
Equations (5) and (6) together with the independence of Γ and Y yield
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so we can consider the factors individually.
For the second part, we assume
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=: f̂(t, Γt),

where û(0) = v̂(0) = 0. An application of Itô’s formula for jump processes (cp. e.g.
Cont and Tankov (2004), Proposition 8.13) yields

df̂(t, Γt) = f̂(t, Γt−)
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where (Mt) is a martingale. Since f̂(t, Γt) should be a martingale and by the
so-called “affine matching principle” (see Duffie and Kan (1996)), we obtain the
following ODEs for û and v̂:

û′(x) =
λ v̂(x)

ζ − v̂(x)
, û(0) = 0

v̂′(x) = −κ v̂(x) − 1, v̂(0) = 0.

As can be easily checked, the unique solution to the latter ODE is
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and plugging it into the first ODE and computing the integral leads to
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Analogously, for the first part we assume
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where v(0) = u(0) = 0, and again by an application of Itô’s Lemma for Itô processes
(cp. e.g. Bingham and Kiesel (2003), Theorem 5.6.2) and “matching” the coefficients
as above, we obtain the ODEs

u′(x) = αβ v(x) eb(x0+T−x)+c, u(0) = 0

v′(x) = −1 − (α − b) v(x) − 1

2
σ2 v2(x) eb(x0+T−x)+c, v(0) = 0.

Plugging u, v and û, v̂ back into Equations (16) and (15), respectively, and putting
the factors back together finally results in Equation (8).
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Derivation for the estimators of α and σ in Table 4

Discretizing the SDE for Y from Equation (7) yields

Yt+1 − Yt = α (β − Yt) + σ
p

YtNt,

where Nt, t = 0, ..., T − 1 = 43 are independent N(0, 1)-distributed random vari-
ables. Therefore,

σNt =
Yt+1√

Yt

−
p

Yt + α
p

Yt −
αβ√
Yt

,

and the standard estimators for the mean and the variance (ideally) give
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respectively. As β is given, solving the first equation for α yields the estimator

α̂ =

PT−1
t=0

Yt+1√
Yt

−
√

Yt

PT−1
t=0

β√
Yt

−
√

Yt

,

and plugging α̂ back into the second equation gives the estimator for σ,
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Approximative derivation of the joint distribution of i2 and i3

By Equation (14), we have
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where we used the simple Taylor expansion ex = (1 + x) for x close to one. As
the relevant quantities, in particular for the most relevant ages, are very small, the
approximation will be close. In order to compute the (joint) distribution of i2 and
i3, we need to compute the joint distributions of the random variables

Continuous Part : Ξ1 :=

Z 1

0
Ysebs ds, Ξ2 :=

Z 2

1
Ysebs ds, Ξ3 :=

Z 3

2
Ysebs ds (Y0 > 0);

Jump Part : Λ1 =

Z 1

0
Γs ds, Λ2 =

Z 2

1
Γs ds, Λ3 =

Z 3

2
Γs ds (Γ0 = 0).

As the jump part and the continuous part are independent, it is sufficient to derive
the joint densities for Ξ1, Ξ2, and Ξ3 as well as for Λ1, Λ2, and Λ3, respectively.
The joint density will be given by the product of the two densities. We will focus
on the continuous part, but the jump part may be considered analogously.
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It is important to note that Ξ1, Ξ2, and Ξ3 are independent given Y1 and Y2.
Therefore, for Borel sets B1, B2, B3, B̃1, B̃2 we have
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So, the joint density fΞ1,Ξ2,Ξ3
(x, y, z) can be derived from the (conditional) densities

fΞ1,Y1
(x, y), fΞ2,Y2|Y1

(x, y | z), and fΞ3|Y2
(x | y) by
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Since we are working in an affine framework, we can derive the (joint) Laplace or
Fourier transforms for Ξ1, Y1, for Ξ2, Y2 given Y1, and for Ξ3 given Y2 analytically up
to the solution of ODEs similarly to the derivation of Equation 8 above (see Duffie
et al. (2000) for details). From these, we can derive the corresponding densities by
inverting the respective transform (see e.g. Petrella (2004)), and compute the joint
density of fΞ1,Ξ2,Ξ3

(x, y, z) as above; thus, we are given the (joint) distribution of
i2, i3 as deterministic functions of Ξ1, Ξ2, and Ξ3.
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Figure 10: Influence of the speed of mean reversion κ on the expected tranche loss
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Figure 11: Influence of the jump intensity λ on the expected tranche loss
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Figure 12: Influence of the expected jump size on the expected tranche loss


